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ABSTRACT Modeling complex natural and human systems to support policy or management decision
making is becoming increasingly common. The resulting models are often designed and implemented by
researchers or domain experts with limited software engineering expertise. To help this important audience,
we present our experience and share lessons learned from the design and implementation of an agent-based
model of agricultural production systems in the Argentine Pampas, emphasizing the software engineering
perspective. We discuss the model’s design including the model classes; the activity diagram, and data
flow; the package and folder layout; the use of design patterns; performance optimization; initialization
approaches; the analysis of results; and model measurement, validation, and verification.

INDEX TERMS Complex adaptive systems, agent-based modeling, coupled human and natural systems,
model design and implementation, software engineering.

I. INTRODUCTION
TheArgentine Pampas is one of the leading cereal and oilseed
producing areas in the world [1]. Production systems in
the Pampas have evolved rapidly during recent decades [2].
This evolution has been shaped by multiple climatic [3], [4],
technological [5]–[7] and global and local economic and
political [2], [8] drivers. The most significant changes have
been: (a) an increase in the area operated by individual
farmers, accompanied by a decrease in the number of active
farmers, (b) an increase in the amount of land operated by
tenants, and (c) changes in land use patterns, in particular,
the increasing dominance of soybean [9].

Agricultural systems are coupled human and natural
systems (CHANS) in which people interact with natural fac-
tors. CHANS involve ecological variables (e.g., landscape
patterns, crop growth, and groundwater depth), human vari-
ables (e.g., socioeconomic processes, land use patterns, land

tenure regimes, and governance structures) as well as vari-
ables linked both to ecological and human processes (e.g., use
of ecosystem services such as food and fiber provision) [10].
In CHANS, people and nature interact reciprocally and form
complex feedback loops [10], [11]. Furthermore, changes in
the environmental and socioeconomic contexts often induce
individuals to adapt.

Systems that show both complexity and adaptability are
known as complex adaptive systems (CASs). CASs are
composed of autonomous agents (individuals, groups, insti-
tutions or other entities) that interact with, and influence
each other, learn from their experiences, and adapt their
behaviors [12]. Complexity in CASs involving natural and
human systems (i.e., CHANS) is characterized by (a) non-
linearity (i.e., system behaviors are not directly proportional
to inputs) (b) heterogeneity (i.e., attributes and behaviors
may vary among individuals), (c) thresholds (i.e., abrupt
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transition points between alternate states), (d) time lags
(i.e., delays between human-nature interactions and the per-
ception or detection of their ecological or socioeconomic
effects), (e) resilience (i.e., the capability to retain struc-
tures and functioning after disturbances), (f) legacy effects
(i.e., impacts of prior human-nature couplings on later condi-
tions) and (g) emergent patterns (i.e., macroscopic properties
which emerge out of local small-scale interactions) [10], [13].
Not all these characteristics must be simultaneously present
in a system for it to be considered complex. Another charac-
teristic of CASs is adaptability – variations over time of the
individuals’ rules, behaviors and structures that are induced
by changes in the environment or other contexts. Adapta-
tion emerges as a result of (a) interactions among groups of
individuals or (b) interactions between individuals and their
environment and context [13].

Agricultural production systems in the Argentine Pampas
can be considered as both a CAS and a CHANS as they
combine complexity and adaptability, as well as interactions
between human and natural components. Many characteris-
tics of complexity are present in these systems: (a) crop yields
show a non-linear response to rainfall, increasing first but
decreasing after excessive rain (i.e., non-linearity); (b) farm-
ers have individual characteristics such as wealth, land
ownership, risk or loss aversion, and crop rotation prefer-
ences (i.e., heterogeneity); (c) shallow groundwater can pro-
vide a positive subsidy to crops if rainfall is insufficient,
but if groundwater rises above certain depth it may drown
roots and kill crops (i.e., thresholds); (d) loss of soil structure
associated with lack of crop rotation may take years to cause
noticeable yield decreases (i.e., time lags); (e) crop rotation
has a positive effect on subsequent crop yields (i.e., legacy
effects); and (f) regional-level patterns such as land use,
farm structure and land tenure emerge from many individ-
ual decisions by farmers (i.e., emergent patterns). Similarly,
adaptability is present in the behavior of farmers. For exam-
ple, (a) changes in farmers’ working capital may trigger an
increase or reduction of the area they farm; (b) dissatisfaction
with experienced outcomes (i.e., profits) may induce changes
in subsequent land use choices; and (c) perception of better
outcomes achieved by peers may induce imitation of their
land use or management practices [9].

Agent-based modeling is well suited to the study of
CHANS [14], [15]. This approach involves a set of
autonomous decision-making entities (i.e., agents), an envi-
ronment through which they interact, behaviors that define
the agent-environment relationship, and rules that define
the sequence of processes in the model [16]. Agent-based
models (ABMs) often represent human decision-making,
including processes such as social interactions, learning, and
adaptation [17], [18]. ABMs also can serve as computational
laboratories, as they may exhibit complex behavior patterns
that provide valuable insights about the dynamics of the
modeled system. There is a vast literature on ABMs of land
use change (see [16], [18]) as well as on ABMs of agricultural
applications (see [19]–[24]).

The Pampas Model (PM) is an ABM of agricultural pro-
duction in the Argentine Pampas. Its development was moti-
vated by the need to gain insight into the processes underlying
recent structural and land use changes in the Pampas. The PM
has many similarities with other agricultural land use models
such as FEARLUS [25], AgriPoliS [26], MP-MAS [27], [28],
and a model of the Canadian Prairies [24]. FEARLUS and
AgriPoliS are themodels most similar to the PM. Indeed, they
guided the design of many of the processes in the PM [9].
The components of the PM have been described in [9], and
validation protocols were discussed in [29].

In this article, we focus on analyzing and describing the
PM from a software engineering point of view. As models
of complex systems often are designed and implemented by
researchers or domain experts with limited software engi-
neering expertise, we seek to present helpful guidelines and
good practices for the design and implementation of ABMs.
Throughout the paper we provide examples drawn from our
experience with the PM.

The paper is organized as follows. First we present a brief
overview of the PM, followed by the main aspects of its
design (Section II), namely: (a) model classes; (b) activ-
ity diagram and data flow; (b) package and folder layout;
(d) use of design patterns; and (e) performance optimiza-
tions. Second, we discuss software engineering aspects
related to the initialization of simulations (Section III); the
analysis of results (Section IV); and code validation and
verification (Section V). In Section VI we present code met-
rics estimated for the PM and comparable models. Finally,
in Section VII we discuss the main lessons learned from our
attempts to develop an extensible, maintainable, and opti-
mized implementation of an ABM designed to study a CAS
and CHANS, in the hope that our experience may help others
undertaking similar tasks.

II. MODEL DESIGN AND ARCHITECTURE
This section describes the PM from a software engineering
point of view. The description is intended to be helpful to
software developers as well as researchers with some pro-
gramming knowledge. For this reason, we aim to document
our experiences in a form that is simple enough for domain
experts or researchers, while also specific enough for soft-
ware developers. For the description of the model, we apply
the widely used Unified Modeling Language (UML) knowl-
edge modeling approach.

