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ABSTRACT Turbo codes comprising a parallel concatenation of upper and lower convolutional codes
are widely employed in the state-of-the-art wireless communication standards, since they facilitate
transmission throughputs that closely approach the channel capacity. However, this necessitates
high processing throughputs in order for the turbo code to support real-time communications.
In the state-of-the-art turbo code implementations, the processing throughput is typically limited by the
data dependences that occur within the forward and backward recursions of the Log-BCJR algorithm,
which is employed during turbo decoding. In contrast to the highly serial Log-BCJR turbo decoder, we
have recently proposed a novel fully parallel turbo decoder (FPTD) algorithm, which can eliminate the data
dependences and perform fully parallel processing. In this paper, we propose an optimized FPTD algorithm,
which reformulates the operation of the FPTD algorithm so that the upper and lower decoders have identical
operation, in order to support single instruction multiple data operation. This allows us to develop a novel
general purpose graphics processing unit (GPGPU) implementation of the FPTD, which has application in
software-defined radios and virtualized cloud-radio access networks. As a benefit of its higher degree of
parallelism, we show that our FPTD improves the higher processing throughput of the Log-BCJR turbo
decoder by between 2.3 and 9.2 times, when employing a high-specification GPGPU. However, this is
achieved at the cost of a moderate increase of the overall complexity by between 1.7 and 3.3 times.

INDEX TERMS Fully-parallel turbo decoder, parallel processing, GPGPU computing, software defined
radio, could radio access network.

I. INTRODUCTION
Channel coding has become an essential component in
wireless communications, since it is capable of correcting
the transmission errors that occur when communicating
over noisy channels. In particular, turbo coding [1]–[3] is
a channel coding technique that facilitates near-theoretical-
limit transmission throughputs, which approach the capacity
of a wireless channel. Owing to this, turbo codes com-
prising a concatenation of upper and lower convolutional
codes are widely employed in state-of-the-art mobile tele-
phony standards, such as WiMAX [4] and LTE [5]. How-
ever, the processing throughput of the turbo decoding can
impose a bottleneck on the transmission throughput in
real-time or very throughput-demanding applications, such
as flawless, high-quality video conferencing. In dedicated

receiver hardware, a state-of-the-art turbo decoder
Application-Specific Integrated Circuits (ASICs) may be
used for eliminating the bottleneck of the turbo decod-
ing. However, this bottleneck is a particular problem in
the flexible receiver architectures of Software-Defined
Radio (SDR) [6] and virtualized Cloud-Radio Access
Network (C-RAN) [7], [8] systems that employ only pro-
grammable devices, such as Central Processing Unit (CPU)
or Field-Programmable Gate Array (FPGA), which typically
exhibit a limited processing performance capability or a high-
cost. Although CPUs are capable of carrying out most of the
LTE and WiMAX baseband operations, they are not well-
suited to the most processor-intensive aspect, namely turbo
decoding [9], [10]. Likewise, while high-performance and
large-size FPGAs are well-suited to the parallel process-
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FIGURE 1. Schematic of the Log-BCJR turbo decoder using windowing and PIVI techniques.

ing demands of state-of-the-art turbo decoding algorithms,
they are relatively expensive. By contrast, General-Purpose
Graphics Processing Units (GPGPUs) offer the advantages
of high performance parallel processing at a low cost. Owing
to this, GPGPUs have been favoured over CPUs and FPGAs
as the basis of SDRs, where a high processing throughput
at a low cost is required [11], [12]. This motivates the
implementation of the turbo decoding algorithm on GPGPU,
as was first demonstrated in [13] and [14].

However, turbo decoder implementations typically operate
on the basis of the serially-oriented Logarithmic Bahl-Cocke-
Jelinek-Raviv (Log-BCJR) algorithm [15]. More specifically,
this algorithm processes the bits of the message frame using
both forward and backward recursions [16], which impose
strict data dependencies and hence require processing, which
is spread over numerous consecutive clock cycles. In order
to mitigate the inherent bottleneck that the serial nature of
the Log-BCJR algorithm imposes on the achievable process-
ing throughput, the above-mentioned GPGPU implementa-
tion of [13] invoke a variety of methods for increasing the
parallelism of the algorithm. For example, the windowing
technique of [17], [18] decomposes each frame of N bits
into P equal-length windows, giving a window length of
W =

N
P , as shown in Figure 1. The processing through-

put may be increased by a factor of P upon processing the
windows concurrently, each using separate forwards and
backwards recursions. Here, the Previous Iteration Value Ini-
tialization (PIVI) technique of [17] and [18]may be employed
for allowing the adjacent windows to assist each others’ oper-
ation. However, the error correction capability of the PIVI
Log-BCJR turbo decoder is degraded as the number P of
windows is increased. For this reason, the maximum number
of windows employed in previous GPGPU implementations
of the LTE turbo decoder associated with N = 6144 was
P = 192 [13], [17], [18], which avoids any significant
error correction performance degradation and facilitates a
192-fold increase in the grade of parallelism [19]. Further-

more, the concept of trellis state-level parallelism may be
employed [12]. More specifically, the forward and backward
recursions of the Log-BCJR algorithm operates on the basis
of trellises comprising M states per bit [15]. Since there are
no data dependencies amongst the calculations performed for
each of the M states, these can be performed concurrently.
Since the LTE turbo decoder relies on M = 8 states, the
combination of the trellis state-level parallelism and window-
ing facilitates a degree of parallelism up to P × M = 1536,
occupying 1536 concurrent threads on a GPGPU. However
GPGPUs are typically capable of exploiting much higher
degrees of parallelism than this [20], implying that the exist-
ing GPGPU based turbo decoder implementations do not
exploit the full potential for achieving a high processing
throughput. Although a higher degree of parallelism may be
achieved by processing several frames in parallel [21], this
would only be useful when several frames were available for
simultaneous decoding. Furthermore, the act of processing
frames in parallel does not improve the processing latency of
the turbo decoder, which hence exceeds the tolerable trans-
mission latency of many applications.

Motivated by these issues, we previously proposed
a Fully-Parallel Turbo Decoder (FPTD) algorithm [22],
which dispenses with the serial data dependencies of the con-
ventional Log-BCJR turbo decoder algorithm. This enables
every bit in a frame to be processed concurrently, hence
achieving a much higher degree of parallelism than the previ-
ously demonstrated in the literature. Thus, the FPTD is well
suited for multi-core processors [23], potentially facilitating
a significant processing throughput gain, relative to the state-
of-the-art. However, our previous work of [22] considered
the FPTD at a purely algorithmic level, without addressing
its hardware implementation. Against this background, the
contribution of this paper is follows.

1) We propose a beneficial enhancement of the FPTD
algorithm of [22] so that it supports Single Instruc-
tion Multiple Data (SIMD) operation and therefore
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FIGURE 2. Schematic of GPU computing.

it becoming better suited for implementation on a
GPGPU. More specifically, we reformulate the FPTD
algorithm so that the operations performed for the
upper decoder are identical to those carried out by
the lower decoder, despite the differences between the
treatment of the systematic bits in the upper and lower
encoders. The proposed SIMD FPTD algorithm also
requires less high-speed memory and has a lower com-
putational complexity compared to the FPTD algorithm
of [22], which are desirable characteristics for GPGPU
implementations.

2) We propose a beneficial GPGPU implementation of
our SIMD FPTD for the LTE turbo code, achieving
a throughput of up to 18.7 Mbps. Furthermore, our
design overcomes a range of significant challenges
related to topological mapping, data rearrangement and
memory allocation.

