
Received May 9, 2016, accepted June 9, 2016, date of publication June 21, 2016, date of current version November 18, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2582836

A Commercial Video-Caching System
for Small-Cell Cellular Networks
Using Game Theory
JUN LI1, (Senior Member, IEEE), JINSHAN SUN1, YUWEN QIAN1, FENG SHU1, (Member, IEEE),
MING XIAO2, (Senior Member, IEEE), AND WEI XIANG3, (Senior Member, IEEE)
1School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2School of Electrical Engineering, Royal Institute of Technology, Stockholm 114 28, Sweden
3College of Science and Engineering, James Cook University, Cairns, QLD 4811, Australia

Corresponding author: J. Li (jun.li@njust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61501238, Grant 61271230, and
Grant 61472190, in part by the Jiangsu Provincial Science Foundation under Project BK20150786, in part by the Specially Appointed
Professor Program in Jiangsu Province, 2015, in part by the Fundamental Research Funds for the Central Universities under
Grant 30916011205, in part by the Open Research Fund of National Key Laboratory of Electromagnetic Environment under
Grant 201500013, and in part by the Open Research Fund of National Mobile Communications Research Laboratory,
Southeast University under Grant 2013D02.

ABSTRACT Evidence indicates that requesting video clips on demand accounts for a dramatic increase
in data traffic over cellular networks. Caching part of popular videos in the storage of small-cell base
stations (SBS) in cellular networks is an efficient method to reduce transmission latency and mitigate
redundant transmissions. In this paper, we propose a commercial caching system consisting of a video
retailer (VR) and multiple network service providers (NSPs). Each NSP leases its SBSs, with some price,
to the VR for the purpose of making profits, and the VR, after storing popular videos in the rented SBSs,
can provide better local video services to the mobile users, thereby gaining more profits. We conceive this
system within the framework of a Stackelberg game by treating the SBSs as a specific type of resources.
Then, we establish the profit models for both the NSPs and the VR based on stochastic geometry. We further
investigate the Stackelberg equilibrium by solving the optimization problems in two cases, i.e., whether
or not the VR has a budget plan on renting the SBSs. Numerical results are provided for quantifying the
proposed framework by showing its efficiency on pricing and resource allocation.

INDEX TERMS Wireless caching, content-centric communications, small-cell networks, stochastic
geometry, Stackelberg game.

I. INTRODUCTION
Wireless data traffic is expected to increase exponentially
in the next few years, driven by a dramatic growth of
mobile users (MU) and their bandwidth-hungry applica-
tions. There is evidence that MUs’ downloading of on-
demand videos is the major reason for the data avalanche
over cellular networks [1]. There are numerous repetitive
requests on the same videos from the MUs, such as online
movies, leading to redundant transmissions. Fortunately,
this redundancy can be reduced by locally storing popu-
lar videos, known as caching, into the memory of inter-
mediate network nodes, effectively forming a local caching
system [1]–[5]. This local caching brings video content closer
to the MUs and alleviates redundant data transmissions via

redirecting the downloading requests to the intermediate
nodes.

Generally, wireless data caching consists of two stages:
data placement and data delivery [6]. In the data place-
ment stage, popular videos are cached into local storages
during off-peak time, while in the data delivery stage,
requested videos are delivered from the local caching system
to the MUs. Recent works advance the caching technol-
ogy in device-to-device (D2D) networks and wireless sensor
networks [7]–[9]. Specifically in [7], a caching scheme is
proposed for a D2D based cellular network on the MUs’
caching of popular video content. In this scheme, the D2D
cluster size is optimized for reducing the downloading delay.
In [8] and [9], the authors propose novel caching schemes for
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wireless sensor networks, where the protocol model of [10]
is adopted.

As small-cell embedded architectures will be prevailing
in future cellular networks [11]–[16], caching relying on
small-cell base stations (SBS), namely, small-cell caching,
is a promising trend. The advantages brought about by the
small-cell caching are threefold. First, popular videos are
pushed closer to the MUs when cached in SBSs, reducing
the transmission latency. Second, redundant data transmis-
sions over SBSs’ back-haul channels are mitigated, which are
usually expensive [17]. Third, the majority of video traffic is
offloaded from macro-cell base stations to SBSs.

In [18], a small-cell caching scheme, called ‘Femto-
caching’, is proposed for a cellular network embedded with
SBSs, where the data placement at the SBSs is optimized
in a centralized manner for reducing the transmission delay
imposed. In [19], the small-cell caching is investigated in
the context of stochastic networks. The average performance
is developed via stochastic geometry [20], [21], where the
distribution of network nodes are modeled by Poisson point
process (PPP).

From above discussions, current studies on wireless
caching usually consider a specific aspect of caching,
e.g., data placement optimization. However, a practical
caching system should be coupled with many issues other
than data placement. From a commercial or financial perspec-
tive, it will be more interesting to consider a comprehensive
system, including the issues such as pricing on video stream-
ing, renting local storages, and so on. Such a systemmay con-
sist of video retailers (VR), network service providers (NSP)
and MUs. The VRs, e.g., Youtube, purchase copyrights from
video producers and publish the videos on their web-sites.
The NSPs are typically operators of cellular networks, who
are in charge of network facilities, such as macro-cell base
stations and SBSs.

In such a commercial caching system, the VRs make prof-
its by providing video streaming services to the MUs. As the
central servers of the VRs, which store the popular videos,
are usually located at backbone networks and far away from
the MUs, an efficient solution is to locally cache these videos
for reducing the transmission latency, thereby attracting more
customers. These local-caching demands raised by the VRs
offer the NSPs profitable opportunities from leasing their
resources, i.e., the SBSs. In this sense, both the VRs and
NSPs are the beneficiaries from the local caching system.
However, each entity is selfish and wishes to maximize its
own benefit, rasing a competition and optimization prob-
lem, which can be effectively solved under the game theory
framework.

We note that game theory has been successfully applied
to wireless communications for solving competition prob-
lems on network resources [22], [23]. Stackelberg game
is a commonly-used strategic game that consists of lead-
ers and followers competing with each other for certain
resources [24]. The leader moves first and the followers move
subsequently.