UML is used by software developers to graphically repre-
sent a software program or a conceptual model. This allows
developers to communicate ideas to each other succinctly and
in a standard way [30]. It also helps to carry out the entire
modeling process, from initial conception to final coding.
Furthermore, UML is independent of particular programming
languages and can be used to produce written descriptions
that can be progressively updated and refined as increasing
levels of detail become available [31].

In the following subsections we discuss topics related to
the design of the PM using UML. First, we explain the
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framework selected to implement our model (Section II-A).
Then, we describe the most important entities of the PM,
their implementation as classes, and their interrelation using
a class diagram (Section II-B). In Section II-C, we describe
the flow of information along various model components and
how this flow can be represented by an activity diagram.
In Section II-D we illustrate the package layout as a means
of keeping the code tidy. In Section II-E we provide multiple
examples of design patterns we used to create efficient code.
Finally, in Section II-F we explain performance optimizations
we applied to reduce execution time.

A. MODELING FRAMEWORK
An ABM can be implemented from scratch using any pro-
gramming language, but doing so often puts an unnecessary
burden on researchers and modelers [32]. Instead, a col-
lection of tools exist that can aid researchers in model
implementation, allow module reuse in different models, and
provide support for commonly needed services [33]. These
tools are referred to as modeling toolkits, modeling frame-
works, or modeling environments. ABM toolkits provide
basic functions for modeling, but the user must integrate
them into models. ABM frameworks provide integrated soft-
ware that the user selectively specializes for their applica-
tion. ABM environments provide fully integrated editors and
debuggers that modelers can use to generate and test their
applications. It is beyond the scope of this paper to review
the available ABM software. Such a review can be found
in [34]. Nevertheless, we explain here our selection of Repast
Simphony as our implementation option.

The Recursive Porous Agent Simulation Toolkit (Repast,
http://repast.sourceforge.net) is a leading free and open-
source toolkit for implementing large-scale ABMs [35]. It has
been widely used and offers great flexibility for researchers to
develop ABMs [32] with an emphasis on social interactions.
We choose Repast Simphony – one of the members of the
Repast portfolio – as it supports Java, an object-oriented
programming language widely used for the development of
models and large enterprise applications.

B. MODEL CLASSES
The PM was implemented in Java, an object-oriented pro-
gramming language [36]. Object-oriented programming is a
paradigm based on the representation of every component
of the model using classes. A class is a portion of code
that represents an abstract or real entity and contains both
attributes (i.e., variables) and methods (i.e., code). Classes
define the structure and behavior of an entity, while objects
are particular instances of that class.

In the following subsections we give a brief overview of the
main components of the PM. These components are modeled
as classes. As shown in Figure 1, class diagrams depict the
main model classes and interrelations among them.

1) BRIEF MODEL OVERVIEW
This section describes briefly how real world entities in
agricultural production systems map onto the implemented
classes. A more thorough description of the PM can be found
in Bert et al. [9] and Bert et al. [29].

The PM includes three main types of entities: the envi-
ronment, farms and farmers. The environment represents the
northern part of Buenos Aires Province, the most productive
sub-region of the Argentine Pampas. This area encompasses
about 1,000,000 hectares (100 km2) and has a long agricul-
tural history [1].

The environment includes the farms of different sizes
defined during initialization. All farms are assumed to have
the same soil, namely a Typic Argiudol, the most represen-
tative soil of the modeled region. All farms experience the
same climate, represented by daily weather records from
Pergamino, a location in the center of the region. Although
the environment does not represent real farm boundaries,
the model is spatially explicit because there is a topological
relation among simulated farms that provides structure to
interactions such as social comparisons or imitation.

Finally, the model includes farmers who grow soybeans,
maize, or a wheat and short-cycle soybeans double crop on
owned or leased land. Each farmer may have different land
use allocation strategies and financial (e.g., working capital)
characteristics. The Pampas Model’s source code and docu-
mentation is available for free through the OpenABM model
library (http://www.openabm.org) [37].

2) CLASS TYPES IN ABMs: AGENTS, PROTO-AGENTS
AND NON-AGENT CLASSES
By definition, any ABM must have agents that are
the decision-making components. Agents have sets of
rules or behavior patterns that allow them to sense or gather
information, process inputs, and then effect changes in the
outside environment. Any class that is categorized as an
agent should have the following characteristics: (a) be adap-
tive; (b) have the capability to learn and modify its behav-
ior; (c) be autonomous; and (d) show heterogeneity in at
least some attributes, resulting in a population of agents with
diverse characteristics [31], [38].

Many ABMs include agents that do not have all the char-
acteristics described in the previous paragraph. This fact,
however, does not disqualify amodel from being agent-based.
Instead, these agents are called ‘proto-agents.’ Proto-agents
are agents that lack one or more of the defining characteristics
of agency. Depending on the model, these features can be
added if there is a reason.

Finally, there are many other classes that do not qualify
either as agents or as proto-agents but are still key compo-
nents of the system being modeled. In the following subsec-
tion we introduce the most important classes in our model and
illustrate the classification previously mentioned.
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FIGURE 1. Class diagrams specify the properties and behaviors of objects. Classes are represented by boxes, each of which
contains the name of the class (at the top), and properties and behaviors at the bottom. Lines represent associations between
classes.

3) MAIN CLASSES IN THE PM
The PM has many classes. For the sake of space, only the
most important ones can be discussed here. A full listing of
the model classes is available in Bert et al. [37]. We discuss
the most relevant classes and identify them as agents, proto-
agents and non-agents. In Fig. 1 we provide a standard UML
class diagram to describe the interrelationships among the
main classes. Class diagrams contain boxes that list the main
attributes and behaviors of each class. A relationship between
two classes is depicted by an arrow.

The Farmer class represents a farmer whomay (i.e., active
farmer) or may not (i.e., landlord) operate one or more farms.

Farmers make several decisions during each cropping cycle.
As discussed later, a cropping cycle is the fundamental time
unit of our model. The farmers’ decisions can include reduc-
ing, maintaining, or expanding area farmed; determining the
portfolio of crops to grow; or exiting production (e.g., due
to lack of capital) or return to an active status after having
exited. All these behaviors are implemented as methods of
the Farmer class. Moreover, these methods are annotated
as ScheduledMethods,1 so they are executed automatically

1ScheduledMethods are automatically put on Repast Simphony’s simula-
tion event calendar.
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by Repast given a specific event schedule. As farmers
are the decision-makers of our model, this class is an
agent.

The Farm class represents a production unit operated by
a farmer. The farm may be owned or rented by the operator.
The identifiers of both the farm’s owner and its operator on
a given cycle are attributes of this class and are instances
of the Farmer class. Every farm instance has six equally-
sized plots, a reasonable approximation for this part of the
Pampas [9]. Each plot is an instance of the Plot class and
represents an area assigned to one and only one land-use in
a given cycle. Also, all farms are part of a geographic space.
This space is used to generate a network of spatial neighbors.
This network is the basis of agent interactions (e.g., imi-
tation). None of these classes make decisions, so they are
classified as non-agents.

