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ABSTRACT Electric vehicles (EVs) provide environmentally friendly transport and they are considered
to be an important component of distributed and mobile electric energy storage and supply system.
It is possible that EVs can be used to store and transport energy from one geographical area to another as
a supportive energy supply. Electricity consumption management should consider carefully the inclusion
of EVs. One critical challenge in the consumption management for EVs is the optimization of battery
charging. This paper provides a dynamic game theoretic optimization framework to formulate the optimal
charging problem. The optimization considers a charging scenario where a large number of EVs charge
simultaneously during a flexible period of time. Based on stochastic mean field game theory, the optimization
will provide an optimal charging strategy for the EVs to proactively control their charging speed in order
to minimize the cost of charging. Numerical results are presented to demonstrate the performance of the
proposed framework.

INDEX TERMS EV consumption management, optimal charging, stochastic optimisation, mean field game.

I. INTRODUCTION
The future electric power generation and supply system
which is recognised as smart grids, is expected to bring
significant benefits to energy generation and dispatch. The
direction of power flow will no longer be just downhill from
the bulk power plants to consumers, but it can start from
any energy generation sources and end up anywhere on the
grid. Electric vehicle (EV) is expected to be one of the main
components of distributed energy consumption, storage and
supply system in smart grids. EVs can serve as a distributed
and mobile energy source in the electricity market [1], [2].
Facilitated by the advanced information and communication
technologies (ICT), EVs can be optimally scheduled and
dispatched to meet the dynamic demand of energy and to
respond swiftly to emergency situations [3]. The storage
and transportation of energy from one geographical area to
another as supportive supply enhances the overall flexibil-
ity of the grid [4]. As EVs will eventually be employed at
household level, as alternative to traditional petrol cars, it
is necessary to include them into home electricity demand
management and consumption optimisation [5].

EV is a major electricity consumer and draws a significant
amount of power in order to retain sufficient battery capacity.

For the grid operators, such high loads attached to the grid
will have to be managed carefully [6], [7]. A schedul-
ing method proposed in [8] minimises the system opera-
tion costs as well as the difference between the minimum
and maximum system demand. To cope with the poten-
tial new load with minimal additional infrastructure, The
authors of [9] proposed a load shaping tool to improve
the usage of distribution transformers. The authors of [10]
proposed an EV classification scheme for a renewable charg-
ing station to reduce the effect of intermittency of electricity
supply and the cost of energy trading. The EV owners
should consider the best charging times and charging
rates (speed) to reduce the cost of energy consumption.
Both centralised and decentralised approaches are proposed
for optimal charging. In the centralised approach, a schedul-
ing agent is responsible for handling all EVs connected to
the power grid and to optimise the charging schedules glob-
ally. These techniques are able to provide globally optimal
solutions. However, undesired computational complexity and
delay are usually seen. Optimal charging can also be achieved
via decentralised algorithms where each EVmanages its own
charging according to the operational condition of the grid
as well as economic incentives [11], [12]. Optimal charging
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becomes one of the critical challenges in the utilisation of
EVs, as evidenced by the emerging work in the literature. For
example, a charging strategy with a genetic algorithm (GA)
which obtains the stochastic features in order to reduce the
power fluctuation level caused by EV charging was pre-
sented in [13]. Paper [14] presented a model which facilitates
a cooperative participation of EVs in residential buildings
and a parking lot. Heuristic methods for optimal charging
considering the acceptable charging power at different state-
of-charges and in response to variable pricing policies in a
regulated market were studied in [15]. Vehicle-to-grid (V2G),
the provision of energy from the EV to the grid as an ancillary
service, has the potential to offer financial benefits to both EV
owners and the power system. In [16], a V2G algorithm was
developed to provide additional system flexibility and peak
load shaving to the utility and low costs of EV charging to
the customer. An algorithm was developed in [17] for use by
a V2G aggregator to bid into energy markets. Considering the
energy flow between the EVs and the grid is bidirectional, a
load shifting technique by optimally scheduling the charg-
ing and discharging of EVs in a decentralised fashion was
proposed in [18]. The authors of [19] developed a global
EV powermanagement scheme tominimise the cost of charg-
ing and discharging over the day. A decentralised scheme was
further developed in order to minimise the cost of the EVs in
the local groups. The local scheduling was claimed scalable
to a large EV population and also resilient to the dynamic
EV arrivals.