In this paper, we will develop a commercial caching proto-
type, consisting of a video retailer (VR) and multiple network
service providers (NSP), drawing upon a Stackelberg game
framework. We consider the NSPs to be the leaders and the
VR the follower, while treat the SBSs in the charge of the
NSPs as a specific type of resources. The NSPs set the prices
of leasing their SBSs, while the VR decides on renting a
fraction of the SBSs based on the prices charged.

Specifically, we first follow the theory of stochastic geom-
etry [20], [21], and model the MUs and SBSs in the network
as two different ties of a Poisson point process (PPP) [25].
Under this network model, we define the concept of a suc-
cessful video downloading event when an MU obtains the
requested video directly from the storage of an SBS. Then
we derive the probability of this event with a closed-form
expression. Next, we establish the profit models for both the
NSPs and the VR based on the probability derived. Further-
more, we investigate the Stackelberg equilibrium by solving
the optimization problems in two cases, i.e., whether or not
the VR has a deliberate budget plan on spending how much
money in renting the SBSs. Numerical results are finally
provided to quantify the proposed framework by showing its
efficiency on pricing and resource allocation.

The rest of this paper is organized as follows. We describe
the system model in Section II and investigate the caching
procedure in Section III. The profit models and a Stack-
elberg game framework are formulated in Section IV.
In Section V and VI, we investigate Stackelberg equilibriums
for the two cases via solving a series of optimization prob-
lems. Our numerical results are detailed in Section VII, while
our conclusions are provided in Section VIII.

II. SYSTEM MODEL
We focus our attention on a commercial small-cell caching
system consisting of L NSPs, one VR, and multiple MUs,
where each NSP is in charge of a number of SBSs. Denote
by V the VR and by L = {L1,L2, · · · ,LL} the set of
the NSPs.

A. NETWORK MODEL
Let us consider a small-cell network composed of SBSs
owned by the L NSPs, where the SBSs owned by the l-th NSP
Ll , l = 1, · · · ,L, equipped with a transmission power Pl ,
are spatially distributed as a homogeneous PPP (HPPP)8l of
intensity λl . Here, the intensity represents the average number
of SBSs in per unit area. The VR V rents a fraction τl ∈ [0, 1]
of SBSs from Ll for the purpose of caching its video files.
We assume that the rented SBSs of Ll are uniformly selected
by the VR, and thus the distribution of these SBSs can be
modeled as a ‘‘thinned’’ HPPPwith the intensity of τlλl . Each
MU is affiliated with an NSP and connects to one of its SBSs
for accessing network services. We model the distribution of
the MUs that are affiliated with Ll as an independent HPPP
9l of intensity ζl , ∀l.

The wireless down-link channels spanning from the SBSs
to theMUs are independent and identically distributed (i.i.d.),
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and modeled as the combination of path-loss and Rayleigh
fading. Without a loss of generality, we conduct our analysis
on a typical MU M located at the origin. The path-loss
between M and an SBS located at x is denoted by ‖x‖−α ,
where α is the path-loss exponent. The channel power of
the Rayleigh fading between them is denoted by hx , where
hx ∼ exp(1). The noise at each MU is Gaussian distributed
with variance σ 2.
We assume that the SBSs from the same NSP transmit on

the same channel, causing mutual interferences. At the same
time, different NSPs are allocated with orthogonal channels.
Hence, there are no interferences across NSPs. To simplify
the notation, we utilize the location x of a rented SBS fromLl
to represent a point in the HPPP 8l , ∀l. The received signal-
to-interference-plus-noise ratio (SINR) at a typical MU M
in9l from an SBS B in8l , located at xl , can be expressed as

ρ(xl) =
Plhxl‖xl‖

−α∑
x∈8l\xl

Plhx‖x‖−α + σ 2 , (1)

where
∑

x∈8l\xl Plhx‖x‖
−α represents the interference from

the SBSs of 8l except for B.
Definition 1 (Coverage): An MU is defined to be

‘‘covered’’ by an SBS located at x as long as ρ(x) is no lower
than a pre-set SINR threshold δ.
Generally, an MU can be covered by multiple SBSs.

B. VIDEO POPULARITY
We now model the popularity distribution, i.e., the distribu-
tion of request probabilities, among video files. Denote by
F = {F1,F2, · · · ,FF } a video set, which consists of F
popular video files to be possibly cached in the SBSs and then
requested frequently by the MUs. The popularity distribution
among F is represented by a vector q = [q1, q2, · · · , qF ].
That is, the MUs make independent requests of the f -th video
file Ff , f = 1, · · · ,F , with the probability of qf .

Generally, the vector q can be modeled by a Zipf distribu-
tion [26], i.e.,

qf =
1/f β∑F
i=1 1/iβ

, ∀f , (2)

where the exponent β is a positive value, characterizing the
file popularity. A larger β corresponds to a higher content
reuse, i.e., the most popular files account for the majority of
requests. From Eq. (2), we can see that F1 has the highest
popularity, while FF has the lowest one.

III. CACHING PROCEDURE
There are three stages in our caching system. In the first stage,
the VR V purchases the copyrights of popular videos in F
from video producers. In the second stage, the VR negotiates
with the L NSPs on renting their SBSs for caching its popular
videos. In the third stage, the MUs connect to the SBSs to
obtain their desired videos.