In the previous paragraph we stated that each plot of a farm
is the area where one and only one land use takes place in a
given cycle. We define the Activity class that represents a
single land use or farming activity. Land uses are divided into
two groups: agricultural activities (e.g., field crops such as
soybeans, maize, and wheat) and cattle activities (e.g., cow-
calf or pasture fattening). Each activity may be carried out
using different agronomic managements (e.g., using different
genotypes or input amounts). Each unique combination of an
activity and a specific agronomic management is represented
by anActivityManagement object. Therefore, each plot of a
farm is linked to a particular instance of ActivityManagement
during a cycle. Neither of these two classes make decisions,
so they are classified as non-agents.

CroppingCycle is a main class of the PM that represents
the time unit of the model. Each cropping cycle represents a
farming cycle beginning on May 1st and ending on April 30th

of the following calendar year. All model processes are sched-
uled to take place within this time unit. When execution
steps to the following cropping cycle, many environment
variables may be updated as a result of exogenous changes,
and thus be read as new inputs. All these updates are sched-
uled at specific moments and are carried out by a singleton
class (i.e., a unique-instance class) called Manager. This
class is responsible not only for carrying out updates, but also
for performing common calculations needed by all agents
in order to reduce model execution time. The Manager is a
proto-agent [31].

C. REPRESENTING DATA FLOW: ACTIVITY DIAGRAMS
An important aspect of model design which is usually doc-
umented in agent-based models is the flow of information
between software components. A specific UML diagram,
the activity diagram [39], is used to document information
flows between software components and other systems [31].
The activity diagram allowed us to show the model’s data
flow to various domain experts in order to ensure concep-
tual validity [29]. Furthermore, activity diagrams show how
a system transitions from state-to-state over time, allowing
documentation of parallel actions with the explicit inclusion

FIGURE 2. Activity diagrams are read from top to bottom. The initial state
is represented by a filled black circle and the final state is represented by
a hollow circle containing a smaller filled black circle. Intermediate states
are represented by oval containers that indicate the meaning of the state.
Transitions are represented by arrows. ‘Swim lanes’ (columns) represent
the activities within a specific software component. Finally, short bars
represent synchronization points for simultaneous activities.

of the flow of time. For this reason, activity diagrams help
describe event scheduling within Repast.

Themain processes and sub-processes in the PM are shown
in an activity diagram provided in Fig. 2. At the beginning of
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each cropping cycle a farmer adjusts his economic aspirations
based on the expected status of context factors (i.e., climate
conditions, output prices, and input costs).

In the next step, the ‘‘Update of CroppedArea’’ sub-model,
farmers decide whether they (a) canmaintain the same area as
in the previous cycle; (b) can farm additional land; or (c) must
release some or all of the previously farmed area. In the
current model, the only way to expand cropped area is by
renting additional land. This is a reasonable assumption as
land sales in the Pampas are rare.

Subsequently, the farmer allocates his land among a real-
istic set of activities: maize, full-cycle soybeans, and wheat-
soybeans double cropping. After land is allocated, the yield
of each activity is retrieved from lookup tables pre-calculated
using biophysical crop models and climate conditions expe-
rienced during that cycle.

Economic returns are either (a) calculated from simulated
yields and historical crop prices and input costs (specified as
model inputs); or (b) provided as input data. The end result
is an updated value of the farmer’s Working Capital (WC) at
the end of the production cycle.

Economic returns are then assessed in relation to both the
farmer’s initial aspiration and his peers’ performance. This
assessment drives an adjustment to the farmer’s Aspiration
Level (AL). AL is a special value that separates out-
comes perceived as successes or failures [40]. The AL is
used as an input to decisions in the following cropping
cycle.

D. PACKAGE LAYOUT
In every software project, it is good practice to keep the
source code and all other related information tidily orga-
nized. Any Java application, including the PM, includesmany
classes. As Java requires each public class to be defined
in a separate file, the application ends up with as many
files as classes. Maintaining a large set of files without
any structure can quickly become unmanageable. To solve
this problem, most object-oriented languages, including Java,
provide a mechanism for organizing classes into packages.
Packages are a way of grouping classes according to their
functionality. The packaging mechanism organizes class
files into a directory structure based on the package names
used [41].

The PM includes a number of sub-models
(see Section II-C), each of which is implemented as a collec-
tion of classes. The functionality involved in each sub-model
defines the first-order layout of packages. Using the same
rationale, the grouping of classes can be recursively applied
to each package in order to create smaller sub-packages.
In theory, there could be as many packages as classes, but
this design would be as undesirable as having no packages at
all. There is no strict rule about the number of classes that a
package may contain, but a number not greater than 30 has
been suggested [42].

From the beginning of model implementation we orga-
nized classes into separate packages. The package structure

evolved throughout the development process, as model func-
tionality was expanded. At the same time, we repeatedly
refactored the package structure (i.e., reorganized its content)
for the sake of maintainability.

Fig. 3 shows the current package layout of the PM.
As our intention is to explain the thinking behind our
package arrangement, only the top-level packages are dis-
played. The first row (orange) contains the root package:
fiuba.lamm.agromodel. This package is named after the main
institution where the PM was developed (Facultad de Inge-
niería de la Universidad de Buenos Aires – FIUBA), the lab-
oratory where the initial design took place (Laboratorio de
Modelos Matemáticos – LAMM) and the original code name
for the project (Agromodel). The root package includes com-
mon classes that represent the main reference entities of the
model such as Activity, Region, SoilType, etc. In the second
row we present the first-level packages (and one important
second-level package) which include most of the code for
all the sub-models of the PM, namely: agents (Farmer and
Manager classes), areaupdate (area update sub-model; mcp
also contains the code which implements the market clearing
price component used in the area update); decision (land-use
decision-making sub-model); diffusion (innovation diffusion
sub-model); and finance (economic results calculation sub-
model). Finally, in the third row we present other first level
packages needed for the model, but indirectly related to the
sub-models (e.g., math contains classes to perform mathe-
matic operations such as function evaluations).

E. DESIGN PATTERNS
Design patterns are time-tested solutions to common com-
puter programming problems that have been tried and shown
to work on many different situations. The use of design
patterns is a good practice in the design and implementa-
tion of any software project. Agent-based models are not
an exception. Patterns are not programs, libraries, or ready-
made templates. They instead offer conceptual strategies
for solving problems and a language for communicating
solutions [43].

The main advantage of using software design patterns is
that they have been shown to improve the reliability of soft-
ware as well as reduce development time and costs. For these
reasons, it is strongly recommended to invest time before
implementation to recognize those design patterns that can be
used in planned code. Nevertheless, in our case, and also in
general, this was not always possible. In some cases, this was
because of time pressures. In the majority of cases, though,
it was because the conceptual model was still not completely
defined. For example, on many occasions we had to test
different plausible model mechanisms before selecting the
most appropriate.