3) We implement a PIVI Log-BCJR LTE turbo decoder
on a GPGPU as a benchmarker, achieving a throughput
of up to 8.2 Mbps, while facilitating the same BER as
our SIMD FPTD having a window size of N/P = 32,
which is comparable to the throughputs of 6.8 Mbps
and 4 Mbps, demonstrated in the pair of state-of-the-
art benchmarkers of [13] and [17], respectively.

4) We show that when used for implementing the LTE
turbo decoder, the proposed SIMD FPTD achieves a
degree of parallelism that is between 4 and 24 times
higher, representing a processing throughput improve-
ment between 2.3 to 9.2 times as well as a latency
reduction between 2 to 8.2 times. However, this is
achieved at the cost of increasing the overall complex-
ity by a factor between 1.7 and 3.3.

The rest of the paper is organized as follows. Section II
provides an overview of GPGPU computing and its

employment for the Log-BCJR turbo decoder. Section III
introduces our SIMD FPTD algorithm proposed for the
implementation of the LTE turbo decoder. Section IV dis-
cusses the implementation of the proposed SIMD FPTD
using a GPGPU, considering topological mapping, data
rearrangement and memory allocation. Section V presents
our simulation results, including error correction perfor-
mance, degree of parallelism, processing latency, processing
throughput and complexity. Finally, Section VI offers our
conclusions.

II. GPU COMPUTING AND IMPLEMENTATIONS
GPUs offer a flexible throughput-oriented processing archi-
tecture, which was originally designed for facilitating mas-
sively parallel numerical computations, such as 3D image
graphics [9] and physics simulations [24]. Additionally, the
GPGPU technology provides an opportunity to utilize the
GPU’s capability to perform several trillion Floating-point
Operations Per Second (FLOPS) for general-purpose applica-
tions, such as used for the computations performed in an SDR
platform. In particular, the Compute Unified Device Archi-
tecture (CUDA) [20] platform offers a software programming
model, which enables programmers to efficiently exploit a
GPGPU’s computational units to be exploited for general-
purpose computations. As shown in Figure 2, a program-
mer may specify GPGPU instructions using CUDA kernels,
which are software subroutines that may be called by the host
CPU and then executed on the GPU’s computational units.
CUDA manages these computational units at three levels,
corresponding to the grids, thread blocks and threads. Each
call of a kernel invokes a grid, which typically comprises
of many thread blocks, each of which typically comprises
many threads, as shown in Figure 2. However, during the
kernel’s execution, all threads are grouped into warps, each
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of which comprises 32 threads. Each warp is operated in
a Single Instruction Multiple-Data (SIMD) [25] fashion,
with all of the 32 constituent threads executing identi-
cal instructions at the same time, but on different data
elements.

There are several different types of memory in a GPU,
including global memory, shared memory and registers, as
shown in Figure 2. Each different type of memory has
different properties, which may be best exploited in dif-
ferent circumstances in order to optimize the performance
of the application. More specifically, global memory is an
off-chip memory that typically has a large capacity acces-
sible from the host CPU, as well as from any thread on
the GPU. Global memory is typically used for exchanging
data between the CPU and the GPU, although it has the
highest access latency andmost limited bandwidth, compared
to the other types of GPU memory. By contrast, shared
memory is user-controlled on-chip cache, which has very
high bandwidth (bytes/second) and extremely low access
latency. However, shared memory has a limited capacity and
an access scope that is limited to a single thread block.
Owing to this, a thread in a particular thread block cannot
access any shared memory allocated to any other thread
block. Furthermore, all data stored in shared memory will
be released automatically once the execution of the corre-
sponding thread block is completed. In comparison to global
and shared memory, registers have the largest bandwidth and
the smallest access latency. However, registers have very
limited capacity and their access scope is limited to a single
thread.

Considering these features, many previous research
projects have explored the employment of GPGPUs in
SDR applications, as shown in Figure 3. Note that the
GPGPU-based virtualized C-RAN implementation has not
been exploited, although a C-RAN system has been
implemented on the Amazon Elastic Compute Cloud
(Amazon EC2) [48] using only CPUs. More specifi-
cally, [37] compared several different SDR implementa-
tion approaches in terms of programmability, flexibility,
energy consumption and computing power. In particular, [37]
recommended the employment of GPGPU as a co-processor
to complement an ASIC, FPGA or Digital Signal Pro-
cessor (DSP). Additionally, [33] characterized the perfor-
mance of GPGPUs, when employed for three different
operations, namely Fast Fourier Transform (FFT), Quadra-
ture Phase Shift Keying (QPSK) demapper and Infinite
Impulse Response (IIR) filter. Similarly, [41] compared
the processing throughput and energy efficiency of a par-
ticular FPGA and a particular GPGPU, when implement-
ing both the FFT and a Finite Impulse Response (FIR)
filter.

As shown in Figure 3, [12], [26], [31], [32], [42] imple-
mented an entire transmitter, receiver or transceiver for
the LTE or WiMAX standard on a SDR platform that
employs GPGPUs. Additionally, [11] and [35] implemented
a soft-output Multiple-Input Multiple-Output (MIMO)

FIGURE 3. Selected implementations of GPU based SDRs, where the
implementations of an entire transmitting system is colored in red,
whilst the implementations focusing on a particular application is
colored in black.

detector, while [34] implemented the Digital Video
Broadcasting (DVB) physical layer on a GPGPU. All of
these previous research efforts demonstrated that GPGPUs
offer an improved processing throughput, compared to the
family of implementations using only a CPU. Furthermore,
[12] showed that an LTE base station supporting a peak
data rate of 150 Mbps can be implemented using four
NVIDIA GTX 680 GPUs, achieving a similar energy effi-
ciency to a particular dedicated LTE baseband hardware.
However, [12] and [42] demonstrated that turbo decoding
is the most processor-intensive operation of basestation pro-
cessing, requiring at least 64% of the processing resources
used for receiving a message frame, where the remaining
36% includes the FFT, demapping, demodulation and other
operations. Motivated by this, a number of previous research
efforts [13], [14], [17], [18], [21], [38], [39], [43]–[45]
have proposed GPGPU implementations dedicated to turbo
decoding, as shown in Figure 3. Additionally, the authors
of [27]–[30], [36], [40], [46], and [47] have proposed GPGPU
implementations of LDPC decoders.
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FIGURE 4. Schematics of the proposed SIMD FPTD algorithm and its mapping for the GPGPU, where Mk represents global memory on the GPGPU device.
(a) FPTD algorithm for the case of employing an odd-even interleaver. (b) Mapping of the proposed SIMD FPTD algorithm onto the GPGPU.

III. SINGLE-INSTRUCTION-MULTIPLE-DATA
FULLY-PARALLEL TURBO DECODER
ALGORITHM
In this section, the operation of the proposed SIMD FPTD
algorithm is detailed in Section III-A and it is compared with
the FPTD algorithm of [22] in Section III-B.

