
Received April 19, 2016, accepted May 6, 2016, date of current version June 24, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2570021

A MapReduce-Based Nearest Neighbor Approach
for Big-Data-Driven Traffic Flow Prediction
DAWEN XIA1,2, HUAQING LI3, BINFENG WANG1, YANTAO LI1, AND ZILI ZHANG1,4
1School of Computer and Information Science, Southwest University, Chongqing 400715, China
2School of Information Engineering, Guizhou Minzu University, Guiyang 550025, China
3School of Electronics and Information Engineering, Southwest University, Chongqing 400715, China
4School of Information Technology, Deakin University, Geelong, VIC 3220, Australia

Corresponding author: Z. Zhang (zhangzl@swu.edu.cn)

This work was supported in part by the Science and Technology Foundation of Guizhou Province under Grant LH20147386, in part by the
Fundamental Research Funds for the Central Universities under Grant XDJK2016B016, Grant XDJK2015B030, and Grant SWU114006,
in part by the Scientific Project of State Ethnic Affairs Commission of the People’s Republic of China under Grant 14GZZ012, in part by
the Natural Science Foundation of Chongqing CSTC under Grant cstc2014jcyjA40016 and Grant cstc2015jcyjA40044, and in part by the
National Natural Science Foundation of China under Grant 61403314, Grant 61402380, and Grant 61528206.

ABSTRACT In big-data-driven traffic flow prediction systems, the robustness of prediction performance
depends on accuracy and timeliness. This paper presents a new MapReduce-based nearest neighbor (NN)
approach for traffic flow prediction using correlation analysis (TFPC) on a Hadoop platform. In particular,
we develop a real-time prediction system including two key modules, i.e., offline distributed training
(ODT) and online parallel prediction (OPP). Moreover, we build a parallel k-nearest neighbor optimization
classifier, which incorporates correlation information among traffic flows into the classification process.
Finally, we propose a novel prediction calculation method, combining the current data observed in OPP
and the classification results obtained from large-scale historical data in ODT, to generate traffic flow
prediction in real time. The empirical study on real-world traffic flow big data using the leave-one-
out cross validation method shows that TFPC significantly outperforms four state-of-the-art prediction
approaches, i.e., autoregressive integrated moving average, Naïve Bayes, multilayer perceptron neural
networks, and NN regression, in terms of accuracy, which can be improved 90.07% in the best case,
with an average mean absolute percent error of 5.53%. In addition, it displays excellent speedup, scaleup,
and sizeup.

INDEX TERMS Big data analytics, traffic flow prediction, correlation analysis, parallel classifier, Hadoop
MapReduce.

I. INTRODUCTION
Recently, the traffic data in transportation have been
exploding rapidly with the characteristics of heterogeneity,
autonomous sources, and complex and evolving associa-
tions (HACE) [1]. The big data generated by the Intelligent
Transportation Systems (ITS) are worth further exploring to
bring all their full potential for more proactive trafficmanage-
ment [2], [3]. The ability to accurately predict the evolution
of traffic in an online and real-time manner [4] that plays a
crucial role in traffic management and control applications
is particularly important. Data-driven intelligent transporta-
tion has drawn significant attention in recent years [5], [6]:
Reference [7] provided a special session on big data ser-
vices and computational intelligence for industrial systems,
including ITS applications [8]. Furthermore, a special issue
highlighted the most recent research progress in big data

applications [9], which could help establish fundamental
knowledge, concepts and technologies related to transporta-
tion and traffic engineering, covering transportation plan-
ning, traffic operations, and safety. Another special issue
focused on the latest technical progresses on the big-data-
driven applications for ITS [10], such as application-oriented
system models, data-driven computing techniques, and data
processing methods.

In the last several decades, considerable research stud-
ies were reported on the applications of different empirical
and theoretical techniques to traffic flow prediction [11].
These works can be roughly categorized as parametric
methods [12], nonparametric methods [13], [14], and hybrid
integration methods [15], [16]. Recently, there have been var-
ious traffic flow prediction systems, models and algorithms
using statistics-based approaches [17] and computational

2920
2169-3536
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

intelligence (CI)-based approaches [18], [19]. Lv et al. [2]
proposed a novel deep-learning-based traffic flow predic-
tion method, using autoencoders as building blocks to rep-
resent traffic flow features for forecasting. Li et al. [20]
presented a method which picks the most relevant data from
the ‘‘Big Data’’ to build concise yet accurate traffic flow
prediction model. Tchrakian et al. [11] developed an algo-
rithm for the implementation of short-term prediction of
traffic with real-time updating based on spectral analysis.
Min and Wynter [21] put forward an approach to providing
predictions of speed and volume over 5-min interval for up
to 1 h in advance. However, most of them employed the
stand-alone learning models with the sequential algorithms
on a single machine and were still somewhat unsatisfactory
in processing the increasingly explosive traffic big data in real
time, such as massive taxi trajectory data used in this work,
containing large-scale GPS points which generate the road
network of Beijing as shown in Fig. 1.

FIGURE 1. Distribution of the GPS points (1,232,048 records) generated
by 12,000 taxicabs in Beijing at 00:14:35 AM-01:14:34 AM on
1 November 2012, where the color represents the density of the
points. (a) Data overview in Beijing. (b) Within the 6th Ring Road,
(c) the 5th Ring Road, and (d) the 4th Ring Road of Beijing.

Traffic flow conditions are extremely uncertain in current
complex transportation network situation, due to the hetero-
geneous and dynamic nature of traffic with nonlinear inter-
actions between drivers and environments [22]. Moreover,
the traffic state of a specific location is highly influenced
by its upstream and downstream traffic conditions [23], [24]
besides the traffic conditions in the past and future periods,
and thus the spatial and temporal correlations are the inherent
features of traffic flow. Most of traditional classification
approaches take the traffic flows as the individual and inde-
pendent instances, which do not consider the correlation
information among traffic flows. In particular, the most
studied methods take into account the single road segment
forecast and only seldom consider the relation among links

of a road network. In other words, they take into account
the temporal dimension, but ignore the spatial one [25]. On
the other hand, the nearest neighbor-based approach has
manifested superior classification performance with three
remarkable advantages: (i) no needs of the complicated train-
ing procedure, (ii) no risk of overfitting of parameters, and
(iii) naturally being capable of processing a large number of
classes [26]. In this point of view, the nearest neighbor classi-
fier is more suitable for traffic flow prediction. However, the
performance of nearest neighbor classifiers can be seriously
affected if the size of the training samples is extremely large.
Especially for k-nearest neighbor (KNN), the computational
and the storage issue is a critical problem [27]. That is, it
requires the storage of the whole training set which would
be an excessive amount of storage for large data sets and
leads to a large computation time in the classification stage,
and usually involves storing the training data in memory and
finding relevant data to answer a particular query. However,
these encourage us to rethink the real-time Traffic Flow Pre-
diction (TFP) problem using distributed models with parallel
algorithms based on correlation analysis and so rich amount
of traffic data [5].