We now explain the last two stages with more details.
In the second stage, upon obtaining popular videos, the VR

negotiates with the NSPs on renting their SBSs and then
caches these video clips into thememories of the rented SBSs.
We assume that the SBSs owned by Ll are equipped with
a specified storage of Ql , i.e., each SBS of Ll can store Ql
video files. Meanwhile, each SBS of Ll is required to cache
the most popular Ql files F1, · · · ,FQl . Based on the prices
offered by the NSPs, the VR then decides to rent a fraction τl
of SBSs fromLl . In the third stage, theMUs start to download
videos on demand. Generally, an MU will connect to the
nearest SBS that caches the requested files. To evaluate the
downloading performance, we first introduce the following
definition.
Definition 2 (Successfully Download Event El,f ): When

an MUM affiliated with Ll demands Ff , the request will be
redirected to the nearest SBS B in 8l that caches Ff . If M
is covered by B, the requested video can be obtained directly
from B, and we define such an event by El,f .
In the case that the event El,f does not occur, the MU M

will connect to the central server of V , posited at back-
bone networks, for the requested video clip, causing a high
transmission latency. Regarding the probability Pr(El,f ) of
the event El,f , we have the following theorem based on the
stochastic geometry theory.
Theorem 1: The probability Pr(El,f ), ∀l, f , can be

expressed as

Pr(El,f )

=



∫
∞

0 exp
(
−π (1− τl)λlC (δ, α) z2

)
πτlλl exp

(
−πτlλlA(δ, α)z2

)
exp(−

zαδ
Pl
σ 2) exp

(
−πτlλlz2

)
dz2 f ≤ Ql,

0 F ≥ f > Ql,
(3)

where we have

A(δ, α) ,
2δ
α − 2 2F1

(
1, 1−

2
α
; 2−

2
α
;−δ

)
,

C(δ, α) ,
2
α
δ

2
α B
(
2
α
, 1−

2
α

)
. (4)

Furthermore, 2F1(·) in the function A(δ, α) is the hypergeo-
metric function and the Beta function inC(δ, α) is formulated
as B(x, y) =

∫ 1
0 t

x−1(1− t)y−1dt .
Proof: Please refer to Appendix A. �

Generally, the power of interference in a network is much
greater than that of the noises. By assuming that σ

2

Pl
goes to

zero, we further simplify Eq. (3) in the following corollary.
Corollary 1: In the case that σ

2

Pl
goes to zero and f ≤ Ql ,

we have

Pr(El,f ) =
τl

(1− τl)C(δ, α)+ τlA(δ, α)+ τl
. (5)

Proof: Please refer to Appendix B. �
Remark 1: According to Corollary 1, when interference is

dominant, the probability Pr(El,f ) is independent of both the
transmission power Pl and the intensity λl .
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IV. PROBLEM FORMULATION
In our commercial caching system, the VR V intends to rent a
fraction τl of SBSs from the NSP Ll , ∀l, for caching its pop-
ular videos, since it can make profit from providing the MUs
with faster downloading services and mitigating unnecessary
data traffic caused by MUs’ repetitive downloading requests.
At the same time, the NSPs will also be able to gain profits
from renting their SBSs. Both the VR and the NSPs try to
maximize their gains.

We first model the profits of the VR and the NSPs obtained
from the caching system. Average profit is developed based
on the stochastic geometry in terms of per unit area and per
unit period (/UAP), e.g., /month · km2. Then we present the
Stackelberg game formulation for the caching system. The
equilibrium of the proposed game will also be investigated.

A. PROFIT MODELING
1) AVERAGE PROFIT OF VR
For the VR V , the revenue gained, with the help of local
caching, is from V’s providing fast downloading services as
well asmitigating the traffic from its central server.We denote
by s the profit acquired by the VR when an MU downloads a
video clip from the local caching system, and denote byK the
number of video requests from eachMU on average within an
unit period. Then the overall income/UAP of V is calculated
as

Scache =
L∑
l=1

Ql∑
n=1

Kζlqn Pr(El,n)s. (6)

Meanwhile, the VR needs to pay for renting the SBSs.
We denote by sl the price for renting an SBS from Ll during
an unit period. Then the overall payment/UAP made by the
VR can be expressed as

Srent =
L∑
l=1

τlλlsl . (7)

We assume that the VR may make a budget on how much
payment it will make in renting the SBSs. The budget is
defined by S/UAP, i.e., S = Srent .
Then the net profit/UAP obtained by the VR is

SVR = Scache − Srent . (8)

2) AVERAGE PROFIT OF NSPs
The income of the NSPs comes from leasing their SBSs.
Meanwhile, the NSPs need to pay for the cost of maintaining
the local caching system. We denote by cl such cost on each
rented SBS of Ll during a unit period. Then the net-profit
of Ll can be expressed as

SNSPl = (sl − cl)τlλl . (9)

B. STACKELBERG GAME FORMULATION
Stackelberg game is a strategic game consisting of lead-
ers and followers competing with each other for certain

resources [24]. The leaders move first and the followers move
subsequently. In our small-cell caching system, we model the
NSPs as the leaders, and the VR as the follower. The NSP
Ll , ∀l, imposes a price sl for leasing one of its SBSs to the
VR during a unit period. We thus define the price vector
s , [s1, s2, · · · , sL]. After the vector s is set, the VR updates
the fraction τl of the SBSs that it tends to rent from Ll .

1) OPTIMIZATION FORMULATION OF THE LEADERS
Observe from the above game model that the objective of the
NSP Ll is to maximize its profit SNSPl formulated in Eq. (9).
Note that the fraction τl is a function of the price sl under the
Stackelberg game formulation. Thismeans that the fraction of
the SBSs that the VR is willing to rent depends on the specific
price charged for renting an SBS. If the price sl is too high,
the VR will choose not to rent any SBS from Ll . At the same
time, if sl is set too low, Ll cannot make any profit. Since the
maximum payment made by the VR is S, the NSPs have to
compete with each other on the price such that they can be
selected by the VR whilst keep their profit maximized.

The optimization problem for each NSP can be summa-
rized as follows.
Problem 1: The optimization problem of maximizingLl’s

profit can be formulated as

max
sl≥0

SNSPl (sl, τl), ∀l. (10)

2) OPTIMIZATION FORMULATION OF THE FOLLOWER
We adopt the expression of Pr(El,f ) in Eq. (5). Then the profit
gained by the VR in Eq. (8) can be further written as

SVR =
L∑
l=1

F∑
f=1

Ksζlqf Pr(El,f )−
L∑
l=1

τlλlsl

=

L∑
l=1

Ksζlτl
∑Ql

f=1 qf

(1− τl)C(δ, α)+ τlA(δ, α)+ τl
−

L∑
l=1

τlλlsl .