A. OPERATION OF THE PROPOSED
SIMD FPTD ALGORITHM
In this section, we detail our proposed SIMD FPTD algo-
rithm for the LTE turbo decoder, using the schematic of
Figure 4(a). The corresponding turbo encoder is not illus-
trated in this paper, since it is identical to the conven-
tional LTE turbo encoder [5]. As in the PIVI Log-BCJR
turbo decoder, the proposed SIMD FPTD employs an upper
decoder and a lower decoder, which are separated by
an interleaver. Accordingly, Figure 4(a) shows two rows of

so-called algorithmic blocks, where the upper row constitutes
the upper decoder, while the lower decoder is comprised of
the lower row of algorithmic blocks. Like the PIVI Log-BCJR
turbo decoder, the input to the proposed SIMD FPTD com-
prises Logarithmic Likelihood Ratios (LLRs) [49], where
each LLR b̄ = ln[Pr(b = 1)/Pr(b = 0)] conveys soft
information pertaining to the corresponding bit b within
the turbo encoder. More specifically, when decoding frames
comprising N bits, this input comprises the six LLR vectors
shown in Figure 4(a): (a) a vector [b̄a,u2,k ]

N+3
k=1 comprisingN+3

a priori parity LLRs for the upper decoder; (b) a vector
[b̄a,u3,k ]

N
k=1 comprising N a priori systematic LLRs for the

upper decoder; (c) a vector [b̄a,u1,k ]
N+3
k=N+1 comprising three

a priori message termination LLRs for the upper decoder;

(d) a vector [b̄a,l2,k ]
N+3
k=1 comprising N+3 a priori parity LLRs

for the lower decoder; (e) a vector [b̄a,l3,k ]
N
k=1 comprising N
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γ̄ tk (Sk−1, Sk ) = b1(Sk−1, Sk ) · b̄
a,t−1
1,k + b2(Sk−1, Sk ) · b̄

a
2,k + b3(Sk−1, Sk ) · b̄

a
3,k (1)

ᾱtk (Sk ) = max*
{Sk−1|c(Sk−1,Sk )=1}

[
γ̄ tk (Sk−1, Sk )+ ᾱ

t−1
k−1(Sk−1)

]
(2)

β̄ tk−1(Sk−1) = max*
{Sk |c(Sk−1,Sk )=1}

[
γ̄ tk (Sk−1, Sk )+ β̄

t−1
k (Sk )

]
(3)

b̄e,t1,k =
[

max*
{(Sk−1,Sk )|b1(Sk−1,Sk )=1}

[
b2(Sk−1, Sk ) · b̄a2,k + ᾱ

t−1
k−1(Sk−1)+ β̄

t−1
k (Sk )

]]
−

[
max*

{(Sk−1,Sk )|b1(Sk−1,Sk )=0}

[
b2(Sk−1, Sk ) · b̄a2,k + ᾱ

t−1
k−1(Sk−1)+ β̄

t−1
k (Sk )

]]
(4)

a priori systematic LLRs for the lower decoder; (f) a vector
[b̄a,l1,k ]

N+3
k=N+1 comprising three a priori message termination

LLRs for the lower decoder. Note that vectors [b̄a,u2,k ]
N+3
k=1

and [b̄a,l2,k ]
N+3
k=1 include LLRs pertaining to the three parity

termination bits of the two component codes [5]. Further-
more, the vector [b̄a,l3,k ]

N
k=1 is not provided by the channel,

but may instead be obtained by rearranging the order of the
LLRs in the vector [b̄a,u3,k ]

N
k=1 using the interleaver π , where

b̄a,l3,k = b̄a,u3,π (k). Moreover, as in the PIVI Log-BCJR turbo
decoder, the SIMD FPTD algorithm also employs the itera-
tive operation of the upper and lower decoders. As shown in
Figure 4(a), these iteratively exchange vectors [b̄e,u1,k ]

N
k=1 and

[b̄e,l1,k ]
N
k=1 of extrinsic LLRs through the interleaverπ , in order

to obtain a priorimessage vectors [b̄a,u1,k ]
N
k=1 and [b̄

a,l
1,k ]

N
k=1 for

the upper and lower decoders respectively [19], where b̄a,l1,k =

b̄e,u1,π (k) and b̄
a,u
1,π (k) = b̄e,l1,k . Following the completion of the

iterative decoding process, a vector [b̄p1,k ]
N
k=1 of a posteriori

LLRs can be obtained, where b̄p1,k = b̄a,u1,k + b̄a,u3,k + b̄e,u1,k .
Throughout the remainder of this paper, the superscripts ‘u’
and ‘l’ are used only when necessary to explicitly distinguish
between the upper and lower components of the turbo code
and are omitted when the discussion applies equally to both.

As in the PIVI Log-BCJR turbo decoder, the proposed
SIMD FPTD algorithm employs two half-iterations per
decoder iteration. However, the two half-iterations do not
correspond to the separate operation of the upper and lower
decoders, like in the PIVI Log-BCJR turbo decoder. Further-
more, during each half-iteration, the proposed SIMD FPTD
algorithm does not operate the algorithmic blocks of
Figure 4(a) in a serial manner, using forward and backward
recursions. Instead, the first half-iteration performs the fully-
parallel operation of the lightly-shaded algorithmic blocks of
Figure 4(a) concurrently, namely the odd-indexed blocks of
the upper decoder and the even-indexed blocks of the lower
decoder. Furthermore, the second half-iteration performs the
concurrent operation of the remaining darkly-shaded algo-
rithmic blocks of Figure 4(a), in a fully-parallel manner.
This decomposition of the algorithmic blocks into odd-even
algorithmic blocks is motivated by the odd-even nature of
the Quadratic Permutation Polynomial (QPP) interleaver [19]
used by the LTE turbo code and the Almost Regular
Permutation (ARP) interleaver used by the WiMAX turbo

code [4]. More explicitly, QPP and ARP interleavers only
connect algorithmic blocks in the upper decoder that have an
odd index k to specific blocks that also have an odd index
in the lower decoder. Similarly, even-indexed blocks in the
upper decoder are only connected to even-indexed blocks in
the lower decoder. It is this fully-parallel operation of algo-
rithmic blocks that yields a significantly higher degree of par-
allelism than the PIVI Log-BCJR turbo decoder algorithm,
as well as a significantly higher decoding throughput. More
specifically, rather than requiring 10s or 100s of consecutive
time periods to complete the forward and backward recur-
sions in each window of the PIVI Log-BCJR turbo decoder,
the proposed SIMD FPTD algorithm completes each half-
iteration using only a single time period, during which all
algorithmic blocks in the corresponding set are operated con-
currently. Note also that this odd-even concurrent operation of
algorithmic blocks in the upper and lower decoder represents
a significant difference between the FPTD algorithm and
a PIVI Log-BCJR decoder employing a window length of
W = 1, as considered in [38]. More specifically, a PIVI Log-
BCJR decoder having a window length ofW = 1may require
as many as I = 65 iterations to maintain a similar BER
performance as a PIVI Log-BCJR decoder having a window
length of W = 32 and I = 7 iterations [38]. By contrast,
taking advantage of the odd-even feature our FPTD algorithm
requires only I = 36 iterations to achieve this, as it will be
detailed in Section V-A.

In the t th time period of proposed SIMD FPTD, each
algorithmic block of the corresponding odd or even shad-
ing having an index k ∈ {1, 2, 3, . . . ,N } accepts five
inputs and generates three outputs, as shown in Figure 4(a).
In addition to the LLRs b̄a,t−11,k , b̄a2,k and b̄

a
3,k , the k

th algorith-

mic block requires the vectors ᾱt-1k−1 = [ᾱt-1k−1(Sk−1)]
M−1
Sk−1=0

and β̄
t-1
k = [β̄ t-1k (Sk )]

M−1
Sk=0

. Here, ᾱt-1k−1(Sk−1) is the forward
metric provided for the state Sk−1 ∈ [0,M−1] in the previous
time period t-1 by the preceding algorithmic block, where the
LTE turbo code employs M = 8 states. Similarly, β̄ t-1k (Sk ) is
the backward metric provided for the state Sk ∈ [0,M − 1]
in the previous time period by the following algorithmic
block.