We classify the design patterns used in our model into two
groups: modeling design patterns and general design patterns.
In the following subsections we provide examples of design
patterns from both groups.
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FIGURE 3. Package layout of the PM. The first row shows the root package. In the second row, we show the
first-level (and one important second-level) packages, each of which contains code for all the sub-models in
the PM. The third row contains other first-level packages with additional needed code.

1) MODELING DESIGN PATTERNS
a: AGENT-BASED MODEL PATTERN [43]
As in any complex adaptive system, we need to model the
behavior of many interacting individuals. Agent-based mod-
eling addresses this challenge by modeling each decision-
maker as an independent component called an agent.
Interdependence arises directly from behaviors that act on
other individuals and indirectly from changes to shared items
in the environment. Each agent has an individual set of
attributes and behaviors. These attributes and behaviors may
form themes, categories, or classes that can be shared among
the agents. Methods such as object-oriented modeling can be
used to represent agent commonalities and variations.

b: SCHEDULER PATTERN [43]
Agents have behaviors that need to be executed in a particular
sequence. To address this need, Repast provides a Scheduler
class. Agents provide information on when their rules must
activate to a shared object (which is an instance of this class).
The Scheduler merges all of the agents’ activity sequences
and then invokes rules in the resulting implied order. New
activities are merged into the ordered sequence as they are
passed to the Scheduler. Times are represented as either
integers or real numbers. Priorities can be defined to break
ties between events.

c: SCHEDULER SCRAMBLE PATTERN [43]
Besides needing a scheduler, we also need agents to act
during the same clock tick without biasing the results.
As two or more agents from the PM may attempt to execute

behaviors simultaneously during the same clock tick, those
competing behaviors are scheduled in a random order at
each tick. This scheduling policy is actually implemented in
Repast. The scheduling order ultimately depends on a random
seed which can be fixed to produce a specific execution
sequence.

d: DOUBLE BUFFERING PATTERN
Different agents often simultaneously view and change
shared values during the same clock tick. The result of the
updates and changes, however, should be independent of the
order of event execution. In order to avoid execution order
dependencies, we had to use two variables to store each
value to be accessed. The first location is always used for
reading or viewing, whereas the second one is used for tem-
porary storage of updates during a clock tick. The temporary
value is copied to the reading location at the end of each
clock tick [31]. In our model, we implemented a diffusion
of technological innovations sub-model where adoption is
partly determined by the number of neighbors who already
have adopted the innovation. Each agent keeps a state to
indicate whether he/she is adopting or not an innovation at a
given clock tick. When the decideAdoptionStatus scheduled
method runs, the model needs to inspect the adoption status
of the agent’s neighbors in order to decide his own adoption
status.

2) GENERAL DESIGN PATTERNS
a: STEP-BY-STEP PATTERN
The development of complex models often requires a sub-
stantial time. To ensure that the model remains aligned with
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changing stakeholders’ requirements, it is a good practice
to develop it incrementally, i.e., in small iterative steps.
Each step is either co-developed with stakeholders or is
presented to them immediately upon completion. The next
development step is then adjusted based on the stakeholders’
feedback [43]. To develop the PM, we collaborated closely
with Asociación Argentina de Consorcios Regionales de
Experimentación Agrícola (AACREA), a non-profit farmer
organization in Argentina (http://www.crea.org.ar). During
development, we structured the model into separate sub-
models, each of which was either accepted by AACREA
experts or validated against history data. This methodology
allowed us to develop the model incrementally, where each
sub-model was verified and corrected. Finding and correction
of errors is easier as every component is developed and tested
one at a time.

b: SINGLETON PATTERN
Singleton is a creational design pattern [44]. Essentially,
it is a class which only allows a single instance of itself
to be created, and usually provides simple access to that
instance. There are different ways of implementing the single-
ton pattern. We implemented it by using: (a) a static member
that contains the instance of the singleton class; (b) a pri-
vate constructor that prevents anybody else to instantiate the
class; (c) a static public method that provides a global point of
access to the singleton object and returns the instance to the
calling class. The Manager class (explained in Section II-B3)
is an example of this pattern in our model. Use of the
Singleton pattern ensures that, at any given time, if two
objects create an instance of Manager they will hold the
same object. This guarantees the existence of only one Man-
ager instance which is self-updated by means of scheduled
methods (i.e., no other model object is allowed to update the
manager, it only provides read-only methods).

c: STRATEGY PATTERN
Strategy is a behavioral design pattern [44]. Its purpose is to
define a set of algorithms from which the required mecha-
nism or strategy is chosen at run-time. In an ABM, agents
often can have multiple ways of carrying out a specific task,
but each agent typically has a preferred mechanism according
to his/her idiosyncrasy or needs. A good example for this
pattern is our class LandUseSelectionMechanism. This class
defines a couple of methods related to land use selection,
one of which is abstract (search method). This method is
implemented in all the subclasses, as each of them defines
an algorithm to select the best land use according to the
farmer’s criteria. The use of strategies allowed us to encapsu-
late complex mechanisms within a class without needing to
define many if-else branches that would have made the code
unreadable and harder to maintain.

d: FACTORY PATTERN
This is a creational pattern [44] used to create objects without
exposing the instantiation logic to the client. As we will

describe in Section III, all the data for a specific scenario
run is currently stored into a relational database. For instance,
all the farmers’ attributes are read from a database. In order
to separate the behavior from its creation logic, we need an
instance of FarmerFactory which creates all the necessary
instances and returns these objects by means of specific
finder calls (e.g., findByOperationalStatus). The use of this
pattern, therefore, allowed us to separate the database query-
ing from the class logic, making the code cleaner. In fact,
if we ever change the underlying data support, we would
only have to change the factory code, leaving everything else
untouched.

F. OPTIMIZATION OF MODEL PERFORMANCE
One common issue faced by model developers is the balance
between extensibility and performance. Models that can be
extended tend to have clear code that avoid special cases
and uses little caching, whereas fast models tend to have
many special cases to reduce redundant data access [31].
North and Macal [31] suggest that optimization should be
based on performance results from actual model runs, rather
than suppositions. They also suggest the use of performance-
profiling software to determine the actual causes of identified
problems.

We identified several code bottlenecks by measuring the
execution time of the various sub-models in the PM. For
instance, the PMhas a Land-Use sub-model in which, on each
cropping cycle, a farmer selects the activity-managements
he/she will use in each farm operated by that agent. There
are many possible combinations of activity-managements for
six-plot farms. Computing farm-wide gross margins for every
combination of activity-managements may require a consid-
erable time, especially if the calculation is performed by every
farmer on each operated farm.

For this reason we created a proto-agent, namely the Man-
ager. In general, the manager executes tasks for which results
need to be available to all agents. One such task, for example,
is the calculation of gross-margins per hectare for all possible
combinations of activity-managements in a six-plot farm.
On each cycle, this information is computed once by the
manager and is subsequently accessed by all farmers when
the Land-Use sub-model executes.

As a result of all optimizations, we were able to reduce
the execution of a 20-year simulation from 40 to five min-
utes – almost one order of magnitude. However, we stress
that this reduction required careful measurement of earlier
run-times to identify bottlenecks in the code. In other words,
we based our optimization decisions on run results rather than
assumptions.