(11)

We can see from Eq. (11) that once the price vector s is fixed,
the profit of V depends on τl , ∀l, i.e., the fraction of SBSs
that are rented by V . If V increases the fraction τl , it will
gain more profit, while at the same time, V have to pay for
renting more SBSs. Therefore, τl needs to be optimized for
maximizing the profit of V . By defining the fraction vector
τ , [τ1, · · · , τL], this optimization can be formulated as
follows.
Problem 2: The optimization problem of maximizing V’s

profit can be written as

max
1�τ�0

SVR(s, τ ). (12)

Furthermore, in the case that the VR has a budget plan, there
is the constraint

∑L
l=1 τlλlsl = S.

Problem 1 and Problem 2 together form a Stackelberg
game. The objective of this game is to find the Stackelberg
Equilibrium (SE) points from which neither the lead-
ers (NSPs) nor the follower (VR) have incentives to deviate.
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In the following, we investigate the SE points for the proposed
game.

C. STACKELBERG EQUILIBRIUM
For our Stackelberg game, the SE is defined as follows.
Definition 3: Let us define s? , [s?1, s

?
2, · · · , s

?
L], where

s?l , ∀l, is a solution for Problem 1, and define τ ? ,
[τ ?1 , τ

?
2 , · · · , τ

?
L ] a solution for Problem 2. Then the point

(s?, τ ?) is an SE for this Stackelberg game if for any (s, τ )
with s � 0 and τ � 0, the following conditions are
satisfied:

SNSPl (s?l , τ
?
l ) ≥ SNSPl (sl, τ ?l ), ∀l

SVR(s?, τ ?) ≥ SVR(s?, τ ). (13)

Generally speaking, the SE of a Stackelberg game can be
obtained by finding its perfect Nash Equilibrium (NE). In our
proposed game, we can see that the NSPs strictly compete in
a non-cooperative fashion. For a non-cooperative game, the
NE is defined as the operating points at which no players can
improve utility by changing its strategy unilaterally.

At the NSPs’ side, the best response of each NSP is to
solve Problem 1. To achieve this, we need to first find the
best response function of the follower VR, based on which,
we further solve the best response functions for the leaders.
Therefore, in our game, we first solve Problem 2 given a price
vector s. Then with the obtained best response function τ ? of
the VR, we solve Problem 1 for the optimum price vector s?.
In the following, we will have an in-depth investigation on

this game-theoretic optimization. Specifically, we consider
two cases in the optimization. In the first case, we assume
that the VR does not have a concrete budget plan. That
is, the VR will not take into account how much money it
spends in renting SBSs. Thus the constraint

∑L
l=1 τlλlsl = S

is released during the optimization. In the second case, we
assume that the VR has a budget by setting

∑L
l=1 τlλlsl = S

in the optimization.

V. OPTIMIZATION WITHOUT PAYMENT CONSTRAINT
In this section, we will solve the optimization problem in our
game by assuming that the constraint

∑L
l=1 τlλlsl = S is

released. We first present the following lemma.
Lemma 1: Given a price vector s = [s1, · · · , sL], the

optimum solution of Problem 2, without considering the
constraint

∑L
l=1 τlλlsl = S, can be expressed as

τ ?l (sl) =


√

KsC(δ,α)ζl
∑Ql

f=1 qf
λlsl

− C(δ, α)

A(δ, α)− C(δ, α)+ 1


±

, ∀l, (14)

where [w]± represents 0 ≤ w ≤ 1.
Proof: The optimum solution τ ?l can be obtained by

deriving SVR with respect to τl and solving dSVR
dτl
= 0 under

the constraint that 1 ≥ τl ≥ 0. �

We can see from Lemma 1 that τ ?l (sl) ∝ sl−
1
2 . If the price

sl is too high such that

sl ≥ s
upper
l ,

Ksζl
∑Ql

f=1 qf

λlC(δ, α)
, (15)

where supperl is calculated by letting τ ?l = 0, then there is
τ ?l ≤ 0. This means that, given the price sl ≥ supperl , the
VR will opt out renting any SBS from Ll due to the high
price charged. In this case, the NSP Ll may need to lower the
price sl to some extent for ensuring τ ?l (sl) > 0. Meanwhile,
considering the cost cl , Ll will opt out leasing any SBS to the
VR if there is sl ≤ cl . Based on the above discussions, we
have the following remark.
Remark 2: A necessary condition that the NSP Ll partici-

pates in the game is cl < sl < supperl .
On the other hand, if the price sl given is too low such that

sl ≤ slowerl ,
KsC(δ, α)ζl

∑Ql
f=1 qf

λl(A(δ, α)+ 1)2
, (16)

where slowerl is calculated by letting τ ?l = 1, then there is
τ ?l ≥ 1. This means that the price given is too low such that
the VR is willing to rent all the SBSs of Ll . In this case, the
NSP Ll may need to increase the price sl for acquiring more
profit. Substitute τ ?l (sl) of Lemma 1 into Eq. (9), and we have
the following lemma regarding the optimum price s?l .
Lemma 2: Given the expression of τ ?l in Eq. (14), the

optimum solution of Problem 1 can be expressed as

s?l = max

 1(
x

1
3 −

1
3cl
x−

1
3

)2 , slowerl

 , ∀l, (17)

where

x =
C(δ, α)
clUl

+

√√√√(C(δ, α)
clUl

)2

+
1

27c3l
,

Ul ,

√
KsC(δ, α)ζl

∑Ql
f=1 qf

λl
. (18)

Proof: Please refer to Appendix C. �
Remark 3: The optimum solution s? in Eq. (18), combined

with the solution of τ ? given by Eq. (14), constitutes the SE
for the Stackelberg game.

From the above discussions, there exist no competitions
among the NSPs when no payment constraint is imposed by
the VR, since s?l and τ

?
l only depend on the parameters of Ll .

VI. OPTIMIZATION UNDER BUDGET PLAN
We now focus our attention on the game theoretic optimiza-
tion with the budget plan

∑L
l=1 τlλlsl = S. Usually, in this

case, the VR does not have a sufficient S to rent enough SBSs.
Thus, the money spent by the VR needs to be deliberately
planed for renting the SBSs from those competent NSPs.