The k th algorithmic block combines these inputs using four
steps, which correspond to Equations (1), (2), (3) and (4),
as shown at the top of this page, respectively. As in the
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FIGURE 5. State transition diagram of the LTE turbo code.

conventional Log-BCJR turbo decoder, (1) obtains an a priori
metric γ̄ tk (Sk−1, Sk ) for the transition between a particular
pair of states Sk−1 and Sk . As shown in Figure 5, for the
case of the LTE turbo code, this transition implies a particular
binary value for the corresponding message bit b1,k , parity bit
b2,k or systematic bit b3,k . Note that since b3(Sk−1, Sk ) ≡
b1(Sk−1, Sk ) for the LTE turbo code, there are only four
possible values for γ̄ tk (Sk−1, Sk ), namely b̄a2,k , (b̄

a,t−1
1,k + b̄

a
3,k ),

(b̄a,t−11,k + b̄a2,k + b̄a3,k ) and zero. All four of these possible
values can be calculated using as few as two additions, as
shown in Figure 6, which provides an optimized datapath for
the k th algorithmic block of the proposed SIMD FPTD. Fol-
lowing this, (2) and (3) may be employed to obtain the state
metrics ᾱtk and β̄

t
k−1, respectively. Here, c(Sk−1, Sk ) adopts

a binary value of 1, if there is a transition between the states
Sk−1 and Sk in the state transition diagram of Figure 5, while

max∗(δ̄1, δ̄2) = max(δ̄1, δ̄2)+ ln(1+ e−|δ̄1−δ̄2|) (5)

is the Jacobian logarithm [16], as is employed by the Log-
BCJR decoder. Note that the Jacobian logarithm may be
approximated as

max∗(δ̄1, δ̄2) ≈ max(δ̄1, δ̄2) (6)

in order to reduce the computational complexity, as in
the Max-Log-BCJR. Note that for those transitions hav-
ing a metric γ̄ tk (Sk−1, Sk ) of zero, the corresponding terms
in (2) and (3) can be ignored, hence reducing the number of
additions required. This is shown in the optimized datapath
of Figure 6. Finally, (4) may be employed for obtaining the
extrinsic LLR b̄e,t1,k , as shown in Figure 6. This LLR may then
be output by the algorithmic block, as shown in Figure 4(a).

When operating the k th algorithmic block in the first
half-iteration of the iterative decoding process, the a priori
message LLR provided by the other row is unavailable,

hence it is initialized as b̄a,t−11,k = 0, accordingly. Like-
wise, the forward state metrics from the neighboring algo-
rithmic blocks are unavailable, hence these are initialized as

ᾱt−1k−1 = [0, 0, 0, . . . , 0] for k ∈ [2,N ]. However, in the
case of the k = 1st algorithmic block, we employ ᾱt−10 =

[0,−∞,−∞, ...,−∞] in all decoding iterations, since the
LTE trellis is guaranteed to start from an initial state of
S0 = 0. Similarly, before operating the k th algorithmic block
in the first half-iteration, we employ β̄

t−1
k = [0, 0, 0, . . . , 0]

for k ∈ [1,N − 1]. Furthermore, we employ β̄
t−1
N+3 =

[0,−∞,−∞, ...,−∞], since the LTE turbo coding employs
three termination bits to guarantee SN+3 = 0. Note that
(1), (2), (3) and (4) reveal that β̄N is independent of ᾱN .
Therefore, the algorithmic blocks with indices k ∈ [N + 1,
N + 3], shown as unshaded blocks in Figure 4(a), can be
processed before and independently of the iterative decod-
ing process. This may be achieved by employing only
equations (1) and (3), where the term b3(Sk−1, Sk ) · b̄a3,k
is omitted from (1). More specifically, these equations are
employed in a backward recursion, in order to succes-
sively calculate β̄N+2, β̄N+1 and β̄N , the latter of which is
employed throughout the iterative decoding process by the
N th algorithmic block.

B. COMPARISON WITH THE FPTD ALGORITHM OF [22]
In this section, we compare the proposed SIMD FPTD algo-
rithm with the original FPTD algorithm of [22]. In particular,
we compare the operation, temporary storage requirements
and computational complexity of these decoders. Note that
in analogy to (1), the FPTD algorithm of [22] employs
a summation of three a priori LLRs, when operating
the algorithmic blocks of the upper row having an index
k ∈ {1, 2, 3, . . . ,N }. However, a summation of just two
a priori LLRs is employed for the corresponding blocks in
the lower row of the FPTD algorithm of [22], since in this
case the term b3(Sk−1, Sk )·b̄a3,k is omitted from the equivalent
of (1). By contrast, the proposed SIMD FPTD algorithm
employs (1) in all algorithmic blocks, ensuring that all of
them operate in an identical manner, hence facilitating SIMD
operation, which is desirable for GPGPU implementations.
This is achieved by including the a priori systematic LLR b̄a3,k
in the calculation of (1), regardless of whether the algorithmic
block appears in the upper or the lower row. Furthermore, in
contrast to the FPTD algorithm of [22], b̄a3,k is omitted from
the calculation of (4), regardless of which row the algorithmic
blocks appears in.

A further difference between the proposed SIMD FPTD
algorithm and the original FPTD algorithm of [22], is moti-
vated by reductions in memory usage and computational
complexity. More specifically, the algorithmic blocks of the
proposed SIMD FPTD algorithm are redesigned to use fewer
intermediate variables and computations. In particular, the
transition metric γ̄k (Sk−1, Sk ) of (1) can only adopt three
non-zero values, as described above. By contrast, the orig-
inal FPTD algorithm of [22] needs to calculate and store
a different transition metric δ̄k (Sk−1, Sk ) for each of the
sixteen transitions. The proposed approach allows a greater
proportion of the intermediate variables to be stored in the
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FIGURE 6. The optimized datapath inside the kth algorithmic block of the
proposed SIMD FPTD algorithm for the LTE turbo decoder.

GPGPU’s limited number of low-latency registers, with less
reliance on its high-latency memory. Since the GPGPU’s
low-latency registers are shared among all N algorithmic
blocks, the benefit of reducing the reliance of each block on
intermediate variables ismagnified byN times. Owing to this,
a slight reduction in the memory usage of each algorithmic
block results in a huge reduction in the total memory usage,
especially when N is large.

Furthermore, while the proposed SIMD FPTD algorithm,
the original FPTD algorithm of [22] and the PIVI Log-
BCJR decoder all require the same number of max* oper-
ations per algorithmic blocks, the proposed SIMD FPTD
algorithm requires the fewest additions and subtractions.
More specifically, as shown in the optimized datapath for
the LTE turbo code of Figure 6, the proposed SIMD FPTD
algorithm requires only 45 additions and subtractions per

algorithmic block. This is approximately 5% lower than
the 47.5 additions and subtractions required by the original
FPTD algorithm of [22], as well as approximately 19% lower
than the 55.5 required by the PIVI Log-BCJR decoder. Note
that this computational complexity reduction is achieved by
exploiting the relationship max ∗ (A + C,B + C) = max ∗
(A,B) + C [50]. This relationship holds for both the exact
max* of (5) and approximate max* of (6). More specifically,
(4) requires sixteen additions for obtaining ᾱk−1 + β̄k for
the sixteen transitions in the LTE trellis, eight of which also
require an extra addition for obtaining ᾱk−1+β̄k+b̄a2,k , before
the max* operation. By grouping the transitions carefully,
the additions of b̄a2,k can be moved to after the max* oper-
ation. Owing to this, only two additions are required, rather
than eight, as shown in Figure 6. Note that the datapath of
Figure 6 has been specifically optimized for the LTE turbo
code. By contrast, the FPTD algorithm of [22] is optimized
for general turbo code applicability, yielding a more desirable
design in the case of the duo-binary WiMAX turbo code [4],
for example.

IV. IMPLEMENTATION OF THE SIMD FPTD
ALGORITHM ON A GPGPU
This section describes the implementation of the pro-
posed SIMD FPTD algorithm using an NVIDIA GPGPU
platform, adopting the Compute Unified Device Archi-
tecture (CUDA) [20]. The mapping of the SIMD FPTD
algorithm onto the GPGPU and its memory allocation are dis-
cussed in Sections IV-A and IV-B, respectively. The pseudo
code of the proposed GPGPU kernel designed for implement-
ing the SIMD FPTD algorithm is described in Section IV-C.