III. MODEL INPUT: INITIALIZATION
As any model, the PM requires a set of initial conditions
for execution. These conditions include: (a) a population of
farmers and their heterogeneous characteristics; (b) a set of
external conditions that drive the simulation on each cropping
cycle (e.g., expected and actual climate conditions, expected
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and actual input costs and output prices); and (c) the spatial
layout and other attributes of simulated farms.

A particular combination of initial conditions – which
we will subsequently refer to as a ‘scenario’ – can be
provided to the model in various ways. Independently of
the chosen approach, the ABM initializer class needs to
access one or more data sources supported by Repast, such
as (a) local or remote files with a specific format or (b) a
relational database. As discussed below, initialization of the
PM relies on both approaches.

Most of the initialization information (items a and b above)
is stored in, and retrieved from a relational database. Rela-
tional databases provide an easy, efficient and transparent
way to store and retrieve information. Furthermore, almost
every programming language provides libraries to connect to
a relational database.

In any relational database, information is stored into tables,
each of which represents an entity of themodel. By definition,
an entity is an abstract or real object that is part of a given
system. Entities have (i) attributes that describe the properties
of the objects we are representing, and (ii) relations that
define bindings with other entities [45]. Fig. 4 shows an
Entity-Relationship (ER) diagram including the main entities
in our model.

To initialize the PM with a spatial arrangement of sim-
ulated farms, the model initializer class reads a series of
geographical information systems shapefiles. Shapefiles are
widely used to represent geographic entities.2 The input
shapefile contains (1) polygons with outlines and (2) tables
with the attributes of a synthetic set of farms with a size
distribution consistent with real-world data.

In Section III-A we describe how both approaches
(i.e., a relational database or files with a particular for-
mat) can be used to create initialization scenarios. Finally,
in Section III-B we explain how initialization scenarios are
used to launch a simulation.

A. GENERATION OF INITIALIZATION SCENARIOS
We described above a relational database used to store most
initial conditions for the simulation (e.g., farmers, farms,
plots’ land use, etc.) and time series of exogenous vari-
ables (e.g., output prices, production costs, crop yields, etc.)
that are updated on each cropping cycle. In this section we
focus on the process that populates the relational database
with initialization information available to the model.

We chose the MySQL relational database engine (http://
www.mysql.com) because it is free, open-source, robust,
easy-to-use, and widely used. MySQL provides a very sim-
ple way to read files with tab-separated values (TSV) into
database tables. In turn, TSV files are very easy to generate
from any scripting language. We used TSV files to populate
the MySQL database, defining one-to-one correspondence
between TSV files and database tables.

2Please see www.esri.com/library/whitepapers/pdfs/shapefile.pdf for
more information on shapefiles.

Database tables in ourmodel are classified into two groups:
common tables and scenario tables. The former include tables
that remain unchanged in every simulation. These tables
were generated once and used in many simulations. The
latter group includes tables that are specific to a simulation
scenario. A simulation scenario is characterized by a unique
combination of (i) model mechanisms and parameter values;
(ii) initial conditions; and (iii) trajectories of exogenous input
variables.

All the information associated with a particular scenario
was generated by a script that gathers data from different
sources and generates the necessary input TSV files. This
script was developed using R [46]. The reasons for using R
to generate scenario tables are multiple. First, it is free and
open-source. Second, it has a very large user base throughout
the world and multiple repositories and mailing lists where
language-related questions usually are answered quickly and
thoroughly. Third, in addition to multiple built-in functions
for data analysis, R is a simple and effective programming
language that includes conditionals, loops, user-defined func-
tions and input/output capabilities [47].Many research teams,
including our own, involve scientists without SQL skills but
with some experience in R programming. For this reason,
many data handling functions can be implemented directly
in R by researchers, thus reducing the burden on project
programmers. Finally, at present R has about 8,200 user-
contributed packages that considerably extend the language’s
core functionality.

In creating the script to generate scenario tables, we have
taken full advantage of many existing R packages to save
coding and testing time. For example, we used several
packages that handle spatial data and give GIS-like capa-
bilities to R. R was used to generate ‘synthetic farms’
for the model’s environment because actual cadasters are
not publically available. First, we generated distributions
of farm numbers and sizes consistent with census data.
Second, we used various spatial packages (see spatial task
view in the Comprehensive R Archive Network, CRAN,
cran.r-project.org/web/views/Spatial.html) to generate shape-
files with synthetic farm boundaries, and to build tables of
spatial neighbors.

The R script to produce scenario tables is organized into
a set of separate code blocks, each of which generates a
single database table. The separation of code into blocks
facilitates documentation and maintenance. Ultimately, users
can organize various pieces of R code into separate functions
and create their own packages (even if they are not distributed
publically). Each block of code ends by calling a function
that writes out each table to a TSV file. Although we used
only TSVs, R also can write more structured output, such as
YAML, JSON or XML files.

B. ACCESSING INITIALIZATION SCENARIOS
FROM THE MODEL
After having populated the relational database and created
the necessary shapefiles, the next step involves retrieving
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FIGURE 4. Simplified ER diagram containing the main entities of the PM relational database. Entities are represented by
boxes, while relations are represented by lines. A complete ER diagram is available from the authors. The key icons on
the left of a table indicate fields that make up that table’s primary key.

that information during the model initialization stage. The
model initialization takes place at the very beginning of a
simulation. At that moment, all agents and other classes are
instantiated. This instantiation is carried out by means of

factory classes, explained in Section II.E. All the factories in
our model implement a set of specific ‘finders’ which, in turn,
return a collection of objects according to a search criterion.
Every factory retrieves the appropriate information using
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SQL (Structured Query Language), the standard language for
interacting with relational databases [45].

After a table is read by the corresponding factory, the entity
represented by the table is mapped to a Java class, with the
exception of a couple of configuration tables. This mapping
is straightforward, as the definition of an entity is similar to
the definition of the corresponding class. For instance, each
row of the farmer table in the relational database is mapped
onto a different instance of the Farmer class.

In many cases, factories use an internal cache to store the
content of a particular table. This is the case, for example,
for reference tables listing data such as soil types, activity-
managements and crop inputs required (e.g., fertilizer, bio-
cides). These tables need to be accessed many times during
the simulation. As the reference tables generally involve a
small number of rows, it is more efficient to cache the whole
table in memory than accessing the database whenever the
information is needed.

IV. OUTPUT OF MODEL RESULTS
After a cropping cycle, a set of files is updated (or created,
if on the first cycle) with a snapshot of the most important
state variables. These files contain information that reflect
the state of each farm and farmer, and other relevant infor-
mation (e.g., the land rental price simulated endogenously) at
the end of each cycle. These files are stored in TSV format
for the sake of simplicity and convenience.

Repast provides a very simple way to create these output
files, using what are known as gatherers and outputters. More
information about these classes can be found in the Repast
documentation (http://repast.sourceforge.net/docs.php).
These classes provide mechanisms for (a) gathering needed
attributes for all agents (gatherers) and, (b) outputting them
into TSV files (outputters). In this case, however, we also
need to output information about non-agent classes. For this
reason, we had to implement our ownmethod for information
logging.