In this paper, we propose a new nearest neighbor approach
using correlation analysis under a MapReduce framework
on a Hadoop platform, to address the difficult prob-
lem of real-time prediction with very large training data.
Following our previous work [28], the correlation informa-
tion among traffic flows is utilized in a robust nonpara-
metric classifier to improve the classification performance
for real-time prediction applications. More specifically, this
approach is implemented by a real-time prediction system
(RPS) including offline distributed training (ODT) and online
parallel prediction (OPP), based on a parallel k-nearest neigh-
bor optimization (ParKNNO) classifier considering traffic
flow correlations in the modeling. In ODT, flow correlation
analysis and large-scale historical data are taken as the input
of ParKNNO, which will generate the classification results.
With the output of ODT and the current data observed,
we can achieve real-time prediction results using a novel pre-
diction calculation method in OPP. The experimental results
demonstrate that the proposed approach for real-time traffic
flow prediction has superior performance by speeding up the
classification process and reducing the storage requirements.
More importantly, with reasonable execution time, the clas-
sification performance can be significantly improved by flow
correlation information, even under the extremely difficult
circumstance of very large training samples.

This paper aims to develop a robust approach for the accu-
rate and real-time Traffic Flow Prediction using Correlation
analysis (TFPC). The major contributions of our work are
summarized as follows:
• A new prediction system (RPS) on a Hadoop platform
is built to improve the capacity of big traffic data pro-
cessing for forecasting traffic flow in real time, which
contains two key modules of offline distributed train-
ing (ODT) and online parallel prediction (OPP).

VOLUME 4, 2016 2921

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

• A robust nearest neighbor classifier (ParKNNO) on
a MapReduce framework is presented to enhance the
accuracy, efficiency and scalability of traffic flow pre-
diction, by discovering correlation information among
traffic flows and incorporating it into the classification
process.

• A novel prediction calculation method is put forward
to generate the real-time traffic flow prediction, with
the current data observed in OPP and the classification
results obtained from large-scale historical data in ODT.

• The prediction performance of TFPC is investi-
gated with real-world traffic flow data collected from
12,000 taxis of Beijing during 15 days. The empirical
study indicates that the proposed approach is superior to
other comparable prediction methods in terms of accu-
racy, speedup, scaleup, and sizeup.

The rest of this paper is organized as follows. Section II
provides a background on the nearest neighbor classifier and
introduces theMapReduce paradigm. The proposed approach
is described in Section III in detail. Section IV presents the
extensive experiments and results of performance evaluation.
Finally, this paper is concluded in Section V.

II. BACKGROUND
This section provides some background information about
the nearest neighbor (NN) classifier, and then describes the
MapReduce paradigm used in this paper.

Algorithm 1 The Basic k-Nearest Neighbor Algorithm
Input: k: The number of nearest neighbors;

te: The testing sample;
Tr : The set of training samples.

Output: Class of each testing sample.
1: for each testing sample te = (x ′, y′) do
2: Compute d(x ′, x), the distance between te and each

sample, (x, y) ∈ Tr ;
3: Select Trte ⊆ Tr , the set of k closest training samples

to te;
4: y′ = argmax

v

∑
(xi,yi)∈Trte

I (v = vyi);

5: end for

A. NN CLASSIFIER
KNN is a widely applied nonparametric NN approach [13],
and commonly makes classification decision on the basis
of closest training samples in the feature space [29]. When
k = 1, the NN-based classifier assigns a testing traffic flow
into the class of its nearest training sample [26]. The summary
of the basic KNN [30], [31] is given in Algorithm 1. The
algorithm calculates the distance (or similarity) between each
testing sample te = (x ′, y′) and all the training samples
(x, y) ∈ Tr to determine its nearest-neighbor list, Trte. Once
the nearest-neighbor list is obtained, the testing sample is
classified based on the majority class of its nearest neighbors
by the Majority Voting approach (see Eq. 3).

Traditionally, the basic KNN classifier for traffic flow
prediction employs the following search mechanisms:

(i) It defines the state space in the temporal dimension
which only considers the temporal correlation of traffic flow
to describe traffic conditions [13]. For instance, a state vector
x (t) of flow rate measurements collected every 5 minutes
with an appropriate number of lags=4, can be defined as

x(t) = [V (t),V (t − 1),V (t − 2),V (t − 3),V (t − 4)] , (1)

where V (t) denotes the flow rate at the current time interval;
V (t − 1) and V (t − 2) represent the flow rate at the previous
5-min interval and at the previous 10-min interval, respec-
tively, and so forth.

(ii) It measures the similarity via the basic Euclidean
distance [30], [32], which is given by

di(x, y) =

√√√√ n∑
j=1

(
xj − yij

)2
, (2)

where di(x, y) represents the distance between current data
and the ith components in the historical database, xj is the
value of the jth attributes in the current data vectors, yij is the
value of the jth attributes of the ith components in the historical
data vectors, and n is the number of attributes.
(iii) It utilizes the Majority Voting approach in [30] where

each neighbor has the same influence on the classification
to determine the class label, and thus makes the classifier
sensitive to the choice of k . The Majority Voting approach
is given by

y′ = argmax
v

∑
(xi,yi)∈Trte

I (v = vyi), (3)

where v is a class label, vyi is the class label for one of the
nearest neighbors, and I (·) is an indicator function that returns
the value 1 if its argument is true and 0 otherwise.

Especially, with the basic KNN classifier, the average of
the nearest neighbors [32] which is commonly used to gener-
ate the prediction, can be defined as

X̂T+1 =
1
k

K∑
k=1

X kT+1, (4)

where K ∈ N+ represents the total number of the selected
nearest neighbors from the training samples; X̂T+1 is the
predicted traffic flow at the next time intervals T + 1, and
X kT+1 is the traffic flow of the k th nearest neighbors searched
from the historical traffic flow database at the corresponding
time intervals (i.e., T + 1).

Moreover, the weighted average of the nearest neighbor-
hoods [13] is also widely adopted to enhance the prediction
accuracy. It is given by

X̂T+1 =
K∑
k=1

d−1k
K∑
k=1

d−1k

X kT+1, (5)

2922 VOLUME 4, 2016

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

where dk denotes the distance between the current data and
the k th nearest neighbors. During the performance evaluation
(see Section IV), KNN employs this method for the forecast
generation.

Based on the search mechanisms of the basic KNN clas-
sifier and prediction calculation method, we can observe
that it ignores the correlation information in traffic flows,
especially for the spatial correlations. Furthermore, accord-
ing to Algorithm 1, the computational cost of finding the
nearest neighbors of testing samples would be very high in
the sequential execution mode on a single machine, partic-
ularly when the number of training samples is extremely
large. To tackle the above problems, we aim to optimize
the state space, the similarity measure, the choice of k and
the prediction calculation of KNN using correlation analysis
for improving prediction accuracy. On the other hand, to
reduce computational costs and save storage requirements of
real-time prediction applications with large training samples
(e.g., big traffic flow data), we implement the KNN opti-
mization classifier under a MapReduce parallel processing
framework on a Hadoop distributed computing platform for
enhancing prediction timeless.