Game theory is a powerful tool for understanding and
modelling mathematically the interaction of various rational
decision makers. Applying game theoretic formulation to
various optimisation problems has attracted a lot of interests
in recent research on communication networks and signal
processing [20]. The work in [21] proposed a strategic game
where each greedy base station in a multiple input and multi-
ple output (MIMO) system determines its optimal downlink
beamformer but without any coordination with other base sta-
tions. Compared to a fully coordinated design where the opti-
mal beamformers are jointly designed, the scheme provided
benefits in terms of lower system complexity and overheads.
Game theory is very suitable for analysing the interaction of
consumers and utility operators in order to achieve efficient
distributed demand management [22], [23]. More detailed
discussions on demand management and game theory can be
found in [24]. There have been recent interests in the appli-
cation of game theory in smart grids as well as EV charging
optimisation [25], [26]. Paper [27] proposed a decentralised
charging control method based on the Nash Certainty Equiva-
lence Principle that considers network impacts. A Stackelberg
game was proposed in [28] to model the energy exchange
between the grid and the EVs. In this leader-follower game,
the smart grid decides its price to optimise its revenue while
ensuring the participation of EVs. On the other hand, the EVs
optimise their charging strategies. The Stackelberg equilib-
rium is obtained via the proposed decentralised algorithm.
In particular, a mean field game theoretic framework was

developed in [29] to minimise the consumption cost for the
EVs within a predefined period of time. The energy con-
sumption behaviour of a large number (tends to infinity)
of EVs, including charging power from the grid and releasing
power to the grid, was modelled as a stochastic optimisation
where individual player (EV) chooses its optimal strategy
(the amount of energy charging/discharging at any particu-
lar time) according to the statistical behaviour of the total
group of players. The mean field game is a novel differ-
ential game theoretic modelling mechanism which was first
proposed in [30]. It provides a powerful mathematical mod-
elling based on the formulation of two coupled backward-
forward partial differential equations (PDE) for problems
with a large number of indistinguishable players. The optimal
game solution, which is claimed as the Nash-Mean Field
Equilibrium (Nash-MFE) is derived by solving the coupled
equations. The applications of mean field game theory are
also proposed for security enhancements and power control
in mobile networks [31], [32].

In this paper, a mean field game theoretic framework is
proposed for a scenario where individual EVs manage their
charging at an aggregated charging station. The charging
station has the capability of charging a large number of
EVs during a period of time. We consider that, in the sense
of demand management, the charging station has scheduled
operation times in order to prevent unexpected peak load on
the grid. Acknowledging this, EVs arrive at the station on time
and charge their battery within the defined charging period.
We assume that the charging station allows a minor delay in
operation time. The EV is able to continue charging in excess
of the scheduled operation time, subject to a penalty cost. The
novelty of the proposed framework lies in the consideration
of a degree of flexibility in the length of charging process.
Compared with determined scheduling as in [29], the pro-
posed setting provides more customer comfort. The optimi-
sation enables the EVs to dynamically control the charging
process and to be able to finish at an appropriate time so that
the total cost of charging is minimised.

This paper is organised as follows. The game theoretic
optimisation framework is formulated in section II.
Section III provides detailed discussion on the issue
of Nash-Mean Field Equilibrium and the methodology of
obtaining the optimal solution of the game. Numerical sim-
ulations are presented in Section IV to demonstrate the
performance of the proposed framework. Section V draws
the conclusion.

II. THE GAME THEORETIC OPTIMISATION FRAMEWORK
The system consists of an EV charging station where a large
fleet can be charged simultaneously. The EVs are aggregated
at the station and recharge their batteries in a predefined
period of time. The charging station can tolerate certain delay
in the scheduled finishing time. The actual time of ending
the charging service will depend on the dynamics of the
charging EVs, i.e., when a certain quorum of fully charged
EVs is reached.
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The station charges an EV according to its power consump-
tion, which can be represented by the EV’s charging rates
(speed) over the charging time. Detailed description of cost
of charging is provided in the subsequent section. Given the
pricing information, individual EV is encouraged to optimise
and control its charging in order to minimise the cost of
charging. Due to the non-deterministic charging time, it is
necessary to formulate the charging optimisation framework
as a dynamic control process, based on the knowledge of
the current charging status of all EVs in the station. The
proposed optimisation framework aims to provide an optimal
control strategy that minimises the cost of charging for every
individual EV, i.e., a profile that defines the dynamics of the
charging rates for the whole charging duration. The system is
illustrated in Figure 1.

FIGURE 1. System model: aggregated EV charging at a station.