A. MAPPING THE SIMD FPTD ALGORITHM
ONTO A GPGPU
The proposed SIMD FPTD algorithm of Figure 4(a) may be
mapped onto a CUDA GPGPU using a single kernel. Here,
two approaches are compared. In the first approach, each
execution of the kernel performs one half iteration of the
proposed algorithm, requiring 2I kernel repetitions in order to
complete I number of decoding iterations. For this approach,
the GPU kernel repetitions are scheduled serially by the CPU,
achieving synchronization between each pair of consecutive
half iterations by the CPU. This synchronisation ensures
that all parts of a particular half iteration are completed,
before any parts of the next half iteration begin. However,
this synchronization occupies an average of 31.3% of the
total processing time, which is due to the communication
overhead between the CPU and the GPU, according to our
experimental results. Owing to this, our second approach
performs all 2I half iterations within a single GPU kernel run,
eliminating the requirement for any communication between
the CPU and the GPU during the iterative decoding process.
However, the inter-block synchronization has to be carried
out by the GPU in order to maintain the odd-even nature of
the operation. Since CUDA GPGPUs do not have any native
support for inter-block synchronization, here we include
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FIGURE 7. Schematic of using the global memory to store the intermediate data of ᾱ and β̄. (a) Forward state metrics ᾱ. (b) Backward state metrics β̄.

the lock-free inter-block synchronization technique of [51].
We perform this synchronization at end of every half itera-
tion, which reduces the time dedicated to the synchronization
from 31.3% to 15.5%, according to our experimental results.
Owing to this superior performance compared to CPU syn-
chronization, inter-block synchronization on the GPU is used
for our proposed FPTD implementation and its performance
is characterized in Section V.

Our kernel employsN number of threads, with one for each
of the N algorithmic blocks that are operated within each half
iteration of Figure 4(a). Here, the k th thread processes the
k th algorithmic block in the upper or lower row according to
the odd-even arrangement of Figure 4(a), where k ∈ [1,N ].
Note that it would be possible to achieve further parallelism
by employing eight threads per algorithmic block, rather
than just one. This would facilitate state-level parallelism as
described in Section I for the conventional GPGPU imple-
mentation of the PIVI Log-BCJR turbo decoder. However,
our experiments reveal that state-level parallelism offers no
advantage for the proposed SIMD FPTD algorithm. More
specifically, according to the Nsight profiler of [52], the
processing throughput of the proposed FPTD implementation
is bounded by the memory bandwidth rather than memory
access latency, which implies that the parallelism of N is
already large enough to make the most of the GPGPUs com-
puting resource. Furthermore, employing state-level paral-
lelism would result in a requirement for more accesses of the
global memory, in order to load the a priori LLRs b̄a1,k , b̄

a
2,k

and b̄a3,k , which would actually degrade the throughput.
The algorithmic blocks of the proposed SIMD FPTD algo-

rithm are arranged in groups of 32, in order for the cor-
responding threads to form warps, which are particularly
suited to SIMD operation. In order to maximize the com-
putation throughput, special care must be taken to avoid
thread divergence. This arises when ‘if’ and ‘else’ statements
cause the different threads of a warp to operate differently,
resulting in the serial processing of each possible outcome.
However, the schematic of Figure 4(a) is prone to thread
divergence, since each half iteration comprises the operation
of algorithmic blocks in both the upper and the lower row,
as indicated using light and dark shading. More specifically,
‘if’ and ‘else’ statements are required to determine whether

each algorithmic block resides in the top or bottom row
of Figure 4(a), when deciding which inputs and outputs to
consider. This motivates the alternative design of Figure 4(b),
in which all algorithmic blocks within the same half iteration
have been relocated to the same row in order to avoid these
‘if’ and ‘else’ statements. More specifically, the algorithmic
blocks that have an even index in the upper row have been
swapped with those from the lower row. As a result, the upper
row comprises the lightly-shaded blocks labeled uk|k is odd
and lk|k is even, whilst the lower row comprises the darkly-
shaded blocks labeled uk|k is even and lk|k is odd. Consequently,
the operation of alternate half iterations corresponds to the
alternate operation of the upper and lower rows of Figure 4(b).
Note that this rearrangement of algorithmic blocks requires a
corresponding rearrangement of inputs, outputs and memory,
as will be discussed in Section IV-B.

As described in Section III, the consideration of the termi-
nation bits by the three algorithmic blocks at the end of the
upper and lower rows can be isolated from the operation of the
iterative processes. Therefore, we recommend the processing
of all termination bits using the CPU, before beginning the
iterative decoding process on the GPGPU. This aids the map-
ping of algorithmic blocks to warps and also avoids thread
divergence, since the processing of the termination bits is not
identical to that of the other bits, as shown in Figure 4(b).

B. DATA ARRANGEMENT AND MEMORY ALLOCATION
Note that because the proposed SIMD FPTD employs the
rearranged schematic of Figure 4(b) rather than that of
Figure 4(a), the corresponding datasets must also be rear-
ranged, using swaps and mergers. More specifically, for the
a priori parity LLRs b̄a2 and the systematic LLRs b̄a3 the rear-
rangement can be achieved by swapping the corresponding
elements in the upper and lower datasets, following the same
rule that was applied to the algorithmic blocks of Figure 4(b).
For the forward and backwards metrics ᾱ and β̄ as well as
for the a priori message LLRs b̄a1 the rearrangement can be
achieved by merging the two separate datasets for the upper
and lower rows together. Furthermore, there is no need to
store both the a priori and the extrinsic LLRs, since inter-
leaving can be achieved by writing the latter into the mem-
ory used for storing the former, but in an interleaved order.
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Note that this arrangement also offers the benefit of min-
imizing memory usage, which is achieved without causing
any overwriting, as shown in Figure 7. More explicitly, the
k th memory slot Mk of Figure 4(b) may be used for passing
the k th forward state metrics ᾱu/lk between the algorithmic
blocks uk /lk and uk+1/lk+1, for example. During the first
half iteration, the upper algorithmic block uk is operated to
obtain ᾱuk , which is stored in Mk . Then during the second
half iteration, this data stored in Mk will be provided to the
algorithmic block uk+1, before it is overwritten by the new
data ᾱlk , which is provided by the algorithmic block lk .
As illustrated in Figure 4(b), there are a total of seven

datasets that must be stored throughout the decoding process,
namely [b̄a,u2,k ]

N
k=1, [b̄

a,l
2,k ]

N
k=1, [b̄

a,u
3,k ]

N
k=1, [b̄

a,l
3,k ]

N
k=1, [b̄

a
1,k ]

N
k=1,

[ᾱk ]Nk=1 and [β̄k ]
N
k=1, requiring an overall memory resource

of 21N floating-point numbers. As shown in Figure 4(b),
these datasets are stored in the global memory, since it has a
large capacity and is accessible from the host CPU, as well as
from any thread in the GPGPU device. However the global
memory has a relatively high access latency and a limited
bandwidth. In order to minimize the impact of this, each algo-
rithmic block employs local low-latency registers to store all
intermediate variables that are required multiple times within
a half iteration. More specifically, the k th algorithmic block
uses registers to store b̄a2,k , (b̄

a
1,k + b̄

a
3,k ), (b̄

a
1,k + b̄

a
2,k + b̄

a
3,k ),

ᾱk−1 and β̄k , comprising a total of 19 floating-point numbers,
as shown in Figure 6.