B. MAPREDUCE PARADIGM
The Apache Hadoop project provides open-source software
for reliable, scalable and distributed computing, and allows
for the distributed processing of large-scale data sets across
clusters of computers with simple programming models.
Hadoop Distributed File System (HDFS) [33] and Hadoop
MapReduce [34], [35] are the key components of Hadoop.
Specifically, HDFS is a distributed file system designed for
storing very large files by offering high-throughput access
to application data [35], and MapReduce is a YARN-based
programming paradigm for parallel processing of massive
data sets [36]. The process of MapReduce jobs includes the
Map phase and the Reduce phase. Each phase has key-value
pairs as input and output, the types of whichmay be chosen by
the programmer through specifying two functions: the Map
function and the Reduce function [35]. For more details, see
the Apache Hadoop website.1

In this work, with correlation analysis, we employ a general
architecture of distributed modeling on a MapReduce frame-
work for traffic flow forecasting (MF-TFF) [28].

III. PROPOSED APPROACH: TFPC
This section presents a MapReduce-based nearest neighbor
approach to solve the real-time application problem of traffic
flow prediction using correlation analysis (TFPC) with cur-
rent and historical traffic big data, by discovering flow corre-
lation information and incorporating it into the classification
process.

We aim to develop a new framework (RPS) to handle
real-time prediction applications. Also, a robust nonpara-
metric classifier (ParKNNO) is put forward to improve the

1http://hadoop.apache.org/

FIGURE 2. A real-time prediction system (RPS) framework.

classification performance by effectively incorporating cor-
relation of traffic flows, and a novel prediction calculation
method is proposed to accurately generate the prediction in
real time.

A. SYSTEM FRAMEWORK
Figure 2 shows the real-time prediction system (RPS)
framework on a Hadoop platform combining MapReduce,
ArcGIS and road network. There are two important mod-
ules: offline distributed training (ODT) and online parallel
prediction (OPP). The module of ODT takes correlation anal-
ysis (see Section III-B) and the training and testing data
(or samples) as input to build a robust classifier, ParKNNO,
for the accurate traffic flow classification (see Section III-C),
and particularly focuses on fast finding the nearest neigh-
bors of a testing sample through speeding up the classifi-
cation process and reducing the storage requirements on a
distributed Hadoop platform. The module of OPP aims to
generate prediction results in real time with the current traffic
flow data and the classification results of ParKNNO obtained
from large-scale historical traffic flow data, using a novel
prediction calculation method (see Section III-D), by reduc-
ing computational cost and saving memory consumption of
big traffic flow data processing on a parallel MapReduce
framework (see Section III-E).

In particular, to build robust classification models, flow
correlation analysis is presented to correlate information in

VOLUME 4, 2016 2923

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

the traffic flows. Moreover, the robust classification engine
classifies traffic flows into application-based classes by tak-
ing all information of relevant features and flow correlations
into account.

The novelty of the proposed framework is to consider
correlation information in the traffic flows and incorpo-
rate it into the classification process. In this work, we
employ ParKNNO tomodel traffic flow correlations using the
MF-TFF framework.

B. CORRELATION ANALYSIS
Naturally, the spatial and temporal correlations are the inher-
ent features of traffic flow in a complex urban transportation
networks. The traffic flow of the target road segment at the
future time interval is closely related to that of the same road
segment at the previous and current time intervals. Moreover,
the traffic flow of a particular road segment is highly affected
by its upstream traffic conditions and its downstream traffic
conditions. In other words, traffic on a road is influenced by
traffic on nearby roads, and the traffic flow on a road segment
is correlated with previous traffic flows on the same road
segment. Temporal correlations refer to the correlations of the
current and past (or historical) traffic flows at the current time
interval and the future traffic flow at the next time interval
on the same road segment, while spatial correlations refer to
the correlations of the traffic flow of the target road segment
and that of its upstream and downstream road segments at the
same time interval.

To predict the traffic flow at the next time interval, it is
extremely important to consider the correlations of traffic
flow at the past-future time intervals on the same road seg-
ment and its upstream-downstream road segments at the
same time interval, with the current traffic flow condition.
In addition, by capturing recurring traffic patterns, the trend
adjustment feature of traffic flow is merged into our approach
to improve prediction accuracy.

In this work, we take the aforementioned correlation
among traffic flows into account in the traffic flow prediction,
and conduct correlation analysis by ParKNNO. The results
reported in Section IV indicate that the correlation informa-
tion can significantly improve the classification performance,
particularly for very large training samples.

C. ROBUST CLASSIFIER
We propose a robust nonparametric classifier (ParKNNO) to
model the correlation analysis for improving the accuracy
of traffic flow prediction. ParKNNO incorporates the cor-
relation information among traffic flows into the classifica-
tion process by optimizing the definition of state space, the
method of similarity measure, and the choice of k.

1) STATE SPACE
To more sufficiently and accurately describe traffic condi-
tions, we consider the spatio-temporal correlation of traffic
flow (i.e., the state vector in both spatial and temporal dimen-
sions) in the definition of state space. That is, we employ

the state vector of describing spatial and temporal correlation
information among traffic flows. For example, when T = 2,
the hybrid state vector, x (t), is defined as:

x (t) =
[
V
rj−1
t−1 ,V

rj−1
t ,V

rj
t−1,V

rj
t ,V

rj+1
t−1 ,V

rj+1
t , Ṽ

rj−1
t−1 ,

Ṽ
rj−1
t , Ṽ

rj
t−1, Ṽ

rj
t , Ṽ

rj+1
t−1 , Ṽ

rj+1
t

]
, (6)

where T is the continuous time intervals as a combined group,
t = 1, 2, . . . ,T ; Ṽ

rj
t , Ṽ

rj−1
t , and Ṽ

rj+1
t are the traffic flow

obtained from the historical traffic data on the target road seg-
ment rj, its upstream road segment rj−1, and its downstream
road segment rj+1 at the current time interval t , respectively;

Ṽ
rj
t−1, Ṽ

rj−1
t−1 , and Ṽ

rj+1
t−1 are the traffic flow of the corresponding

road segment at the previous time interval t − 1.

2) SIMILARITY MEASURE
Based on the hybrid state vector with spatio-temporal cor-
relations, the definition of distance function for similarity
measure not only considers the spatio-temporal correlation
and weight of traffic flows, but also exploits the signs and
magnitudes of changes in traffic flows. It can be given by

di(x, y) = α

√√√√ T∑
t=1

βT−t+1
(
xt − yit

)2
+ (1− α)

√√√√ T∑
t=2

t−1∑
δ=1

[
(xt − xδ)−

(
yit − y

i
δ

)]2
,

(7)

where 0 ≤ α ≤ 1, 0 < β < 1, and T ∈ N+ is the
total number of continuous time intervals included; di(x, y)
is the distance between the current traffic flow data and the
ith components in the historical traffic flow data, and xt is the
value of the t th time intervals in the current traffic flow data;
i is the sequence number of the historical traffic flow data, and
yit is the value of the t th time intervals of the corresponding
traffic flow record (i.e., the ith components) in the historical
data.

Hence, the distance for both spatial and temporal dimen-
sions can be computed by

d sumi (x, y) = dupi (x, y)+ d tari (x, y)+ ddowni (x, y), (8)

where d sumi (x, y) is the total distance; dupi (x, y) and
ddowni (x, y) are the distance of calculating the corresponding
upstream road segment and downstream road segment of the
target road segment by Eq. 7, respectively, and d tari (x, y) is
the distance of computing the target road segment.