After the end of a simulation, output files are processed by
an R script that carries out two main types of tasks: (a) con-
sistency checks explained in Section V; and (b) generation of
charts and tables to be analyzed later by domain experts.More
detailed information on the results produced by ourmodel can
be found in [9].

The output process is the counterpart of the initialization
stage. During initialization, an R script generates the model
input as a set of TSV and shapefiles. This information –
specified by domain experts – defines a unique simulation
scenario. Similarly, at the end of a simulation, an output script
provides domain experts with tables and charts for subsequent
analysis and interpretation. The output script also was imple-
mented in R for the same reasons listed in Section III.

V. VERIFICATION AND VALIDATION
A. CONSISTENCY CHECKS
Consistency is the lack of contradiction in data. Consistency
of data sets can be measured by cross-checking fully or partly

redundant fields [31]. The existence of inconsistent values in
intermediate or final model results may reveal programming
errors. For this reason, consistency checks are useful tools to
verify agent-based models.

Before final results are analyzed by domain experts, an R
script performs two main groups of checks to ensure that no
obvious inconsistencies among results are present. The first
group of checks involves numerical of logical comparison of
interrelated variables within a cropping cycle. Examples of
this group of checks include:

1) The area cropped by all farmers should be equal to
the total simulated area. This comes from a model
constraint that farms are valuable so every farm must
be cropped on every cycle;

2) The area cropped by a farmer should be consistent with
the farmer’s operational status (i.e., whether a farmer is
actively cropping or whether a farmer owns and/or rents
land). Specific checks are as follows:
a. Active farmers should operate an area greater than

zero hectares;
b. Non-active farmers (e.g., landlords) should oper-

ate an area equal to zero hectares;
c. Farmers who crop only their owned land should

have an operational status of ‘Owner-Only;’ and
d. Farmers who crop both owned and rented land

should show an operational status of ‘Owner-
Tenant.’

The second group of checks involves examination of the
temporal trajectories of specific variables throughout the sim-
ulation. These checks enforce various model constraints, for
example:

1) The total area farmed should be constant over
time (model constraint: no farms are created or
removed).

2) The number of active plus inactive farmers should
remain constant over time (model constraint: no farm-
ers are created; bankrupt farmers are replaced by inac-
tive farmers created during initialization and held in
reserve).

Consistency checks are very useful when making changes
to the model, as they ensure that the assumptions and con-
straints on which these tests are based remain valid.

B. CODE WALKTHROUGHS
Code walkthroughs involve presenting software code to inde-
pendent programmers and domain experts, and thenmanually
stepping through example executions of the code. Code walk-
throughs allow domain experts to assess whether the soft-
ware follows the conceptual model design. At the same time,
walkthroughs involving independent programmers allows an
evaluation of the implemented code from the software engi-
neering point of view. The audience is expected to criticize the
code and the execution sequences for correctness. At no time
during the presentation should the code be modified or exe-
cuted. Furthermore, no suggestions should be made by
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auditing developers as this would make them contributing
authors of the code, thus creating a conflict of interest [48].

We carried out code walkthroughs immediately after
implementation of each model component. We stepped
through the execution of all sub-models within the PM with
two different domain experts. This practice allowed us to
detect and correct inconsistencies between the implemented
code and the conceptual model design. Furthermore, during
the walkthroughs domain experts found flaws in the original
conceptual model that was being implemented. Even though
code walkthroughs are time-consuming, the effort invested in
this approach is more than compensated by the time saved in
debugging errors at runtime.

C. CONCEPTUAL MODEL VALIDATION
A thorough validation of an agent-based model can involve
a range of approaches [49]–[51]. The PM was thoroughly
validated as discussed in [30]. Here, we discuss only the
conceptual validation process, as it took place in parallel
with the design and implementation of the model. Conceptual
validation – also referred to as ‘‘micro-face validation’’ by
Rand and Rust [52] – is the process of ensuring that the
mechanisms and properties of a model correspond to real-
world mechanisms and properties.

Face validity checks rely on the knowledge and experience
of experts familiar with the source problem. A conceptual
design is presented to experts or stakeholders who are asked
to assess if the design is reasonably compatible with their
knowledge and experience. Domain experts also can examine
preliminary results to compare initial output patterns with
their own perceptions of how modeled events should have
developed and progressed [53].

The conceptual validation stage involved a set of strategies
aimed at ensuring the inclusion and realistic characterization
of relevant processes and components in the model. Interac-
tions with stakeholders and domain experts supported several
strategies in this stage. The design of each model component
started with a review of the relevant literature and a simple
initial design. This initial design was subsequently discussed
in small workshops with three to five AACREA domain
experts.

One lesson we learned is that the validation of compo-
nents and processes in cooperation with experts and other
stakeholders must start from the very beginning of model
development. Moreover, our experience clearly showed the
valuable benefits of careful conceptual validation. The best
evidence of such benefits was the reasonableness of early
PM results. By including needed structural and behavioral
components as well as realistic characterizations of impor-
tant initial conditions and parameters, even initial and highly
simplified simulations produced very sensible outcomes [9].

D. PARAMETER SPACE EXPLORATION
Most simulations of CHANS include random elements
in both initial conditions and mechanisms. In addition,
such models may include many uncertain parameters [54].

Consequently, a single run of the simulation model with a
unique set of parameters will not be able to represent the
real underlying uncertainty, thus model results can be mis-
leading [54]. One step towards deriving robust results and
quantifying uncertainty is to explore the model’s output space
in response to input parameter variations [55].

Parameter space exploration (PSE) provides additional
insight about the behavior of a model by examining the
output space in response to a range of parameter settings [56].
PSE can serve a range of purposes, including (a) parameter
calibration and optimization; (b) uncertainty analysis; (c) sen-
sitivity analysis; and (d) a search for specific model features
such as regime shifts and tipping points [56].

There are many techniques for carrying out PSE. Human-
guided parameter exploration conducted by the modeler,
a domain-expert or a stakeholder allows testing of rele-
vant hypotheses while minimizing the number of regions
searched. Unfortunately, this approach is vulnerable to
human bias and fatigue. In standardized sampling approaches
(e.g., random, quasi-random, gridded/factorial, Latin hyper-
cube, and sphere-packing), parameters are chosen systemat-
ically to ensure their having certain statistical or structural
properties. Finally, PSE can be carried out through more
sophisticated techniques such as meta-heuristic searching,
optimization algorithms, genetic algorithms, machine learn-
ing, and query-based model exploration [56].

Repast provides a built-in solution to perform PSE, known
as parameter sweeps (PSWs). PSWs are a quick way to
conduct a series of simulations by running many instances
of a model, each one with a given combination of input
parameters [31]. PSWs can be implemented sequentially on
one computing node or in parallel using multiple nodes.
In order to carry out PSWs, the analyst defines an XML file
describing the input parameter space and then uses the Repast
batch run capability to iterate through all unique parameter
combinations. In the following paragraphs, we focus on one
specific type of PSE – sensitivity analysis (SA) – that we
carried out to explore the PM solution space and identify key
model parameters.