C. PSEUDO CODE
Algorithm 1 describes the operation of the k th thread ded-

icated to the computation of the k th algorithmic block, in
analogy to the datapath of Figure 6. Note that the labels of
Register (R) and Global memory (G) shown in Algorithm 1
indicate the type of the memory used for storing the cor-
responding data. Each thread is grouped into four steps as
follows. The first step caches the a priori LLR b̄a2,k and the
a priori state metrics ᾱk−1 and β̄k from the global memory
to the local registers. Furthermore, the first step computes
b̄a13 = b̄a,t−11,k + b̄

a
3,k and b̄

a
123 = b̄a,t−11,k + b̄

a
2,k + b̄

a
3,k , before

storing the results in the local registers. Following this, the
second and third steps compute the extrinsic forward state
metrics ᾱtk and the extrinsic backward state metrics β̄

t
k−1, in

analogy to the datapath of Figure 6. The results of these com-
putations are written directly into the corresponding memory
slotMk in the global memory, as shown in Figure 4(b). In the
fourth step, the extrinsic LLR b̄e,t1,k is computed and stored
in the global memory. Here, interleaving or deinterleaving is
achieved by storing the extrinsic LLRs into particular global
memory slots selected according to the design of the LTE
interleaver. Note that the intermediate values of δ̄0 and δ̄1
require the storage of two floating-point numbers in registers,
as shown in Algorithm 1. However, instead of using two new
registers, they can be stored respectively in the registers that
were previously used for storing the values of b̄a13 and b̄a123,
since these are not required in the calculations of the

Algorithm 1 A Kernel for Computing a Half-Iteration of the
Proposed SIMD FPTD Algorithm
Step 1: Loading data
for i = 0 to 7 do

(R) ᾱ(i)← (G) ᾱt−1k−1(i)
(R) β̄(i)← (G) β̄ t−1k (i)

end for
(R) b̄a13 ← (G) b̄a,t−11,k + (G) b̄a3,k
(R) b̄a2 ← (G) b̄a2,k
(R) b̄a123 ← b̄a2 + b̄

a
13

Step 2:Computing forward state metrics
(G) ᾱtk (0)← max*(ᾱ(0) , ᾱ(1)+ b̄a123)
(G) ᾱtk (1)← max*(ᾱ(2)+ b̄a13 , ᾱ(3)+ b̄

a
2)

(G) ᾱtk (2)← max*(ᾱ(4)+ b̄a2 , ᾱ(5)+ b̄
a
13)

(G) ᾱtk (3)← max*(ᾱ(6)+ b̄a123 , ᾱ(7))
(G) ᾱtk (4)← max*(ᾱ(0)+ b̄a13 , ᾱ(1))
(G) ᾱtk (5)← max*(ᾱ(2)+ b̄a2 , ᾱ(3)+ b̄

a
13)

(G) ᾱtk (6)← max*(ᾱ(4)+ b̄a13 , ᾱ(5)+ b̄
a
2)

(G) ᾱtk (7)← max*(ᾱ(6) , ᾱ(7))+ b̄a123)

Step 3:Computing backward state metrics
(G) β̄ tk−1(0)← max*(β̄(0) , β̄(4)+ b̄a123)
(G) β̄ tk−1(1)← max*(β̄(0)+ b̄a123 , β̄(4))
(G) β̄ tk−1(2)← max*(β̄(1)+ b̄a13 , β̄(5)+ b̄

a
2)

(G) β̄ tk−1(3)← max*(β̄(1)+ b̄a2 , β̄(5)+ b̄
a
13)

(G) β̄ tk−1(4)← max*(β̄(2)+ b̄a2 , β̄(6)+ b̄
a
13)

(G) β̄ tk−1(5)← max*(β̄(2)+ b̄a13 , β̄(6)+ b̄
a
2)

(G) β̄ tk−1(6)← max*(β̄(3)+ b̄a123 , β̄(7))
(G) β̄ tk−1(7)← max*(β̄(3) , β̄(7))+ b̄a123)

Step 4:Computing extrinsic LLR
(R) δ̄0 ← max*(ᾱ(2)+ β̄(5) , ᾱ(3)+ β̄(1))
δ̄0 ← max*(δ̄0 , ᾱ(4)+ β̄(2))
δ̄0 ← max*(δ̄0 , ᾱ(5)+ β̄(6))
δ̄0 ← δ̄0 + b̄a2
δ̄0 ← max*(δ̄0 , ᾱ(0)+ β̄(0))
δ̄0 ← max*(δ̄0 , ᾱ(1)+ β̄(4))
δ̄0 ← max*(δ̄0 , ᾱ(6)+ β̄(7))
δ̄0 ← max*(δ̄0 , ᾱ(7)+ β̄(3))

(R) δ̄1 ← max*(ᾱ(0)+ β̄(4) , ᾱ(1)+ β̄(0))
δ̄1 ← max*(δ̄1 , ᾱ(6)+ β̄(3))
δ̄1 ← max*(δ̄1 , ᾱ(7)+ β̄(7))
δ̄1 ← δ̄1 + b̄a2
δ̄1 ← max*(δ̄1 , ᾱ(2)+ β̄(1))
δ̄1 ← max*(δ̄1 , ᾱ(3)+ β̄(5))
δ̄1 ← max*(δ̄1 , ᾱ(4)+ β̄(6))
δ̄1 ← max*(δ̄1 , ᾱ(5)+ β̄(2))

(G) b̄e,t1,π (k) ← δ̄1 − δ̄0

fourth step. As a result, a total of 19 registers are required
per thread, as discussed above.

V. RESULTS
In the following sub-sections, we compare the perfor-
mance of the proposed GPGPU implementation of our
SIMD FPTD algorithm with that of the state-of-the-art
GPGPU turbo decoder implementation in terms of error
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FIGURE 8. BER performance for the PIVI Log-BCJR turbo decoder having
window lengths of W ∈{32, 48, 64, 96, 192} and performing I = 7
iterations, as compared with that of the proposed SIMD FPTD when
performing I ∈{36, 39, 42, 46, 49} iterations. Here, both decoders
use the approximate max* operation.

correction performance, degree of parallelism, processing
throughput and complexity. Both turbo decoders were imple-
mented using single-precision floating-point arithmetic and
both were characterized using the Windows 8 64-bit oper-
ating system, an Intel I7-2600@3.4GHz CPU, 16GB RAM
and an NVIDIA GTX680 GPGPU. This GPGPU has eight
Multiprocessors (MPs) and 192 CUDA cores per MP, with
a GPU clock rate of 1.06 GHz and a memory clock rate
of 3 GHz.

The state-of-the-art benchmarker employs the Log-BCJR
algorithm, with PIVI windowing, state-level parallelism and
Radix-2 operation [17], [18]. This specific combination was
selected, since it offers a high throughput and a low complex-
ity, at a negligible cost in terms of BER degradation. This
algorithm was mapped onto the GPGPU according to the
approach described in [13]. Furthermore, as recommended
in [13] and [18], the longest LTE frames comprising
N = 6144 bits were decomposed into P ∈ {192, 128,
96, 64, 32} number of partitions. This is equivalent to having
PIVI window lengths of W = N/P ∈ {32, 48, 64, 96, 192},
respectively.

A. BER PERFORMANCE
Figure 8 compares the BER performance of both the PIVI
Log-BCJR turbo decoder and the proposed SIMD FPTD
algorithm, when employing the approximate max* operation
of (6). Here, BPSK modulation was employed for transmis-
sion over an AWGN channel. For both decoders, the BER
performance is provided for a relatively short frame length
of N = 768 bits, as well as for the longest frame length
that is supported by the LTE standard, namely N = 6144
bits. We have not included the BER performance of the two
decoders when employing the exact max* operation of (5),
but we found that they obey the same trends as Figure 8.