3) K SELECTION
As discussed previously, each neighbor has the same influ-
ence on the classification by the Majority Voting approach,
thus making the classifier sensitive to the choice of k .
To reduce the impact of k , the Distance Weighted Voting

2924 VOLUME 4, 2016

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

FIGURE 3. The computation flowchart of ParKNNO on MapReduce and its data flow with k = 4.

scheme is used in ParKNNO, and the class label can be
determined by

y′ = argmax
v

∑
(xi,yi)∈Trte

ωi × I (v = vyi), (9)

where ωi = 1
d(x ′,xi)2

is the weight of each nearest neighbor
xi according to its distance, v is a class label, vyi is the class
label for one of the nearest neighbors, and I (·) is an indicator
function that returns the value 1 if its argument is true
and 0 otherwise.

D. PREDICTION CALCULATION
Given the selected nearest-neighbors and the predicted point
as defined above with correlation analysis, the method of
prediction calculation which takes the combined weights
between the weighted average of the nearest neighbors and
the trend adjustments (between T and t) of each nearest
neighbor, is utilized to generate the traffic flow prediction.
It is defined as

X̂T+1 = γ
K∑
k=1

d−1k
K∑
k=1

d−1k

X kT+1

+ (1− γ)

[
XT +

1
KT

K∑
k=1

T∑
t=1

(
X kT+1 − X

k
t

)]
,

(10)

where 0 ≤ γ ≤ 1, dk is the distance between the current data
and the k th nearest neighbors, K ∈ N+ is the total number
of the selected nearest neighbors from the training samples;
XT is the current traffic flow at the time interval T , X̂T+1 is
the predicted traffic flow at the next time interval T + 1, and
X kT+1 is the traffic flow of the k th nearest neighbors searched
from the historical traffic flow database at the corresponding
time intervals (i.e., T + 1).

E. IMPLEMENTATION ON MAPREDUCE
This subsection describes the implementation of ParKNNO
classifier following a MapReduce procedure to speed up the
classification process and reduce the storage requirements for
real-time traffic flow prediction.

To improve the efficiency and scalability, we implement
ParKNNO under a MapReduce framework on a Hadoop plat-
form. ParKNNO is split intomultipleMapReduce jobs, which
are carried out in the Map, Combine, and Reduce phases by
the corresponding functions, respectively.
• Map phase: theMapper function produces the key-value
pair of the testing and training samples with the spatio-
temporal state vector (see Eq. 6). Next, it calculates the
distance between each testing sample and the training
samples by Eqs. 7 and 8, and finally outputs the inter-
mediate data to the Combiner function.

• Combine phase: the Combiner function sorts the inter-
mediate results by the distance. Subsequently, it selects
the local k nearest neighbors and then outputs them to
the Reducer function.

• Reduce phase: the Reducer function determines the class
label via Eq. 9. After that, it judges the classification
results, and lastly outputs the global k nearest neighbors.

Figure 3 illustrates the computation flowchart of
ParKNNO on MapReduce and its data flow of MapReduce
with an example of 4-nearest neighbors. After the Map,
Combine and Reduce tasks, we can utilize current traffic flow
data to predict traffic flow for the next time interval in real
time using Eq. 10, based on the selected k nearest neighbors
outputted from MapReduce jobs.

As described above, we design the Mapper, Combiner,
and Reducer functions to reduce computational costs and
save memory consumption for classification. The number
of Mappers relies on input splits, whereas the number of
Combiners and Reducers is equal to the group of keys.
As shown in Fig. 3, this example has 3 records of testing data,

VOLUME 4, 2016 2925

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

Algorithm 2 Mapper Function()
Input: 〈key, value〉

key: the record id of the testing and training samples
value: the value of the testing and training samples

Output: 〈key1, value1〉
key1: the record id of the testing samples, id
value1: vector (the calculated distance, d , and the
selected class, c)

1: for i = 0 to n do
2: //the training samples, i, and the extracted class labels,

CTr
3: CTr = GetClassLabel (i);
4: for all p ∈ testing samples do
5: //each testing sample, p
6: d = Our DistanceFunction (p, i);
7: // Eqs. 7 and 8
8: Context.write(id , vector (d , CTr));
9: end for
10: end for
11: return 〈id, 〈d, c〉〉;

and 16 records of training data which are partitioned into
4 splits (i.e., each split contains 4 records). In addition, each
Mapper has an entire testing set with 3 data records.

1) MAPPER FUNCTION
In the Map phase, the Mapper function (see Algorithm 2)
receives each line in the training and testing sets as a different
key-value pair, then walks through each testing sample and
computes the similarity (or distance) between each pair of
testing data points and training data points, and finally outputs
the intermediate results, 〈id, 〈d, c〉〉, which form the input to
the Combiner function. That is, each produced pair is com-
posed of the corresponding record id emitted as the key, and
the calculated distance and the selected class, 〈d, c〉, emitted
as the value. For example, 〈1, 〈82,A〉〉 can be interpreted as:
record id is 1, distance is 82, and the data point belongs in
class A. Evidently, there is a total of NTe × NTr pairs, where
NTe and NTr are the number of all the testing sample records
and the training sample records, respectively.

Furthermore, it is an example (see Fig. 3) where a single
Mapper receives 4 training records and 3 testing records,
and then calculates the distance between each data point and
produces 12 key-value pairs with 3 different keys (1, 2 and 3).
All the Mappers output 48 key-value pairs in total to
Combiners.

2) COMBINER FUNCTION
To reduce the computational complexity of MapReduce jobs
and save the limited bandwidth available on a Hadoop cluster,
the Combiner function is employed to cut down the amount
of data shuffled between the Map tasks and the Reduce tasks.

In the Combine phase, the Combiner function
(see Algorithm 3) is specified to be conducted on the Map

Algorithm 3 Combiner Function ()
Input: 〈key1, value1〉

key1: the same key of Map output for each Combiner
value1: the corresponding valuewith the same key ofMap
output

Output: 〈key2, value2〉
key2: id
value2: 〈d, c〉

1: //Walk through each testing sample and add them to an
ArrayList to sort key-value pairs by the distance (i.e., d)

2: for all key and value do
3: ArrayList.add (vector(〈d, c〉));
4: Sort (ArrayList);
5: //Select the k key-value pairs with the smallest distance

and output them to Reducer
6: Context.write(id , ArrayList.get(k));
7: end for
8: return 〈key2, value2〉 pairs;

output and its output forms the input to the Reducer function.
In this work, the Combiner function is employed to perform
the determination task of the local k nearest neighbors. Each
Combiner function receives the intermediate data (i.e., a set
of 〈id, 〈d, c〉〉 pairs) with the same key (i.e., record id), and
then sorts the key-value pairs by the distance in ascending
order. According to the sorted pairs, only the k key-value pairs
with the smallest distance will be output to Reducer. That
is, the selected pairs are confirmed as the nearest neighbors.
Obviously, the intermediate data would be reduced through
the following rate equation:

R =
(
1−

k
NTr

)
× 100%, (11)

where k is the number of the selected nearest neighbors,
NTr is the number of all the training sample
records.