A. OPTIMISATION COSTS
The minimisation of cost of charging is the objective of the
optimisation for the EVs. The cost consists of the energy
consumption cost during charging and the endpoint costs
that are related to the finishing time of charging. Consider
a finite set of aggregated charging EVs K = {1, . . . ,K }. The
charging station’s pricing policy for any EV k is defined as

a continuous function u(k)t of the charging speed a(k)t , i.e., its
energy consumption at time t ,

u(k)t =
1
2
(a(k)t )2. (1)

The pricing plan can be viewed as a continuous func-
tion approximating the stepwise (multi-level) pricing models

adopted in various research on electricity markets [33]–[35].
The simplified quadratic representation is also widely used to
formulate both the production cost function and the revenue
function in economics. This pricing policy provides incentive
for the EVs to maintain charging at low power in order to
achieve low cost for the whole charging duration. The charg-
ing station can also benefit in terms of lower accumulated
load generated on the grid, especially when massive EVs are
charging at the same time.

The issue of charging time is now described. Denote
the station’s scheduled operation period as [0, t̂], t̂ > 0.
All connected EVs are expected to start their charging
at time 0. They should be willing to maintain lowest pos-
sible charging rates until their batteries are fully charged
at time t̂ , when the station is scheduled to terminate
its charging service. However in reality the actual charg-
ing duration of any particular EV can vary from the
expected time. This variation is mainly due to charg-
ing efficiency/loss, degree of degradation of individual
battery. Denote an EV’s actual finishing time as τ (k).
As mentioned above, the charging station will tolerate a
modest delay in terms of the finishing time, up to a maximum
of tmax . The actual charging finishing time, denoted by T ,
between [t̂, tmax] will depend on the dynamics {τ (k),∀k} of
all EVs.

In the following, several endpoint costs are defined as
functions of the charging finishing times t̂, τ and T . Firstly,
a punctuality cost is set. It can be viewed as a price paid for
lateness, payable to the charging station, for the EV k:

c(k)1 (t̂, τ (k)) = f1([τ (k) − t̂]+). (2)

The charging station can issue such lateness penalty to
regulate the punctuality behaviour of charging EVs. The
selection of this cost function f1(·) will have influence on
the result of charging optimisation directly, as discussed in
Section IV.

Secondly, a cost of the lateness is defined in terms of the
actual finishing time of charging. This reflects the loss of
incomplete battery recharge because the charging station will
have to stop power supply after this time:

c(k)2 (T , τ (k)) = f2([τ (k) − T ]+). (3)

This represents the cost of inefficiency for the charging
EV. Although not actual financial cost, it is included in the
optimisation. Besides, some EVs may opt for very fast charg-
ing as their priority is the charging time. For those EVs, the
utility function should be modelled differently. They are not
considered to participate in the same game. Therefore this
type of charging is not covered in this paper.

Finally, C (k)
T (t̂, τ (k),T ) = c(k)1 (t̂, τ (k)) + c(k)2 (T , τ (k)) is

used to represent the cost at the finishing time of the charging.
Individual EV would want to minimise this cost along with
the charging expense during the whole charging duration.
Assume that all these cost functions are continuous and twice
differentiable. The total cost function J (k) : a(k) 7→ R of the
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optimal charging is therefore

J (k) =
∫ τ (k)

0
u(a(k)t )dt + C (k)

T (t̂, τ (k),T ). (4)

B. DYNAMIC EV CHARGING PROCESS
Let us suppose that an EV’s charging is represented by its
battery capacity X (k)

∈ [0, 1] moving from an initial state
X (k)
0 > 0 (battery capacity when charging starts) towards the

fully charged point of 1. This movement is described using a
dynamic process, written as a stochastic differential equation

dX (k)
t = η

(k)a(k)t dt + σtdW
(k)
t + dN

(k)
t , (5)

where the charging rate a(k)t is a controlled drift at time t
in return for a cost as defined in (1) and η(k) represents the
measurable charger efficiency for the EV, which is assumed

to be 1 for simplicity. W (k)
t is an independent Brownian

motion (Wiener process) with a diffusion coefficient σt . It’s
differentiation should follow the rules of Itō calculus [36].
The choice of W (k)

t represents the adjustment (uncertainty in
power loss) added to the charging which indicates that the
charging process is independent among the EVs at different
times, due to different battery characteristics and individual
EV’s minor operational consumption during the charging
time. The termN (k)

t is a reflective noise which ensures that the
value of X (k) remains in (0, 1]. The reader is referred to [37]
for more details on Brownian motion.