Figure 8 characterizes the BER performance of the PIVI
Log-BCJR turbo decoder when employing I = 7 iterations
and the window lengths of W ∈ {32, 48, 64, 96, 192}.
In addition to this, Figure 8 provides the BER perfor-
mance of the SIMD FPTD algorithm when performing I ∈
{36, 39, 42, 46, 49} iterations. As may be expected, the BER
performance of the PIVI Log-BCJR turbo decoder improves
when employing longer window lengthsW . Therefore, more
iterations I of the SIMD FPTD algorithm are required in
order to achieve the same BER performance as the PIVI
Log-BCJR turbo decoder, when W is increased. More
specifically, Figure 8 shows that when employing
N = 6144-bit frames, the SIMD FPTD algorithm requires
I ∈ {36, 39, 42, 46, 49} decoding iterations in order to
achieve the same BER performance as the PIVI Log-BCJR
turbo decoder performing I = 7 iterations with the window
lengths of W ∈ {32, 48, 64, 96, 192}, respectively. Note that
in all cases, the proposed SIMDFPTD algorithm is capable of
achieving the same BER performance as the PIVI Log-BCJR
turbo decoder, albeit at the cost of requiring a greater number
of decoding iterations I . Note that the necessity for the FPTD
to perform several times more iterations than the Log-BCJR
turbo decoder was discussed extensively in [22].

B. DEGREE OF PARALLELISM
The degree of parallelism for the PIVI Log-BCJR turbo
decoder may be considered to be given by DLog-BCJR

p =
M ·N
W ,

where N is the frame length, W is the window length and
M = 8 is the number of states in the LTE turbo code
trellis. Here, M = 8 threads can be employed for achieving
state parallelism, while decoding each of the N/W windows
simultaneously. By contrast, the degree of parallelism for
the FPTD can be simply defined as DFPTD

p = N , since
all algorithmic blocks can be processed in parallel threads
and because we do not exploit state parallelism in this case.
Table 1 compares the parallelism Dp of the proposed SIMD
FPTD with that of the PIVI Log-BCJR turbo decoder, when
decomposing N = 6144-bit frames into windows comprising
various numbers of bitsW . Depending on the window length
W chosen for the PIVI Log-BCJR turbo decoder, the degree
of parallelism achieved by the proposed SIMD FPTD can be
seen to be between 4 and 24 times higher.

C. PROCESSING LATENCY
Figure 9 compares the processing latency of both the pro-
posed SIMD FPTD and of the PIVI Log-BCJR decoder,
when decoding frames comprising N = 6144 bits using
both the approximate max* operation of (6) and the exact
max* operation of (5). Note that different numbers of iter-
ations I ∈ {36, 39, 42, 46, 49} are used for the SIMD FPTD,
while I = 7 iterations and different window lengths W ∈
{32, 48, 64, 96, 192} are employed for the PIVI Log-BCJR
turbo decoder, as discussed in Section V-A. Here, the overall
latency includes two parts, namely the time used for memory
transfer between the CPU and the GPU, as well as the time
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TABLE 1. Comparison between the PIVI Log-BCJR turbo decoder and the proposed SIMD FPTD in terms of degree of parallelism, overall latency, pipelined
throughput and complexity (IPBPHI and IPB), where N = 6144 for both decoders, I = 7 and W ∈ {32,48,64,96,192} for the PIVI Log-BCJR turbo decoder,
whilst I ∈ {36,39,42,46,49} for the FPTD. Results are presented using the format x/y , where x corresponds to the case where the approximate max*
operation of (6) is employed, while y corresponds to the exact max* operation of (5).

FIGURE 9. Latency for the proposed SIMD FPTD with I ∈ {36, 39, 42,
46, 49}, as compared with that of the PIVI Log-BCJR turbo decoder
with I = 7 and W ∈ {32, 48, 64, 96, 192}.

used for the iterative decoding process. More specifically,
the memory transfer includes transferring the channel LLRs
from the CPU to the GPU at the beginning of the iterative
decoding process and transferring the decoded results from
the GPU to the CPU at the end of that process. Therefore,
the time used for memory transfer depends only on the frame
length N and it is almost independent of the type of decoder
and the values of I and W , as shown in Figure 9. Note that
the latency was quantified by averaging over the decoding
of 5000 frames for each configuration. By contrast, the time
used for the iterative decoding process differs significantly
between the proposed SIMD FPTD and the Log-BCJR turbo
decoder. More specifically, Table 1 shows that the overall
latency of the SIMD FPTD is in the range from 402.5 µs
to 513.4 µs, when the number of iterations is increased
from I = 36 to I = 49, provided that the approximate

max* operation of (6) is employed, hence meeting the sub
1ms requirement of the LTE physical layer [53]. By con-
trast, the overall latency of the PIVI Log-BCJR decoder
ranges from 816.9 µs to 3694.6 µs, when the window length
increases from W = 32 to W = 192, and when I = 7
iterations are performed, assuming that the approximate
max* operation of (6) is employed. These extremities of
the range are 2 times and 7.2 times worse than those of the
proposed SIMD FPTD, respectively. Additionally, when the
exact max* operation of (5) is employed, the overall latency
of the SIMD FPTD increases by 12.3% and 14.8% for the
case of I = 36 and I = 49, compared to those obtained
when employing the approximate max* operation of (6).
By contrast, the overall latency increases in this case by
27.5% and 31.1% for the PIVI Log-BCJR decoder associated
with W = 32 and W = 192, hence further widening the gap
to the latency of the proposed SIMD FPTD.

D. PROCESSING THROUGHPUT
Table 1 presents the processing throughputs that were mea-
sured on the GPGPU, when employing the proposed SIMD
FPTD and the PIVI Log-BCJR turbo decoder to decode
frames comprising N = 6144 bits. Here, throughputs are
presented for the case where the approximate max* operation
of (6) is employed, as well as for the case of employing
the exact max* operation of (5). Note that when the itera-
tive decoding of a particular frame has been completed, its
memory transfer from the GPU to CPU can be pipelined
with the iterative decoding of the next frame and with the
memory transfer from the CPU to GPU of the frame after
that. Since Figure 9 shows that the iterative decoding is the
slowest of these three processes, it imposes a bottleneck
on the overall processing throughput. Owing to this, the
throughput presented in Table 1 was obtained by considering
only the iterative decoding process, based on the assump-
tion that throughput = N/latency of iterative decoding.
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As shown in Table I, the proposed GPGPU implementation
of the SIMD FPTD achieves throughputs of up to 18.7 Mbps.
This exceeds the average throughput of 7.6 Mbps, which
is typical in 100 MHz LTE uplink channels [54], demon-
strating the suitability of the proposed implementation for
C-RAN applications. Furthermore, higher throughputs can be
achieved either by using a more advanced GPU or by using
multiple GPUs in parallel.

Recall from Figure 8 that the proposed SIMD FPTD
performing I = 36 iterations achieves the same BER per-
formance as the PIVI Log-BCJR turbo decoder performing
I = 7 iterations and having the window length of W = 32.
Here, W = 32 corresponds to the maximum degree of
parallelism of P = 192 that can be achieved for the PIVI Log-
BCJR turbo decoder, without imposing a significant BER
performance degradation [19]. In the case of this comparison,
Table 1 reveals that the processing throughput of the proposed
SIMD FPTD is 2.3 times and 2.5 times higher than that of
the PIVI Log-BCJR turbo decoder, when the approximate
max* operation and the exact max* operation are employed,
respectively. An even higher processing throughput improve-
ment is offered by the proposed SIMD FPTD, when the
parallelism of the PIVI Log-BCJR turbo decoder is reduced,
for the sake of improving its BER performance. For example,
the proposed SIMD FPTD performing I = 49 iterations
has a processing throughput that is 8.2 times (approximate
max*) and 9.2 times (exact max*) higher than the PIVI Log-
BCJR turbo decoder having a window length of W = 192,
while offering the same BER performance. Note that owing
to its lower computational complexity, the approximate max*
operation of (6) facilities a higher processing throughput
than the exact max* operation of (5), in the case of both
decoders.