As part of SA, input parameters are systematically var-
ied and the model’s response to parameter uncertainty is
assessed. SA allows exploration of relationships and mecha-
nisms not yet well understood and highlights the most impor-
tant processes [54]. SA also promotes the understanding
of models, allowing their use both for theory development
and applications [57]. Most researchers use SA to identify
those parameters for which small variations induce high
impacts in the model’s output (i.e., to answer the question
‘which inputs are most responsible for the variability of out-
puts?’) [56], [58]. Many methodologies have been developed
to perform sensitivity analysis. Here, two major types of SA
will be discussed, namely local sensitivity analysis (LSA) and
global sensitivity analysis (GSA) [59].

LSA involves the examination of model output by
varying input parameters one at a time (OAT) while
holding all others at nominal values [59], [60].

VOLUME 4, 2016 4293



S. L. Rovere et al.: Practical Points for the Software Development of an Agent-Based Model of a CHANS

Ligmann-Zielinska and Jankowski [61] discuss this approach
and its advantages. However, this method ignores the
potential interactions between input parameters, prevent-
ing analysts from capturing their impacts on model out-
put [54], [60]. In contrast, GSA involves varying all input
parameters at the same time, thus allowing identification of
non-linear interactions among parameters [54], [60]. As a
drawback, GSA is computationally expensive and becomes
particularly limiting in models with tens or hundreds of
parameters such as the PM [62]. Lee et al. [56] describe many
techniques to carry out GSA. In the following paragraphs we
describe our use of both LSA and GSA to perform SA of
the PM.

We used LSA to identify the key parameters in an impor-
tant sub-model of the PM: the land rental market (LARMA)
component; see details in [63]. Here, we illustrate the use
of LSA to explore the impacts of three specific LARMA
parameters. In each case, we varied one parameter at a time
and assessed the impacts on time series of simulated land
rental prices (LRPs). The parameters in this discussion were
chosen to illustrate a range of influences on simulation out-
comes (i.e., no impact, small, and large impacts).

The first parameter explored was the number of previous
cropping cycles (NCYCLES) for which landlords assess eco-
nomic outcomes to decide whether to rent out their land or,
instead, farm it themselves. NCYCLES is used to calculate
the rental fee that landlords are willing to accept (WTA) for
their land. Following stakeholders’ advice, we used a nominal
value of three years for NCYCLES. We also explored the
lower bound for NCYCLES namely one year. Although there
is no theoretical upper bound, we considered a maximum
value of six years to reflect the farmers’ limited memories.
The three PM outcomes, one for each NCYCLES value,
showed that this parameter modified WTA values, which
are an intermediate result, but it had no influence on LRPs,
the main variable of interest [63]. We concluded that this
parameter needed no further exploration and used the nominal
value of three years in subsequent simulations.

The second parameter explored was the farmers’ annual
desired profitability rate (DPR). DPR represents the annual
return on working capital that a farmer desires to achieve if
he is to continue farming his land (e.g., inputs, land rental if
applicable). DPR is used to calculate the amount that a poten-
tial tenant is willing to pay to rent in a new farm (this amount
is referred to as ‘WTP’). Following AACREA experts,
we assumed a nominal DPR of 10%. Given the macroeco-
nomic context at the time of these simulations, we explored
alternative DPR values of 5% and 15%. Simulation outcomes
showed a moderate impact of DPR values on LRPs. Higher
DPRs lead to lower WTPs and consequently, lower LRPs.
If tenant farmers desire higher profitability, they need a lower
LRP, all else being equal. The lower DPR value (5%) slightly
increased LRPs and brought simulated results closer to the
real-world outcomes [63, Fig. 9(a)]. Nevertheless, AACREA
experts considered a DPR of 5% too low for a risky activity
such as agriculture. Because of its limited impact on the main

quantity of interest (LRP), we used the nominal value of 10%
in subsequent simulations.

Finally, the third parameter subjected to SA was
LAMBDA (λ), a parameter associated with the dynamic
adaptation of farmers’ desired income on a cropping cycle.
In making risky choices, decision makers often focus on
reaching a special outcome – an aspiration level or AL.
Outcomes above and below AL are respectively coded as
successes and failures [40]. In its simplest form, AL for the
following decision cycle (ALt+1) is calculated as a weighted
average of current AL (ALt) and achieved economic per-
formance on cycle t (EPt). AL is adjusted upward when
achievements equal or surpass aspirations (i.e., EPt ≥ ALt),
and downward otherwise [64]. This adjustment is formalized
as ALt+1 = λALt+(1–λ) EPt, where λ ∈ [0, 1] describes an
individual’s ‘‘resistance’’ or ‘‘inertia’’ to adjusting AL [65].
The baseline scenario assumed nominal LAMBDA values
of 0.55 and 0.45 for upward and downward adjustments
respectively [63] to reflect the fact that people ‘‘get used’’ to
higher payoffs more rapidly than to lower ones, thus showing
greater resistance to downward changes [66]. Alternative
lower and upper values considered were zero and one for
both upward and downward adjustments. LSA results show
that extreme lambda values have a significant impact on the
dynamics of LRPs [63, Fig. 9(b)]. Themost significant effects
appeared when λ = 1. LAMBDA has a large impact on LRP
calculation, therefore stressing the importance of dynamic
AL adjustment for realistic LRP calculation. Thus, a more
thorough exploration of this parameter seems necessary in
future simulations.

The PM is a complex model with about 100 parameters
and mechanisms. With this kind of model, it would have been
extremely difficult to perform GSA to assess the behavior
of all parameters. Such an approach would have required
very large computing power, and most importantly, even
larger human resources to analyze the outcomes of numerous
parameter combinations. Consequently, SA of most param-
eters was carried out using the LSA approach (see previous
examples). Nevertheless, we used GSA in two experiments
designed to explore the behavior of a set of parameters related
to land-use and land-tenure processes. These experiments
are described in Bert et al. [29] and rely on the experimen-
tal design approach shown in Happe [55]. This approach
involves selection of three to seven key parameters related to
the model behavior we want to explore, leaving the others
constant at their nominal values. Each selected parameter
is tested with two or three different values. Consequently,
the resulting number of combinations is small enough to be
analyzed in detail by domain experts.

VI. CODE METRICS
Analysis of implemented software plays a critical role in
improving the quality of the code one is developing. There are
multiple definitions of software quality. Please see [67]–[70]
for details. Despite this ambiguity, we can generally
define software quality as ‘‘the degree to which a system,
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component, or process meets specified requirements’’
(IEEE Standard Glossary of Software Engineering Ter-
minology, https://standards.ieee.org/findstds/standard/610.
12-1990.html). Quality requirements can be assessed from
the users’ point of view (i.e., externally) or from the software
architecture perspective (i.e., internally) [70]. We will focus
on the latter point of view, as we are mainly interested in
evaluating the design of our model.