At any particular point in time during the charging process,
the EV will be able to obtain the information of the charging
status, i.e., the current battery capacity {X (1)

t , . . . ,X (K )
t } and

the charging rates {a(1)t , . . . , a
(K )
t } of all charging EVs via

communications through the ICT infrastructure. An estima-
tion of actual finishing time T is obtained based on this
gathered information. Mechanisms for the estimation of T
can vary depending on the particular algorithms. This paper
considers the mean field game theoretic method. Due to the
dynamic nature of the optimisation, such information must be
exchanged continuously and in real-time during the charging
period. However for each EV, the amount of data overhead
required for exchanging information at any time is limited.
Considering that the EVs are aggregated in the station, data
communications take place at a short distance through wire-
less sensor networks embedded in the EVs.

Having included the information of estimated T into the
cost function, the EV is able to optimise its own charging
process. The optimisation is described as a stochastic control:

min
a(k)t

E
[
1
2

∫ τ

0
(a(k)t )2dt + C (k)

T (t̂, τ (k),T )
]
, (6)

subject to the dynamic dX (k)
= a(k)dt + σdW (k)

+ dN (k)

with an initial state X (k)
0 and the expectation is over W (k).

The optimisation will aim to find an optimal law γ ∗(t,X (k)∗)
which defines the optimal charging strategy of the control
trajectory a(k)∗ and hence the movement of X (k)∗ for the
particular EV. Note that in practice, the charging rate of an

EV is usually valued in a range of [amin, amax]. This should
be included as an additional constraint in the optimisation
problem.

C. K-PERSON GAME THEORETIC FORMULATION
Based on the above formulation for a single EV, the opti-
misation of the total K EVs at the charging station is now
formulated as a game theoretic framework.

One classical formulation is the K -person dynamic dif-
ferential game where every EV is treated as an individual
player, hence K represents set of players. They are assumed
to be rational meaning that they will play the best strategies,
i.e., at time t , player k optimises its charging control a(k)t
based on the understanding of the game situation in order to
maximise its own utility. The situation of the game at time t
is determined by the charging status of every individual EV

in the station. Here �
(k)
t = (X (1)

t , . . . ,X (K )
t , a(1)t , . . . , a

(K )
t )

denotes the set of information available to the player k at
time t . It is assumed that players are memoryless as they
do not have this status information of previous time instants.
The level of satisfaction (utility) under certain game situation
is represented by a payoff. In this particular optimal charg-
ing game, a player’s payoff can apparently be measured by
its cost of charging. Therefore, the objective of the player

is to determine a dynamic trajectory of charging rate a(k)t
that maximises its payoff by conducting the optimisation as
defined in (6).

Define a mapping B
(k)
t : �

(k)
t 7→ S(k)t , to represent

the choice of strategy for player k at time t , with S(k)t the

set of all possible controls a(k)t for the player. In particular,
B

(k)
t yields a best response control that maximises the payoff.

The optimal charging action of player k at time t is therefore
a (own-state) feedback strategy determined by

a(k)t = B(k)(�(k)
t ), 0 ≤ t ≤ T . (7)

Referring to the game theoretic interpretations, a(−k)t ∈ S(−k)t ,
where S(−k)t =

∏
i∈K,i6=k S

(i)
t , denotes the joint strategy

choices of all players other than k at time t . For player k ,
the choice of strategy a(k)t is a best response to the
current game status and the strategies chosen by all the
players (a(k)t , a

(−k)
t ).

The formulation is completed by defining the strategy
set over the total charging period for player k as S(k) =
{S(k)t , 0 ≤ t ≤ T }, and the overall strategy space for all
players as S =

∏
k∈K S(k). Having the above formulation,

the game can be viewed as a dynamic optimisation process
where every individual player (EV k) chooses best strategy
(charging rate a(k)) to maximise its payoff (minimise
cost J (k)), for the whole charging duration. The solution of
the game is considered as a feedback Nash Equilibrium (NE),
as defined below:
Definition 1: The feedback Nash Equilibrium of the

K -person charging optimisation game is a joint strategy
profile a∗ = {a(1)∗, a(2)∗, . . . , a(K )∗

}, a∗ ∈ S, where
a(k)∗ = {a(k)∗t = B(k)(�(k)∗

t ), 0 ≤ t ≤ T }, and satisfies
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for all k ∈ K,

J (k)(a∗) ≤ J (k)(a(k), a(−k)∗), ∀a(k) ∈ S(k), a(k) 6= a(k)∗.