In this example mentioned above, the key-value pairs with
the same key are sent to the same Combiner, and thus 3 Com-
biners are invoked owing to 3 different keys. For instance,
the sorted pairs of Combiner 1 are 〈1, 〈1,A〉〉, 〈1, 〈3,A〉〉,
〈1, 〈5,A〉〉, 〈1, 〈7,A〉〉, 〈1, 〈9,B〉〉, 〈1, 〈15,B〉〉, 〈1, 〈19,A〉〉,
〈1, 〈23,A〉〉, 〈1, 〈26,A〉〉, 〈1, 〈34,B〉〉, 〈1, 〈53,B〉〉,
〈1, 〈57,C〉〉, 〈1, 〈65,C〉〉, 〈1, 〈82,A〉〉, 〈1, 〈86,C〉〉 and
〈1, 〈99,B〉〉, and the nearest neighbor list is the first 4 pairs
which will be sent to Reducers. Most importantly, 75%
of the intermediate data can be reduced by the Combiner
function.

3) REDUCER FUNCTION
In the Reduce phase, the Reduce task is designed to deter-
mine the global nearest neighbors. The Reducer function
(see Algorithm 4) emits the Combiner output (i.e., the k key-
value pairs with the smallest distance) as an input. Next, the
Distance Weighted Voting scheme (see Section III-C.3) is
employed to determine the class label. Then, Reducer judges

2926 VOLUME 4, 2016

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

Algorithm 4 Reducer Function ()
Input: 〈key2, value2〉

key2: the key of Combiner output
value2: the value of Combiner output

Output: 〈key3, value3〉
key3: id
value3: 0 or 1

1: Add the key-value pairs to the ArrayList for the sorting
operation

2: for all key and value do
3: ArrayList (vector(〈d, c〉));
4: Sort (ArrayList);
5: New ArrayList result;
6: //Add k samples to result
7: result.add (id , ArrayList.get(k));
8: //Determine the class label of testing sample using Eq.

9, and return 1 or 0 to indicator function by judgement
9: Context.write(id , ParKNNO(result));
10: Sent the classification results to the main program and

compute the fitness value
11: end for
12: return 〈key3, value3〉 pairs;

whether the classification result is accurate and accordingly
returns the value 1 or 0 to indicator function. Finally, the
classification result will be sent to the main program and the
fitness value will be computed.

From the aforementioned example, Reducer 1 receives
〈1, 〈1,A〉〉, 〈1, 〈3,A〉〉, 〈1, 〈5,A〉〉 and 〈1, 〈7,A〉〉 pairs from
the Combine phase as input. In this case, the class of its
neighbors is determined as A via the Distance Weighted
Voting scheme. Once the class is identified, Reducer judges
if the class is true and then returns the value 1 to the
main program, and 0 otherwise (i.e., 〈∗, 1〉 will be written;
otherwise, 〈∗, 0〉).

F. COMPLEXITY ANALYSIS
As the fact that MapReduce is a programming model for
big data processing and MapReduce programs especially
are inherently parallel, ParKNNO with MapReduce imple-
mentation puts a huge number of computational tasks into
different nodes of a cluster. In terms of this parallel pro-
cessing paradigm, the time complexity of ParKNNO is
O (n× s)

/
(p× m), where n is the total number of the train-

ing samples, s is the number of sample attributes, and p is the
number of nodes and each node has m core(s). Moreover, the
space complexity is O (n)

/
p.

In comparison with the corresponding sequential version,
ParKNNO can improve the classification efficiency by the
following rate equation:

O =
(
1−

1
p× m

)
× 100%. (12)

Based on the above-mentioned analysis, we can find that
ParKNNO significantly speeds up the classification process

and reduces the storage requirements, with the desired com-
putational complexity.

IV. PERFORMANCE EVALUATION
This section reports the experiments and results of an empir-
ical study, which is conducted to validate the performance of
the proposed approach in terms of accuracy, efficiency and
scalability. The evaluation setup and evaluation metrics are
introduced, then different prediction methods are tested on
the same data sets, and finally the results are analyzed in
detail.

To evaluate the performance of the proposed
approach (TFPC) in accuracy, we compare it with the
state-of-the-art prediction methods: autoregressive integrated
moving average (ARIMA), Naïve Bayes (NB), multilayer
perceptron neural networks (MLP-NN), and conventional
k-nearest neighbor (KNN). Four metrics are utilized to vali-
date the accuracy: mean absolute percent error (MAPE), root
mean square error (RMSE), mean absolute error (MAE), and
maximum error (ME). Furthermore, for the efficiency and
scalability, we adopt three well-accepted metrics: speedup,
scaleup, and sizeup.

A. EVALUATION SETUP
Technically, based on a Hadoop platform including 1 Master
machine and 10 Slave machines with Intel Xeon (R)
E7-4820 2.00GHz CPU (4-cores) and 8.00GB RAM, all the
experiments are performed on Ubuntu 12.04 OS with
Hadoop 1.0.4 and JDK 1.6.0.

Moreover, we utilize real-world trajectory data set2 which
is composed of large-scale GPS trajectories generated by
12,000 taxis between 1 November and 15 November 2012.
The total number of GPS points reaches 484 million and the
total distance of the data set surpasses 25 million kilometers,
and particularly the total size is approximately 25GB. Since
the available taxi trajectory data for 15 days are finite in this
case study, the test is conducted using the leave-one-out cross
validation (LOO-CV) method [37] to provide a consistent
validation test. During testing, we select the data of 14 days as
training set and choose the remaining 1 day’s data as testing
set, and then the average performance across the 15 test days
is employed to compare the prediction accuracy of different
approaches.

Additionally, we perform the map-matching task to correct
the deviation between GPS points of taxis and road network
of Beijing after data preprocessing (see Fig. 4). Furthermore,
we select the Yuetan N. St.→ Yuetan S. St. of Sanlihe E. Rd.
in the city of Beijing as the target road segment, Fuchengmen
Outer St. → Yuetan N. St. as its upstream road segment,
and Yuetan S. St.→ Fuxingmen Outer St. as its downstream
road segment, respectively, where we then extract the relevant
features of the taxi trajectory records in the morning peak
hours (from 07:00 AM to 09:00 AM) and evening peak
hours (from 17:00 PM to 19:00 PM) from the aforementioned

2http://www.datatang.com/

VOLUME 4, 2016 2927

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

FIGURE 4. An example of map-matching between GPS points of taxis and
road network of Beijing (e.g., GPS points of taxis in Sanlihe E. Rd.
at 07:00 AM-07:10 AM on 1 November 2012.). (a) Before map-matching
and (b) after map-matching.

data set, based on the ArcGIS platform and the road net-
work of Beijing3 composed of 106,579 road nodes and
141,380 road segments. Finally, we take 5 minutes as the time
interval for prediction, and choose 5 continuous time intervals
as a combined group (i.e., T = 5).

B. EVALUATION METRICS
In this performance evaluation, we validate the effectiveness
of TFPC on accuracy, speedup, scaleup and sizeup using the
following metrics.