Improvement of software quality requires developers to
understand exactly what is happening in the code and
why [71]. To this effect, many standard metrics exist that
allow measurement, evaluation, control, and improvement
of software products and processes [72]. There is a vast
literature on software metrics (see [71]–[78]). Nevertheless,
there is very little guidance in the literature on softwaremetric
thresholds [72] to identify appropriate implementations. For
this reason, we will focus on a few important metrics for
which thresholds of acceptability have been defined.

TABLE 1. Software quality metrics evaluated for the PM and three other
comparable models.

In the next paragraphs we calculate seven software met-
rics for the PM and three other similar ABM as shown
in Table 1. These models have been selected for (a) having
been implemented using Repast, (b) having a conceptual
similarity to the PM, and (c) their source code being openly
available. Our use of other models aims to put metrics for
the PM in the context of similar ABMs. We do not intend to
directly compare the various implementations or claim our
implementation necessarily has higher quality. The models
we selected are: (1) ‘‘Land Use in an eXurban Environment’’
(LUXE, www.openabm.org/model/3942/version/3/view),
(2) ‘‘A model of groundwater usage by farmers in the Upper
Guadiana, Spain’’ (GUF, www.openabm.org/model/2549/
version/1/view), and (3) ‘‘Implementation of ‘satisficing’
as a model for farmers’ decision-making in an agent-
based model of groundwater over-exploitation’’ (SAT,
www.openabm.org/model/3796/version/1/view).

A. AFFERENT COUPLING (AC)
This metric shows how many classes are associated with
a class [78]. Classes with high AC values play a critical
role, as errors in them or modifications to them may have
impacts on other classes [72]. AC values in the range [1-20]
are labeled as ‘‘regular’’ by [72] (see their Table 4). The
value of 12.44 for the PM suggests that the software design
could be improved, although such value does not necessarily

represent a problem [72].We note that [72] does not explicitly
list AC thresholds for ABMs, thus we picked the category
representing the highest standard. The other three models
have AC values similar to the PM’s.

B. EFFERENT COUPLING (EC)
This is a measure of the number of classes on which a given
class depends [78]. Just as with AC, errors or modifications
on classes with high EC values may have large impacts on the
system. The acceptance threshold for this metric is usually the
same as for AC. The PM remains in the ‘‘regular’’ range for
the EC, although the value is considerably lower than for the
AC. Also, as for the AC, the other models have EC values
comparable to the PM.

C. CYCLOMATIC COMPLEXITY (CC)
This metric of complexity assigns a numerical score to each
method based on the number of different branches through
the method’s source code [79]. CC quantifies the potential
difficulties in testing, maintaining, or troubleshooting a piece
of code. Code with high CC values are often challenging to
understand and test. A CC acceptability threshold, however,
remains controversial. The original threshold of 10 proposed
by [79] has considerable supporting evidence, but limits as
high as 15 have been used successfully as well. In any case,
the CC value for the PM is well below both limits and is the
smallest of all models.

D. LACK OF COHESION OF METHODS (LCOM)
This metric is a measure of the correlation between methods
and local instance variables of a class [77]. High cohesion
suggests solid class organization. Low cohesion suggests the
need for refactoring. LCOM goes from zero to one, with zero
being the best value. A high LCOM value is generally tied to
a poorly cohesive class. As shown in Table I, the LCOMvalue
for the PM ismuch closer to zero than to one, suggesting good
cohesion. Values for the other models are comparable.

E. LINES OF CODE (LOC)
LOC is the number of code lines. LOCmay be correlated with
development and maintenance costs.

F. COMMENT LINES OF CODE (CLOC)
CLOC is the number of lines containing either com-
ments or commented-out code. CLOCmay be correlated with
documentation levels and therefore code readability.

G. DENSITY OF COMMENTS (DC)
DC is CLOC divided by LOC. Higher DC values suggest
that the code has more copious comments. A DC value of
at least 0.2 is generally acceptable. The PM has a DC value
of 0.11, suggesting that we should have invested more effort
in documenting the code to meet the accepted standard. Nev-
ertheless, we made a point to use clear and descriptive names
for methods and attributes. This is another good practice in
terms of maintainability, although there is no metric for it.
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The previously described metrics were calculated using
two different open-source tools, as no single tool computes all
of them. We used Metrics 1.3.6 (metrics.sourceforge.net) to
calculate AC, EC, LCOM, and CC. We used Sonar Qube 5.3
(www.sonarqube.org) to calculate LOC, CLOC, and DC.

VII. LESSONS LEARNED
The purpose of this paper was to present our experiences with
the design and implementation of ABMs using the PM as a
concrete example. In the following paragraphs, we share the
main lessons learned, in the hope that they will be helpful for
any researcher modeling a CAS.

A. SEARCH FOR AN APPROPRIATE
MODELING FRAMEWORK
When it comes to implementing a CAS, we have found
agent-based modeling to be a useful approach. Although an
ABM can be implemented from scratch in any program-
ming language, this choice involves unnecessary burden for
researchers and modelers. Selecting an appropriate ABM
toolkit is much more sensible.

B. DESIGN AND DOCUMENT THE SOFTWARE
COMPONENTS USING SOFTWARE
ENGINEERING TOOLS
Take time to identify the entities of the system (e.g., classes),
their interrelations and behaviors, which in turn, can be
documented using class diagrams. Model data flow should
also be designed beforehand and documented using activity
diagrams. Some model entities will need to be initialized
at the beginning of simulations. Initialized entities can be
persisted into a relational database that can be described with
an entity-relationship diagram. All these documents will be
of great help to carry out conceptual validation of the model
with domain experts and stakeholders.

C. USE GOOD CODING PRACTICES
Follow the old adage, ‘‘try not to reinvent the wheel.’’ Design
patterns are time-tested solutions to common computer pro-
gramming problems that have been tried and shown to work.
For this reason, we strongly recommend that time be invested
to recognize those design patterns that can be used in the
code. The code also must be kept tidy in order to guarantee its
maintainability. Also, having a large set of files without any
structure can quickly become unmanageable. To avoid this
problem, classes should be grouped into packages according
to their functionality.

D. WRITE SCRIPTS TO GENERATE SCENARIOS
AND ANALYZE RESULTS
Running the model is a task that might be executed hun-
dreds or thousands of times. By using and saving scripts to
generate each scenario or experiment, we reduce the proba-
bility of errors and enhance subsequent reproducibility [80].
The analysis of results is a task that should be carried out by
domain experts or stakeholders. The development of scripts

to generate exploratory tables and charts will aid researchers,
allowing them to focus on rapid examination of model results,
and not on development of basic visualizations.

E. CARRY OUT VERIFICATION AND VALIDATION (V&V)
THROUGHOUT THE ENTIRE IMPLEMENTATION PROCESS
V&V are essential steps in the implementation of any model.
Carrying out consistency checks, code walkthroughs, and
conceptual validation from the early stages of implementa-
tion will help to identify sooner conceptual mistakes and
programming bugs. Such practices will, in turn, reduce the
time needed for subsequent debugging. During later stages
of the implementation, parameter space exploration also will
be needed to perform sensitivity analysis and calibration of
the model, and to understand robustness of results to changes
in model parameters or input data.
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