We first solve the optimization problem at the VR and
NSPs. Thereafter, a distributed price-updating mechanism is
proposed and investigated.
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FIGURE 1. The optimal prices and fractions on each SBS versus the storage size Q in the symmetric 2-NSP scenario. In specific,
sub-figure (a) depicts the prices change with Q, while sub-figure (b) depicts the fractions change with Q. We consider the budget plans
S = 10,50,200,500, and the case without budget.

A. OPTIMIZATION AT VR
Regarding the optimum solution at the VR’s side, we have the
following theorem.
Theorem 2: Given a price vector s = [s1, · · · , sL], the

optimum solution τ ?l , ∀l, of Problem 2 can be expressed as

τ ?l (s) =



0 ξ >
Ksζl

∑Ql
f=1 qf

λlslC(δ, α)
− 1,

1 ξ <
KsC(δ, α)ζl

∑Ql
f=1 qf

λlsl(A(δ, α)+ 1)2
− 1,√

KsC(δ,α)ζl
∑Ql

f=1 qf
λlsl (1+ξ )

− C(δ, α)

A(δ, α)− C(δ, α)+ 1
otherwise,

(19)

where

ξ =

 ∑
j∈S2

√
KsC(δ, α)λjsjζj

∑Qj
f=1 qf

(A− C + 1)(S −
∑
j∈S1

λjsj)+
∑
j∈S2

λjsjC(δ, α)


2

− 1,

(20)

where S1 and S2 are two sets of the subscripts of τl . For S1,
we have τj = 1, ∀j ∈ S1. For S2, we have 0 < τj < 1,
∀j ∈ S2.
Proof: Please refer to Appendix D. �
The calculation of Theorem 2 can be implemented in the

following procedure. First, we utilize the conventional water-
filling algorithm to optimize τl , ∀l, without considering the
constraint τl ≤ 1. Second, we check the optimization result.
If, for example, there exists l ′ such that τl′ > 1, then we
set τl′ = 1, and modify the original payment constraint
to
∑L

l=1,l 6=l′ τlλlsl = S − λl′sl′ . Next, we execute a sec-
ond round water-filling process on τl , ∀l, l 6= l ′ with the

updated constraint. By conducting this procedure iteratively,
we finally achieve the optimum solution in Theorem 2.
Remark 4: From Theorem 2 we can see that the optimum

τl depends on the price vector s, which is contrasted by
the result in Lemma 1, where the optimum τl only depends
on sl . This also means that VR’s budget plan will cause a
competition among the NSPs.

B. OPTIMIZATION AT NSPs
Substituting Eq. (19) into Eq. (9), Problem 1 can be rewrit-
ten as

max
sl≥0

SNSPl = (sl − cl)λlτ ?l (s), ∀l. (21)

Note that Eq. (21) is a non-cooperative game by the NSPs.
Due to the insufficient payment of the VR, the optimal pricing
strategy of Ll depends on other NSPs’ pricing strategies,
causing competitions among the NSPs.

By taking the derivation of SNSPl to sl and equating it to
zero, we have

∂SNSPl

∂sl
= λlτ

?
l (s)+ (sl − cl)λl

∂τ ?l (s)

∂sl
= 0, ∀l. (22)

Solving the above equations, we obtain the optimal price s?l .
However, we can see that there is no closed-form for s?l , since
each optimal price is related to other prices. OneNSP needs to
update its own price after the other NSPs change their prices.
As such, the optimization process for the NSPs and the VR
has to be conducted in an iterative manner.

C. ITERATIVE PROCESS
The iterative process can be summarized as follows. First,
after rearranging (21), we have

sl = 0l(s) , cl −
τ ?l (s)

∂τ ?l (s)/∂sl
. (23)
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FIGURE 2. The various profits versus the storage size Q in the symmetric 2-NSP scenario. In specific, sub-figure (a) depicts the profit of
the VR versus Q, while sub-figure (b) depicts the profit of each NSP versus Q. We consider the budget plans S = 10,50,200,500, and
the case without budget.

FIGURE 3. Profits of the VR and each NSP with and without budget plans.
The storage size is set to Q = 50. Solid lines represents the profit of the
VR, while dashed lines represents the profit of each NSP.

In order to calculate sl in Eq. (23), eachNSP communicates
with the VR to obtain the values of τ ?l (s) and ∂τ

?
l (s)/∂sl . Then

the updating of the NSPs’ prices can be described by a vector
of the form s = 0(s), where 0(s) = [01(s), · · · , 0L(s)].
Consequently, an iterative method can be utilized to achieve
the optimal solutions, expressed as

s(t+1) = 0(t)(s(t)), (24)

where the superscription t represents the t-th iteration.
Note that 0(t) may change in different iterations, since the

two sets S1 and S2 can vary. To be specific in the optimization
of τ at the VR in the t-th iteration, if, for example, there
is τl > 1, the value of τl will be set to one and s?l will
be set to s(t)l . In this case, it is considered that the NSP Ll

FIGURE 4. The updating of the prices for the two NSPs versus the number
of iterations. The budget plans are set to S = 10,50,200,500.

achieves its equilibrium and will quit the iteration for price
update.
Remark 5: Once the iterative optimization process con-

verges, the optimum solution s?, combined with the solution
of τ ? given by Eq. (19), constitutes the SE for the game.

VII. NUMERICAL RESULTS
In our numerical results, we investigate the system perfor-
mance versus some key parameters. Although there are lots
factors in our system, the storage size Ql and budget con-
straint S are two important ones. Other factors, such as the
Zipf parameter β and path-loss α, are usually not controlled
by the game participants. Therefore, throughout this section,
we set the F = 500, β = 0.8, s = 1, K = 50, α = 3,
and δ = 0.1.

VOLUME 4, 2016 7525



J. Li et al.: Commercial Video-Caching System for Small-Cell Cellular Networks

FIGURE 5. System performance versus the storage size Q2 in the asymmetric 2-NSP scenario. In specific, sub-figure (a) depicts the optimal prices
versus Q2 without budget plans and with a budget S = 500, while sub-figure (b) depicts various profits versus Q2 with the budget plan S = 500.

FIGURE 6. Profits of the VR and each NSP versus budget S. The storage
size is set to Q1 = 30 and Q2 = 10.