1) MOEs
Four different accuracy metrics are commonly applied to
the measures of effectiveness (MOEs) [38]: (i) MAPE,
(ii) RMSE, (iii) MAE, and (vi) ME. The lower theMOEs rep-
resents, the more accurate predictions. The MAPE, RMSE,
MAE, and ME metrics are defined as

MAPE =
1
n

n∑
t=1

|Xt − X̂t |
Xt

× 100%, (13)

RMSE =

√√√√1
n

n∑
t=1

(Xt−X̂t)
2
, (14)

MAE =
1
n

n∑
t=1

|Xt−X̂t |, (15)

ME = max
t=1,...,n

|Xt − X̂t |, (16)

whereXt is the actual value of traffic flow observed at the time
interval t , X̂t is the prediction value for the same time interval;
and n is the total number of the traffic flow observations
processed during the time intervals provided.

3http://www.datatang.com/data/43855

As in many other research studies [31], [38], we com-
pare mainly the prediction accuracy of each method with
MAPE [13], [39]. In particular, to find the best combination
of parameters k , α, β, γ to achieve prediction results with
the highest accuracy, each combination of four parameters
is evaluated for the lowest MAPE value within the reason-
able range where k = 1, 2, . . . , 50, α = 0, 0.1, . . . , 1,
β = 0, 0.1, . . . , 1 and γ = 0, 0.1, . . . , 1, and
the optimal combinations are produced for KNN(k) and
TFPC(k, α, β, γ).

2) 3Ss
For further verifying the efficiency and scalability, we eval-
uate the 3Ss characteristics (i.e., Speedup, Scaleup, and
Sizeup [40], [41]) of the parallel ParKNNO classifier through
employing the following three metrics.

(i) The speedup metric measures how much the parallel
algorithm is faster than the corresponding sequential algo-
rithm, which is defined as

Speedup =
T1
Tp
, (17)

where T1 represents the sequential execution time of the
algorithm on 1 node for traffic flow prediction using the given
data set, and Tp denotes the parallel execution time of the
algorithm for solving the same issue using the same data set
on a cluster with p nodes.
(ii) The scaleup metric verifies how well the parallel algo-

rithm processes larger data sets when more nodes are avail-
able, which is given by

Scaleup =
T1
T̃p
, (18)

where T1 is the sequential execution time of the algorithm
for dealing with the given data set on 1 node, and T̃p is the
parallel execution time of the algorithm for handling p-times
larger data sets on p-times larger nodes.
(iii) The sizeup metric validates how much longer the

parallel algorithm takes on a given node, when the size of the
data set is larger than the original data set. It can be defined as

Sizeup =
T̃x
Tx
, (19)

where Tx denotes the execution time of the algorithm for pro-
cessing the given data set on the given node, and T̃x represents
the execution time of the algorithm for coping with p-times
larger data sets on the same node. Here, sizeup analysis is to
keep the number of nodes constant and grow the size of the
data set by the factor p, to evaluate the variation of execution
time.

C. ACCURACY EVALUATION
We investigate the accuracy of the proposed TFPC approach
compared to four well-known prediction methods consisting
of conventional KNN, MLP-NN, NB and ARIMA using
MOEs metrics, and then report the results in Table 1.

2928 VOLUME 4, 2016

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

FIGURE 5. MOEs of TFPC, KNN, MLP-NN, NB, and ARIMA. (a) MAPE, (b) RMSE, (c) MAE, and (d) ME.

TABLE 1. Average MOEs comparison of five methods for all days.

Table 1 shows the average MOEs values of ARIMA,
NB, MLP-NN, KNN and TFPC for all days. It could be
found that the MAPE, RMSE, MAE and ME values of
TFPC are much lower than other methods on an average
(e.g., the average MAPE, RMSE, MAE and ME values of
TFPC are respectively 89.7105%, 88.3367%, 88.5226% and
88.9042% lower than KNN, and even are over 90.0676%,
89.3781%, 89.6520% and 88.6622% lower than MLP-NN,
NB and ARIMA, respectively). In particular, the aver-
age MAPE of TFPC is 5.5290%, which indicates TFPC

has a highly accurate prediction capability because of
MAPE < 10% [42].
For a more intuitive illustration, the MAPE, RMSE,

MAE and ME values of all methods for 8 days
selected from the experimental results are depicted
in Figs. 5(a), 5(b), 5(c) and 5(d), respectively, based on the
same trend of the experimental results for 15 days. From
these results, we can clearly observe that TFPC achievesmore
accurate predictions than other comparable methods.

Furthermore, Tables 2 and 3 report the prediction results of
TFPC compared to conventional KNN in the morning peak
period and the evening peak period on 15 November 2012,
respectively. It could be found that TFPC displays better
prediction performance than the conventional KNN by signif-
icantly decreasing the MOEs values. In addition, to illustrate
well the prediction performance of different methods, the
prediction results of the morning peak hours and the evening
peak hours generated by TFPC and four state-of-the-art

VOLUME 4, 2016 2929

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

TABLE 2. Traffic flow prediction results in the morning peak period (KNN(48), TFPC(6, 0.8, 0.4, 0.9)).

TABLE 3. Traffic flow prediction results in the evening peak period (KNN(48), TFPC(6, 0.8, 0.4, 0.9)).

methods are shown in Figs. 6(a) and 6(b), respectively. From
these results, we can find that the prediction values of TFPC
are the closest to the actual values.

Based on the aforementioned results, it could be con-
cluded that correlation analysis used in TFPC is feasible,
and especially discovering correlation information among

2930 VOLUME 4, 2016

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

FIGURE 6. Prediction results of TFPC, KNN, MLP-NN, NB, and ARIMA. (a) Morning peak period and (b) evening peak period
on 15 November 2012.

traffic flows and incorporating it into prediction are effective.
Moreover, the results also demonstrate that the proposed
ParKNNO classifier performs better than other methods by
exploiting traffic flow correlations into the classification
process.

D. SPEEDUP EVALUATION
To validate the speedup of ParKNNO, we perform respec-
tively the experiments on a cluster of nodes ranging
from 1 to 10 (i.e., the number of cores varying from 4 to 40),
by holding six groups of data sets (128MB, 256MB, 512MB,
1GB, 2GB, and 4GB) constant, and then plot the results
in Fig. 7(a).

From Fig. 7(a), we can observe that the speedup of
ParKNNO increases relative linearly with the growth of the
number of nodes, and particularly larger data sets obtains a
better speedup. The speedup value reaches 8.863, which is
88.63% (8.863/10=88.63%) of the ideal speedup, when the
size of the data set is 4GB on 10 nodes. In general, it is
very difficult to achieve linear speedup due to the commu-
nication cost and the skew of the slaves [40], and especially
the time to handle small-scale data sets is not dominant in
comparison with the time consumed by communication and
task arrangement. When the size of data sets is increased,
the time of intensive computation becomes dominant. The
results indicate that ParKNNO on MapReduce has a very
good speedup performance over big data and performs better
with larger data sets, which is nearly the same for data sets
with very different sizes.

E. SCALEUP EVALUATION
For the scaleup evaluation of ParKNNO, we increase the
number of nodes (varying from 1 node to 10 nodes)
in direct proportion to the size of data sets (rang-
ing from 128MB to 1.25GB, from 256MB to 2.5GB,

and from 512MB to 5GB). The results are depicted
in Fig. 7(b).