Furthermore, Table 2 compares the processing through-
put of the proposed SIMD FPTD GPGPU implementation
to that of other GPGPU implementations of the LTE turbo
decoder found in the literature [13], [17], [18], [38], [43].
Here, the throughputs of all implementations are quanti-
fied for the case of decoding N = 6144-bit frames, when
using the approximate max* operation of (6). Note that the
throughputs shown in Table 2 for the benchmarkers employ-
ing the PIVI Log-BCJR algorithm have been linearly scaled
to the case of performing I = 7 iterations, in order to
perform a fair comparison. However, different GPUs are used
for the different implementations, which complicates their
precise performance comparison. In order to make fairer
comparisons, we consider two different methods for nor-
malizing the throughputs of the different implementations,
namely throughput×106

clock freq.×mem BW and throughput×106

clock freq.×mem freq. .

More specifically, the authors of [38] proposed a loosely
synchronized parallel turbo decoding algorithm, in which
the iterative operation of the partitions is not guaranteed
to operate synchronously. In their contribution, the normal-
ized throughput was obtained as throughput×106

clock freq.×mem BW , since
the GPGPU’s global memory bandwidth impose the main

bottleneck upon the corresponding implementation.
Similarly, we suggest using the same normalization method
for our proposed FPTD, since its performance is also bounded
by the global memory bandwidth, according to the exper-
imental results from the Nsight profiler, as discussed in
Section IV-A. As shown in Table 2, the benchmarker of [38]
achieves a normalized throughput of 100.6, when performing
I = 12 iterations for decoding N = 6144-bit frames,
divided into P = 768 partitions. However, this approach
results in an Eb/N0 degradation of 0.2 dB, compared to
that of the conventional Log-BCJR turbo decoding algorithm
employingP = 64 partitions and performing I = 6 iterations.
When tolerating this 0.2 dB degradation, our proposed SIMD
FPTD algorithm requires only I = 27 iterations, rather than
I = 36, as shown in Table 2. In this case, the normalized
throughput of our proposed SIMD FPTD algorithm is 128.8,
which is 28% higher than that of the loosely synchronized
parallel turbo decoding algorithm of [38]. Furthermore, our
approach has the advantage of being able to maintain a
constant BER performance, while the loosely synchronized
parallel turbo decoding algorithm of [38] suffers from a BER
performance that varies from frame to frame, owing to its
asynchronous decoding process.

By contrast, using the normalization of throughput×106

clock freq.×mem freq.
is more appropriate for the other implementations listed in
Table 2, since according to our experimental results, the
computational latency and the global memory access latency
constitute the main bottlenecks of these implementations
of the Log-BCJR algorithm. This may be attributed to the
low degree of parallelism of the decoder compared to the
capability of the GPGPU, particularly when only a sin-
gle frame is decoded at a time. Note that the normalized
throughputs obtained using the different normalization meth-
ods are not comparable to each other. As shown in Table 2,
the normalized throughput of 5.4 achieved by our PIVI
Log-BCJR benchmarker is significantly better than those
of [17], [18], and [43]. Although the benchmarker of [13]
achieves a better normalized throughput of 6.6, this is
achieved by decoding a batch of 100 frames at a time,
which can readily achieve a higher degree of parallelism than
decoding only a single frame at a time, like all of the other
schemes, as discussed in [18]. Owing to this, the computing
latency and memory latency maybe no longer a limiter for
the throughput performance, implying that the normalized
throughput for [13] may be inappropriate. Additionally, this
throughput can only be achieved, when there are 100 frames
available for simultaneous decoding, which may not occur
frequently in practice, hence resulting in an unfair compari-
son with the other benchmarkers. Furthermore, while decod-
ing several frames in parallel improves the overall processing
throughput, it does not improve the processing latency of each
frame.

E. COMPLEXITY
The complexity of the proposed GPGPU implementation of
our SIMD FPTD algorithm may be compared with that of the
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TABLE 2. Comparison between the proposed GPGPU implementation of our SIMD FPTD algorithm with other GPGPU implementations of the turbo
decoders found in the literature.

PIVI Log-BCJR turbo decoder by considering the number of
GPGPU instructions that are issued per bit of the message
frame. This is motivated, since all GPGPU thread operations
are commanded by instructions. More specifically, while
performing one half iteration and one interleaving operation
for each turbo decoder, the average number Instructions Per
Warp (IPW) was measured using the NVIDIA analysis tool,
Nsight [52]. Using this, the average number of Instructions
Per Bit (IPB) may be obtained as IPB = 2I · IPBPHI =
2I · IPW · Dp

32N
, where IPBPHI is the average number of

Instructions Per Bit Per Half Iteration, N is the frame length
and Dp is the corresponding degree of parallelism. Here,
Dp
32

represents the total number of warps, since each warp
includes 32 of the Dp threads employed by the decoder.
Table 1 quantifies IPBPHI and IPB for both the proposed

SIMD FPTD and the PIVI Log-BCJR turbo decoder, when
employing both the approximate and exact max* operations
of (6) and (5), respectively. As shown in Table 1, the IPBPHI
of the proposed SIMD FPTD is around one third that of the

PIVI Log-BCJR turbo decoder, when employing the approx-
imate max* operation, although this ratio grows to one half,
when employing the exact max* operation. Note however that
the proposed SIMD FPTD algorithm requires more decod-
ing iterations than the PIVI Log-BCJR turbo decoder for
achieving a particular BER performance, as quantified in
Section V-A. Therefore, the overall IPB complexity of the
proposed SIMD FPTD is 1.7 to 3.3 times higher than that of
the PIVI Log-BCJR turbo decoder, depending on the number
of iterations I , window lengthW and type of max* operation
performed, as shown in Table 1. Note that this trend broadly
agrees with that of our previous work [22], which showed that
the FPTD algorithm has a complexity that is 2.9 times higher
than that of the state-of-the-art LTE turbo decoder employing
the Log-BCJR algorithm, which was obtained by comparing
the number of additions/subtractions and max* operations
employed by the different algorithms. Note that the increased
complexity of the FPTD represents the price that must be
paid for increasing the decoding throughput by a factor
up to 9.1.

VOLUME 4, 2016 5637



A. Li et al.: Implementation of an FPTD on a GPGPU

VI. CONCLUSIONS
In this paper, we have proposed a SIMD FPTD algorithm
and demonstrated its implementation on a GPGPU. We have
also characterized its performance in terms of BER perfor-
mance, degree of parallelism, GPGPU processing through-
put and complexity. Furthermore, these characteristics have
been compared with those of the state-of-the-art PIVI
Log-BCJR turbo decoder. This comparison shows that
owing to its increased degree of parallelism, the proposed
SIMD FPTD offers a processing throughput that is between
2.3 and 9.2 times higher and a processing latency that is
between 2 and 8.2 times better than that of the bench-
marker. However, this is achieved at the cost of requiring a
greater number of iterations than the benchmarker in order to
achieve a particular BER performance, which may result in
a 1.7 to 3.3 times increase in overall complexity. In our future
work we will conceive techniques for disabling particular
algorithmic blocks in the FPTD, once they have confidently
decoded their corresponding bits. With this approach, we
expect to significantly reduce the complexity of the FPTD,
such that it approaches that of the Log-BCJR turbo decoder,
without compromising the BER performance.
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