A. 2 SYMMETRIC NSPs
First, we study a symmetric 2-NSP scenario with the two
NSPs L1 and L2. In this symmetric scenario, we set
c1 = c2 = 10, λ1 = λ2 = 10/km2 and ζ1 = ζ2 = 80/km2.
Also, we assume the storage size Q , Q1 = Q2, i.e.,
the SBSs of the two NSPs always have the same storage
size. Furthermore, we consider the cases with and without
budget plans. Particularly in the case with budget plans, we
set S = 10, 50, 200, 500. Due the symmetric settings, we
have s?1 = s?2, τ

?
1 = τ

?
2 , and S

NSP
1 = SNSP2 .

Fig. 1 depicts the prices and the fractions on the rented
SBSs versus the storage sizeQ. From the two sub-figures, we
can see that in the case that there are budget plans, the optimal
price and optimal fraction of the resources keep constant
to Q. That is, the NSPs are unable to claim a higher price for
renting their SBSs in the budget-planning case by deploying

FIGURE 7. The updating of the prices for the two NSPs versus the number
of iterations. The budget plans are set to S = 200,500.

a higher storage volume in these SBSs. This is due to the
competition between the two symmetric NSPs under a strict
budget imposed by the VR. Also from the figure, a higher
budget of the VR leads to a higher price charged by the NSPs
and a higher fraction of rented SBSs by the VR.

On the other hand, in the non-budget case, the optimal price
and fraction are increasing functions of Q. Obviously in this
case, the price charged by the NSP and the rented fraction by
VR are much higher than those in the case with budget plans.
That is, without a compulsory constraint on the budget, the
VR needs to pay a much higher rent, i.e., Srent > S = 500, to
achieve the Stackelberg Equilibrium. However, this does not
imply that the VR can gain a higher profit compared to the
budget-planning case, as discussed in the following.

Fig. 2(a) and Fig. 2(b) illustrate the profits gained by the
VR and each NSP versus Q, respectively. It is interesting to
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FIGURE 8. The updating of the prices in the 4-NSP scenario and the 6-NSP scenario versus the number of iterations.

observe that in the budget-planning case, the profit of each
NSP keeps constant to Q, due to the constant s?l and τ

?
l , as

shown in Fig. 1. Although each NSP’s profit increases with
the growth of VR’s budget, they can gain a much higher
profit in the non-budget case. As to the VR’s profit, we can
see from the figure that when the VR has the budge plans
S = 200, 500, it can gain a higher profit than that in the non-
budget case, even though in the latter case the VR pays more
rent Srent > S = 500. In this sense, the VRmay need to select
an appropriate budget S to maximize its profit.
Fig. 3 shows the profits of the VR and each NSP with

and without budget plans, where the storage size is fixed to
Q = 50. We can see that when the budget S = 500, the
VR can achieve the maximum profit around 1620, which
is much higher than the non-budget case with the profit
around 1250. Additionally, the profit of each NSP is almost
linearly increase with S, while it is always lower than the
one in the non-budget case. Since the VR and the NSPs are
competing with each other, a proper budget S is generally
helpful for the VR to maximize its profit.

Fig. 4 depicts the price updating versus the number of
iterations for the two symmetric NSPs, where the storage
size is set to Q = 50. It is observed that for a small budget,
the iterative process converges quickly, generally around four
or five iterations. In the case S = 500, it takes around
10 iterations before converging. Also, since the two NPSs are
symmetric, the updated prices in each iteration for the two
NSPs are the always the same.

B. 2 ASYMMETRIC NSPs
Then we focus on an asymmetric 2-NSP scenario, where
c1 = 10, c2 = 15, λ1 = 10/km2, λ2 = 40/km2,
ζ1 = 50/km2, ζ2 = 120/km2. Fig. 5 shows the optimal
prices and various profits versus the storage size Q2 with
the fixed Q1 = 30. In Fig. 5(a), we can see that for the
non-budget case without a payment constraint, the optimal
price s?1 is constant to Q2, since there is no competitions

between the two NSPs, while s?2 increases with the growth
ofQ2, meaning that increasingQ2 will be beneficial toL2 for
charging a higher price. Furthermore, in the budget-planning
case with S = 500, the optimal price s?1 is decreasing but
s?2 is increasing with the growth of Q2. This is because the
budget plan leads to competitions between the two NSPs:
L2 becomes more and more competent when increasing the
storage size of its SBSs in contrast to the fixed storage Q1
of L1.

In Fig. 5(b), we consider various profits with S = 500. The
profit of L1 is decreasing but the profit of L2 is increasing
with Q2. This is consistent with the trends of their prices
with Q2 in Fig. 5(a): A higher price charged by L2 leads
to its higher profit. We also decompose the VR’s profit into
two parts, with one contributed by L1, and the other one
contributed by L2. We can see that both parts of the profits
increase with regard to Q2. However, the profit contributed
by L2 improved much more rapidly when Q2 increases.
Fig. 6 illustrates the profits of the VR and each NSP with
and without budget plans, where the storage size is fixed to
Q1 = 30 and Q2 = 10. We can see that when the budget is
around S = 300, theVR can achieve themaximumprofit 540,
which is even higher than the non-budget case with the profit
around 510. Additionally, the profit of each NSP is almost
linearly increasing with S.

Fig. 7 demonstrates the price updating of the NSPs with
budget plans S = 200, 500. From the figure, we can see that
convergence generally occurs within about 6 iterations.

C. MULTIPLE ASYMMETRIC NSPs
To demonstrate the convergence of the iterative optimization
process with budget plans, we investigate the price updating
for a 4-NSP scenario and a 6-NSP scenario.

In the 4-NSP scenario, based on the settings of the above
asymmetric 2-NSP scenario, we add two more NSPs, with
c3 = 8, c4 = 12, λ3 = 15/km2, λ4 = 25/km2, ζ3 = 80/km2,
ζ4 = 90/km2. Also, in the 6-NSP scenario, based on the
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settings of the 4-NSP scenario, we further add two more
NSPs, with c5 = 15, c6 = 7, λ5 = 20/km2, λ6 = 22/km2,
ζ5 = 70/km2, ζ6 = 85/km2. The storage sizes for the
four NSPs in the 4-NSP scenario are Q1 = 15,Q2 = 20,
Q3 = 25,Q4 = 30, while for the 6-NSP scenario, we further
add Q5 = 35 and Q6 = 40.