Figure 7(b) shows that all the scaleup values of ParKNNO
are higher than 0.53, with the number of nodes and the size
of data sets proportionally growing. Clearly, the ParKNNO
classifier scales very well and has the adaptability of large-
scale data sets under a MapReduce framework on a Hadoop
platform.

F. SIZEUP EVALUATION
In order to measure the sizeup of ParKNNO, we carry out
the experiments on a cluster with the fixed number of nodes
(2, 4, 6, 8, and 10 respectively) by increasing the size of
data sets varying from 1GB to 5GB, and then plot the results
in Fig. 7(c).

From Fig. 7(c), we can find that the sizeup value of 2 nodes
is approximately 2 while it is only about 1.5 for 8 nodes,
when the size of data sets increasing from 1GB to 2GB. The
reason is that the communication time of 2 nodes is shorter
than that of 8 nodes. In particular, this communication time
would not increase much in ParKNNO when the size of data
sets is doubled. The results demonstrate that ParKNNO has a
very good sizeup performance.

Based on the above-mentioned results, it could be found
that ParKNNO under a MapReduce framework on a Hadoop
platform offers nearly linear speedup, has excellent scaleup
and sizeup, and especially achieves more efficiency than the
corresponding sequential versions on a single machine with
the same classification results.

Overall, the empirical study on real-world traffic flow big
data proves the effectiveness of the proposed approach, and
the experimental results indicate that TFPC outperforms four
state-of-the-art prediction methods in accuracy and can sig-
nificantly improve the scalability and efficiency of prediction.
In other words, TFPC achieves superior performance and has
a good robustness in addressing real-time TFP problem.

VOLUME 4, 2016 2931

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

FIGURE 7. 3Ss of ParKNNO. (a) Speedup, (b) Scaleup, and (c) Sizeup.

V. CONCLUSION
In this paper, we focused on the real-time prediction with big
traffic flow data and thus proposed a new MapReduce-based
nearest neighbor approach for traffic flow prediction using
correlation analysis (TFPC) on a Hadoop platform. To save
memory consumption and reduce the computational costs of
big calculations, TFPC was carried out in a real-time pre-
diction system (RPS) composed of the ODT module and the
OPP module. In particular, to enhance the robustness of real-
time applications with very large training samples, a parallel
k-nearest neighbor optimization classifier (ParKNNO) was
built to model traffic flow correlations in ODT, and a novel
prediction calculation method was put forward to generate
traffic flow prediction in OPP. Furthermore, we evaluated
the performance of TFPC on accuracy, speedup, scaleup and
sizeup using the LOO-CV method by an empirical study.
The results demonstrated that our approach was superior
to other comparable methods in terms of accuracy which
can be enhanced 90.07% in the best case, and significantly
improved the efficiency and scalability of traffic flow
prediction.

ACKNOWLEDGMENT
The authors would like to thank Datatang (Beijing) Technol-
ogy Co., Ltd. for providing the experimental data.

REFERENCES

[1] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, ‘‘Data mining with big data,’’
IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97–107, Jan. 2014.

[2] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, ‘‘Traffic flow prediction
with big data: A deep learning approach,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 2, pp. 865–873, Apr. 2015.

[3] Q. Shi and M. Abdel-Aty, ‘‘Big Data applications in real-time traffic
operation and safety monitoring and improvement on urban expressways,’’
Transp. Res. C, Emerg. Technol., vol. 58, pp. 380–394, Sep. 2015.

[4] H. Hu, Y. Wen, T.-S. Chua, and X. Li, ‘‘Toward scalable systems for big
data analytics: A technology tutorial,’’ IEEE Access, vol. 2, pp. 652–687,
2014.

[5] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, ‘‘Data-
driven intelligent transportation systems: A survey,’’ IEEE Trans. Intell.
Transp. Syst., vol. 12, no. 4, pp. 1624–1639, Dec. 2011.

[6] X.-W. Chen and X. Lin, ‘‘Big data deep learning: Challenges and perspec-
tives,’’ IEEE Access, vol. 2, pp. 514–525, 2014.

[7] Z. Zhou, W. Gaaloul, P. C. K. Hung, L. Shu, and W. Tan, ‘‘IEEE access
special session editorial: Big data services and computational intelligence
for industrial systems,’’ IEEE Access, vol. 3, pp. 3085–3088, 2015.

2932 VOLUME 4, 2016

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

[8] Z. Zhao, W. Ding, J. Wang, and Y. Han, ‘‘A hybrid processing system for
large-scale traffic sensor data,’’ IEEE Access, vol. 3, pp. 2341–2351, 2015.

[9] E. I. Vlahogianni, B. B. Park, and J.W. C. van Lint, ‘‘Big data in transporta-
tion and traffic engineering,’’ Transp. Res. C, Emerg. Technol., vol. 58,
p. 161, Sep. 2015.

[10] Y. Xia, L. Zhang, and Y. Liu, ‘‘Special issue on big data driven intelligent
transportation systems,’’ Neurocomputing, vol. 181, pp. 1–3, Mar. 2016.

[11] T. T. Tchrakian, B. Basu, and M. O’Mahony, ‘‘Real-time traffic flow
forecasting using spectral analysis,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 13, no. 2, pp. 519–526, Jun. 2012.

[12] E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, ‘‘Short-term traffic
forecasting: Overview of objectives and methods,’’ Transp. Rev., vol. 24,
no. 5, pp. 533–557, Sep. 2004.

[13] B. L. Smith, B. M. Williams, and R. K. Oswald, ‘‘Comparison of paramet-
ric and nonparametric models for traffic flow forecasting,’’ Transp. Res. C,
Emerg. Technol., vol. 10, no. 4, pp. 303–321, Aug. 2002.

[14] C. Chen, Y. Wang, L. Li, J. Hu, and Z. Zhang, ‘‘The retrieval of intra-
day trend and its influence on traffic prediction,’’ Transp. Res. C, Emerg.
Technol., vol. 22, pp. 103–118, Jun. 2012.

[15] M.-C. Tan, S. C. Wong, J.-M. Xu, Z.-R. Guan, and P. Zhang, ‘‘An aggre-
gation approach to short-term traffic flow prediction,’’ IEEE Trans. Intell.
Transp. Syst., vol. 10, no. 1, pp. 60–69, Mar. 2009.

[16] Y. Zhang, Y. Zhang, and A. Haghani, ‘‘A hybrid short-term traffic flow
forecasting method based on spectral analysis and statistical volatility
model,’’ Transp. Res. C, Emerg. Technol., vol. 43, pp. 65–78, Jun. 2014.

[17] M. G. Karlaftis and E. I. Vlahogianni, ‘‘Statistical methods versus neural
networks in transportation research: Differences, similarities and some
insights,’’ Transp. Res. C, Emerg. Technol., vol. 19, no. 3, pp. 387–399,
Jun. 2011.

[18] K. Y. Chan, T. S. Dillon, J. Singh, and E. Chang, ‘‘Neural-network-based
models for short-term traffic flow forecasting using a hybrid exponen-
tial smoothing and Levenberg–Marquardt algorithm,’’ IEEE Trans. Intell.
Transp. Syst., vol. 13, no. 2, pp. 644–654, Jun. 2012.

[19] F. Moretti, S. Pizzuti, S. Panzieri, and M. Annunziato, ‘‘Urban traffic flow
forecasting through statistical and neural network bagging ensemble hybrid
modeling,’’ Neurocomputing, vol. 167, pp. 3–7, Nov. 2015.

[20] L. Li, X. Su, Y. Wang, Y. Lin, Z. Li, and Y. Li, ‘‘Robust causal dependence
mining in big data network and its application to traffic flow predictions,’’
Transp. Res. C, Emerg. Technol., vol. 58, pp. 292–307, Sep. 2015.

[21] W. Min and L. Wynter, ‘‘Real-time road traffic prediction with spatio-
temporal correlations,’’ Transp. Res. C, Emerg. Technol., vol. 19, no. 4,
pp. 606–616, Aug. 2011.

[22] Y. Zhang, ‘‘Special issue on short-term traffic flow forecasting,’’ Transp.
Res. C, Emerg. Technol., vol. 43, pp. 1–2, Jun. 2014.

[23] S. R. Chandra and H. Al-Deek, ‘‘Predictions of freeway traffic speeds
and volumes using vector autoregressive models,’’ J. Intell. Transp. Syst.,
vol. 13, no. 2, pp. 53–72, 2009.

[24] M. Schönhof and D. Helbing, ‘‘Empirical features of congested traffic
states and their implications for traffic modeling,’’ Transp. Sci., vol. 41,
no. 2, pp. 135–166, May 2007.

[25] P. Dell’Acqua, F. Bellotti, R. Berta, and A. De Gloria, ‘‘Time-aware mul-
tivariate nearest neighbor regression methods for traffic flow prediction,’’
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 3393–3402, Dec. 2015.

[26] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, ‘‘Network
traffic classification using correlation information,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 1, pp. 104–117, Jan. 2013.

[27] H. A. Fayed and A. F. Atiya, ‘‘A novel template reduction approach for
the k-nearest neighbor method,’’ IEEE Trans. Neural Netw., vol. 20, no. 5,
pp. 890–896, May 2009.

[28] D. Xia, B. Wang, H. Li, Y. Li, and Z. Zhang, ‘‘A distributed spatial–
temporal weighted model on MapReduce for short-term traffic flow fore-
casting,’’ Neurocomputing, vol. 179, pp. 246–263, Feb. 2016.

[29] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York,
NY, USA: Wiley, 2012.

[30] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
New York, NY, USA: Pearson Education Inc., 2006.

[31] Z. Zheng and D. Su, ‘‘Short-term traffic volume forecasting: A k-nearest
neighbor approach enhanced by constrained linearly sewing principle com-
ponent algorithm,’’ Transp. Res. C, Emerg. Technol., vol. 43, pp. 143–157,
Jun. 2014.

[32] H. Wang, ‘‘Nearest neighbors by neighborhood counting,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 942–953, Jun. 2006.

[33] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The hadoop
distributed file system,’’ in Proc. 26th Symp. Mass Storage Syst.
Technol. (MSST), Incline Village, NV, USA, 2010, pp. 1–10.

[34] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data process-
ing on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008.

[35] T. White, Hadoop: The Definitive Guide, 3rd ed. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2012.

[36] P. Zikopoulos, C. Eaton, D. deRoos, T. Deutsch, and G. Lapis,Understand-
ing Big Data: Analytics for Enterprise Class Hadoop and Streaming Data.
New York, NY, USA: McGraw-Hill, 2011.

[37] H. Chen and H. A. Rakha, ‘‘Real-time travel time prediction using particle
filteringwith a non-explicit state-transitionmodel,’’ Transp. Res. C, Emerg.
Technol., vol. 43, pp. 112–126, Jun. 2014.

[38] Q. Ye, W. Y. Szeto, and S. C. Wong, ‘‘Short-term traffic speed forecasting
based on data recorded at irregular intervals,’’ IEEE Trans. Intell. Transp.
Syst., vol. 13, no. 4, pp. 1727–1737, Dec. 2012.

[39] C. D. Lewis, Industrial and Business Forecasting Methods: A Practi-
cal Guide to Exponential Smoothing and Curve Fitting. London, U.K.:
Butterworth, 1982.

[40] X. Xu, J. Jäger, and H.-P. Kriegel, ‘‘A fast parallel clustering algorithm
for large spatial databases,’’ Data Min. Knowl. Discov., vol. 3, no. 3,
pp. 263–290, Sep. 1999.

[41] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
‘‘Evaluating MapReduce for multi-core and multiprocessor systems,’’ in
Proc. IEEE 13th Int. Symp. High Perform. Comput. Archit. (HPCA),
Scottsdale, AZ, USA, Feb. 2007, pp. 13–24.

[42] C.-S. Li and M.-C. Chen, ‘‘A data mining based approach for travel time
prediction in freeway with non-recurrent congestion,’’ Neurocomputing,
vol. 133, pp. 74–83, Jun. 2014.

DAWEN XIA is currently pursuing the
Ph.D. degree with the School of Computer and
Information Science and School of Software,
Southwest University, Chongqing, China. He is
an Associate Professor with the School of Infor-
mation Engineering, Guizhou Minzu University,
Guiyang, China. His research interests include big
data analytics, multiagent systems, parallel and
distributed computing, and spatio-temporal data
mining.

HUAQING LI received the B.S. degree from the
College of Mathematics and Physics, Chongqing
University of Posts and Telecommunications,
in 2009, and the Ph.D. degree from the College
of Computer Science and Technology, Chongqing
University, Chongqing, China, in 2013. He is
an Associate Professor with the School of Elec-
tronic and Information Engineering, Southwest
University, Chongqing, China. His research inter-
ests include consensus of multiagent systems,

distributed optimization, and big data analytics.

BINFENG WANG is currently pursuing the
M.Eng. degree with the School of Computer
and Information Science and School of Soft-
ware, Southwest University, Chongqing, China.
His research interests include cloud computing,
and big data analytics.

VOLUME 4, 2016 2933

D. Xia et al.: MapReduce-Based NN Approach for Big-Data-Driven TFP

YANTAO LI received the Ph.D. degree from the
College of Computer Science, Chongqing Uni-
versity, in 2012. He is an Associate Professor
with the School of Computer and Information
Science and School of Software, Southwest Uni-
versity, Chongqing, China. His research interests
include wireless communication and networking,
sensor networks and ubiquitous computing, and
information security.

ZILI ZHANG received the B.Sc. degree from
Sichuan University, the M.Eng. degree from
Harbin Institute of Technology, and the
Ph.D. degree from Deakin University, all in com-
puting. He is a Professor with Southwest Uni-
versity, Chongqing, China, and a Senior Lecturer
withDeakinUniversity, Australia. He has authored
or co-authored more than 130 refereed papers in
international journals or conference proceedings
and six monographs or textbooks. His research

interests include multiagent systems, bio-inspired AI, and big data analytics.

2934 VOLUME 4, 2016