Fig. 8 shows the price updating process for the two sce-
narios. In specific, Fig. 8(a) depicts the price updating for the
4 NSPs in the 4-NSP scenario with budget S = 400, 800.
Fig. 8(b) depicts the price updating for the 6 NSPs in the
6-NSP scenario with budget S = 500, 1200. In both sce-
narios, we can see that the iterative optimization between the
NSPs and the VR can converge quickly within no more than
6 iterations. This demonstrates the effectiveness of the pro-
posed optimization algorithm in multiple-NSP asymmetric
scenarios with arbitrary chosen parameters.

VIII. CONCLUSIONS
In this paper, we have considered a commercial small-cell
caching system consisting of multiple NSPs and one VR,
where the NSPs lease their SBSs to the VR for gaining profits,
while the VR, after storing popular videos to the rented
SBSs, can provide faster transmissions to the MUs, hence
gaining more profits. We proposed a Stackelberg game theo-
retic framework by viewing the SBSs as a type of resources.
We first modeled the MUs and SBSs using two independent
PPPs with the aid of stochastic geometry, and developed
the probability expression of successful downloading. Then,
based on the probability derived, we set up the profit models
and formulated a Stackelberg game for maximizing the aver-
age profit of the NSPs as well as the VR.We also investigated
the Stackelberg Equilibrium for the two cases by solving a
series of optimization problems. Finally, we provided several
numerical results for showing that the proposed schemes are
effective in both pricing and SBSs allocation.

APPENDIX A
PROOF OF THEOREM 1
It is obvious that if F ≥ f > Ql , we have Pr(El,f ) = 0, since
each SBS of 8l only caches the most popular Ql video files.
Then we consider the case when f ≤ Ql . We assume that the
SBSs of Ll rented by V and caching Ff follow the HPPP 8′l
having the intensity of τlλl . We consider a typical MU M
affiliated with Ll who tries to connect to the nearest SBS B
in8′l . The event El,f represents that this SBS can supportM
with an SINR no lower than δ.
We carry out the analysis on Pr(El,f ) for the typical MUM

located at the origin. We denote by z the distance betweenM
and B, by xZ the location of B, and by ρ(xZ ) the received
SINR at M from B. Then the average probability that M
can download the desired video from B is

Pr(El,f ) = Pr(ρ(xZ ) ≥ δ)

=

∫
∞

0
Pr

 PlhxZ z
−α∑

x∈8l\xZ
Plhx‖x‖−α + σ 2 ≥ δ

∣∣∣∣∣∣∣ z
 fZ (z) dz

=

∫
∞

0
Pr
(
hxZ ≥ u(I + σ

2)|z
)
fZ (z) dz

=

∫
∞

0
EI
(
exp(−sI ) exp(−uσ 2)

)
fZ (z) dz, (25)

where we have

I ,
∑

x∈8l\xz

Plhx ‖x‖−α , u ,
zαδ
Pl
, (26)

and fZ (z) is the probability density function of z. The deriva-
tion of fZ (z) is based on the null probability of the HPPP 8′l
with the intensity of τlλl . More specifically in 8′l , since the
number of the SBSs k in an area of A follows the Poisson
distribution, the probability of the event that there is no SBS
in the area with the radius of z can be calculated as Pr(k = 0 |
A = πz2) = e−Aτlλl (Aτlλl )

k

k! [20].
By using the derivation of the above expression, we arrive

at fZ (z) = 2πτlλlz exp
(
−πτlλlz2

)
. Note that the interfer-

ence I consists of two parts. The first part, denoted by I1,
comes from the SBSs in 8l but not in 8′l , and the second
part, denoted by I2, comes from the SBSs in 8′l excluding
the nearest SBS B. We have the expressions of the two
interference as

I1 =
∑

x∈8l\8
′
l

Plhx ‖x‖−α , I2 =
∑

x∈8′l\xZ

Plhx ‖x‖−α .

(27)

Since the two parts of interference are independent, there is

EI (exp(−uI )) =
2∏
t=1

EIt (exp(−uIt )) . (28)

For EI1 (exp(−uI1)), we have

EI1 (exp(−uI1))

(a)
= E

 ∏
x∈8l\8

′
l

∫
∞

0
exp

(
−uPlhx‖x‖−α

)
exp(−hx) dhx


= E

 ∏
x∈8l\8

′
l

1
1+ uPl‖x‖−α


(b)
= exp

(
−(1− τl)λl

∫
R2

(
1−

1
1+ uPl‖x‖−α

)
d‖x‖

)
= exp

(
−2π

δ
2
α

α
(1− τl)λlB

(
2
α
, 1−

2
α

)
z2
)
, (29)

where (a) is based on the independence of chan-

nel fading, while (b) follows from E
(∏

x
v (x)

)
=

exp
(
−λ

∫
R2 (1− v (x)) dx

)
, where x ∈ 8 and8 is an PPP in

R2 with the intensity λ [25].
Furthermore, since the interference I2 is imposed by the

SBSs outside the circle with radius z. Then we arrive at

EI2 (exp(−uI2))

= E8l

 ∏
x∈8′l\xZ

∫
∞

0
exp

(
−uPlhx‖x‖−α

)
exp(−hx) dhx


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= E8l

 ∏
x∈8′l\xZ

1
1+ zαδ‖x‖−α


= exp

(
−τlλl

∫
∞

z
2π
(
1−

1
1+ zαδr−α

)
r dr

)
= exp

(
−2π

δ

α − 2
τlλl 2F1

(
1, 1−

2
α
; 2−

2
α
;−δ

)
z2
)
.

(30)

Based on Eqs. (29) and (30), we obtain EI (exp(−uI )) in
Eq. (28). We further substitute Eq. (28) into (25). According
to the definitions of the functions A(δ, α) and C(δ, α), we
have

Pr(ρ(xZ ) ≥ δ) = πτlλl

∫
∞

0
exp

(
−π (1− τl)λlC (δ, α) z2

)
exp

(
−πτlλlA(δ, α)z2

)
exp(−uσ 2) exp

(
−πτlλlz2

)
dz2.

(31)

This completes the proof. �

APPENDIX B

PROOF OF COROLLARY 1
In the case that σ

2

Pl
goes to zero, we have

lim
σ2
Pl
→0

exp
(
−
zαδσ 2

Pl

)
= 1. (32)

Then we rewrite Eq. (3) when f ≤ Ql as

lim
σ2
Pl
→0

Pr(El,f )

=

∫
∞

0
exp

(
−π (1− τl)λlC (δ, α) z2

)
exp

(
−πτlλlA(δ, α)z2

)
πτlλl exp

(
−πτlλlz2

)
dz2

=
τl

(1− τl)C(δ, α)+ τlA(δ, α)+ τl
. (33)

This completes the proof. �

APPENDIX C
PROOF OF LEMMA 2
The optimum solution s?l can be obtained by deriving SNSPl

with respect to sl and solving
dSNSPl
dsl
= 0. We have

∂SNSPl

∂sl
=

λl

A(δ, α)− C(δ, α)+ 1
√
KsC(δ, α)ζl

∑Ql
f=1 qf

λlsl
− C(δ, α)

−
1
2
(sl − cl)

√
KsC(δ, α)ζl

∑Ql
f=1 qf

λl
s
−

3
2

l

 .
(34)

Since we have Ul =

√
KsC(δ,α)ζl

∑Ql
f=1 qf

λl
, we shall obtain s?l

from solving the following equation:

s
−

3
2

l +
1
cl
s
−

1
2

l −
2C(δ, α)
clUl

= 0. (35)

Let s
−

1
2

l = x
1
3 −

1
3cl
x−

1
3 , and Eq. (35) can be converted to

x2 −
2C(δ, α)
clUl

x −
1

27c3l
= 0. (36)

Adopt the positive x, and we arrive at

x =
C(δ, α)
clUl

+

√√√√(C(δ, α)
clUl

)2

+
1

27c3l
. (37)

Substitute x to s
−

1
2

l = x
1
3−

1
3cl
x−

1
3 , we obtain the optimum sl .

Also, since there is

∂2SNSPl

∂s2l
=

λl

A(δ, α)− C(δ, α)+ 1

×

(
−
3
4
cluls

−
5
2

l −
1
4
uls
−

3
2

l

)
< 0, (38)

the function SNSPl is a concave function of sl . There exists a
unique optimum price s?l that maximizes SNSPl . Furthermore,
in the case of s?l < slowerl which leads to τl > 1, we
adopt s?l = slowerl to ensure τl = 1. This completes the
proof. �

APPENDIX D
PROOF OF THEOREM 2
We obtain the optimum solution by proposing a modified
water-filling algorithmwith extra constrains. First, we rewrite
Problem 2 as

max
L∑
l=1

Ksζlτl
∑Ql

f=1 qf

(1− τl)C(δ, α)+ τlA(δ, α)+ τl
−

L∑
l=1

τlλlsl

s.t. ¬

L∑
l=1

τlλlsl ≤ S, ­ τl ≥ 0, ® τl ≤ 1, ∀l.

(39)

Note that ¬ and ­ are the traditional constrains for water-
filling principle, while the constraints in ® are particular to
our model. Using the Lagrangian function

L(τ ,µ, ν, κ) = −
L∑
l=1

( Ksζlτl
∑Ql

f=1 qf

(1− τl)C(δ, α)+ τlA(δ, α)+ τl

− τlλlsl + µlτl − νlτl − ξτlλlsl

)
,

(40)
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where µ , [µ1, · · · , µL], ν , [ν1, · · · , νL], and ξ are the
Lagrangian multipliers. We obtain the necessary and suffi-
cient Karush-Kuhn-Tucher (KKT) conditions as

∂L(τ ,µ, ν, κ)
∂τl

= 0,

µl ≥ 0,

µlτl = 0,

νl ≥ 0,

νl(τl − 1) = 0, ∀l. (41)

The condition µlτl = 0 results in τl = 0 or

τl =

(√
KsC(δ,α)ζl

∑Ql
f=1 qf

λlsl (1+ξ )+νl
− C(δ, α)

)
A(δ, α)− C(δ, α)+ 1

, (42)

while the condition νl(τl − 1) = 0 results in τl = 1 or

τl =

(√
KsC(δ,α)ζl

∑Ql
f=1 qf

λlsl (1+ξ )−µl
− C(δ, α)

)
A(δ, α)− C(δ, α)+ 1

. (43)

Then we arrive at

τl =



0 ξ >
Ksζl

∑Ql
f=1 qf

λlslC(δ, α)
− 1,

1 ξ <
KsC(δ, α)ζl

∑Ql
f=1 qf

λlsl(A(δ, α)+ 1)2
− 1,√

KsC(δ,α)ζl
∑Ql

f=1 qf
λlsl (1+ξ )

− C(δ, α)

A(δ, α)− C(δ, α)+ 1
otherwise,

(44)

Finally, the unknown variable ξ is chosen such that the con-
straint

∑L
l=1 τlλlsl ≤ S is fulfilled. In the case ξ = 0, which

means
∑L

l=1 τlλlsl < S, the problem degrades to that in
Section V, i.e., S is sufficiently large such that this constraint
can be neglected.

In the case ξ > 0, which means
∑L

l=1 τlλlsl = S, we first
consider the two sets S1 and S2. For S1, we have τl = 1,
∀l ∈ S1. For S2, we have 0 < τl < 1, ∀l ∈ S2. Then we
arrive at

ξ =

 ∑
j∈S2

√
KsC(δ, α)λjsjζj

∑Qj
f=1 qf

(A− C + 1)(S −
∑
j∈S1

λjsj)+
∑
j∈S2

λjsjC(δ, α)


2

− 1,

(45)

Note that the sets S1 and S2 are determined such that

KsC(δ, α)ζl
∑Ql

f=1 qf

λlsl(A(δ, α)+ 1)2
− 1 < ξ <

Ksζl
∑Ql

f=1 qf

λlslC(δ, α)
− 1. (46)

This completes the proof. �
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