(8)

This definition states that given the equilibrium strategy
choices of other players a(−k)∗, player k has no incentive to
change its own strategy from a(k)∗ unilaterally. Nash Equi-
librium is critical because, if exists, it guarantees a stable
game situation where every player plays the best strategy
responding to the strategic choices of all other players. For
the particular charging game, obtaining the NE point is equiv-
alent to achieving an optimal charging result for every EV in
the system.

Analysing the NE in terms of showing its existence and
uniqueness is never obvious [38]. Even if NE does exist,
it may be difficult to develop convergence algorithms to
exploit. This is more complex in the case of K -person games,
where K can be considerably large. Various mechanisms
for analysing multi-player differential games can be found
in [39]. Nevertheless, it can be claimed that under the pro-
posed game formulation, any change of any player at any
time, i.e., changes in �t , has impact on all players’ payoffs.
They will have to be acknowledged and respond accord-
ingly. This results in significant computation complexity and
increased ICT overhead. In order to resolve these potential
issues, it is necessary to modify the formulation and propose
the following mean field game approach.

D. MEAN FIELD GAME REPRESENTATION
Mean field game theory is powerful in modelling and
analysing games with numerous players. For the simultane-
ous charging scenario involving a large number of EVs, it is
possible to formulate a statistical performance of the whole
population to represent the mean field, and every player
optimises its charging strategy accordingly.

In order to model the above discussed charging optimisa-
tion scenario as a mean field game, two additional assump-
tions in relation to the players are required. Firstly, the total
number of players is very large so that they can be viewed as
a continuum instead of individuals. In other words, we now
consider the charging of infinite EVs. Having this assumption
in place, we are able to analyse the charging status based on
a statistical distribution of the population, without the need
of detailed observation of individual EVs. This condition is
justified later. The second assumption is that the players are
indistinguishable. This implies that all EVs have similar type
of batteries and charging control abilities (however still their
initial battery states and the efficiency loss, etc., may vary).
They are modeled mathematically identical.

Having made these assumptions, we are able to remove the
notations k and X in the classical formulation and use a state
variable xt ∈ [0, 1] to represent the battery capacity of the
indistinguishable player at time t ∈ [0,T ]. The movement of
xt is indicated using a differential equation

dxt = atdt + σtdWt + dNt , (9)

which is similar to the one in (5) however without the player
index k . The choice of Wt represents the uncertainty of xt
at different times. Now the charging processes of all the
EVs can be modelled using the same formula. Considering
the independence of individual EVs and the uncertainty in
different times, the result of their participation of the charging
can be described using a statistical distribution of x and t ,
denoted by m(t, xt ). The distribution is defined in the com-
pact domain of [0,T ] × [0, 1] and has a compact support.
This means that we are able to analyse the behaviour of the
overall charging process through investigating the dynamic
trajectory of m. The charging of m moves from initial state
m(0, x0) = m0 towards the completed charging state indi-
cated by m(·, 1).

In this context, the time when the dynamic flow reaching 1,
can be seen as t̃ 7→ ∂xm(t̃, x)|x=1. The cumulative distribu-
tion function (CDF) F of finishing times can be defined by

F(t̃) =
∫ t̃

0
∂xm(t̃, x)|x=1dt. (10)

The actual finishing time T of the charging can be defined
by this information of the dynamics of EVs. For example,
T is fixed by a quorum rule of θ , which means θ percent of
the EVs have finished their charging,

T =


t̂, if F−1(θ ) ≤ t̂
tmax , if F(tmax) ≤ θ
F−1(θ ), otherwise

(11)

Under the above formulation, the charging optimisation
game is played from the viewpoint of an ‘average’ player.
The player minimises his cost of charging with the optimal
control a(t, x) ∈ S̄ for the trajectory of the battery state x
according to the statistical behaviour m which determines T .
S̄ denotes the space of all controls for the state dynamics. The
actual players (the individual EVs) will be argued into the
optimal strategy a. Their repartition will lead to the optimal
trajectory of distribution m, which in return feeds back to the
optimisation of charging strategy.

The game can be considered as a coupled system of cost
minimisation and the optimal behaviour of the statistical
trajectory. Solving the optimisation system will naturally
lead to the optimal solution of the game [40]. In this way,
the optimisation of the cost of charging no longer requires
information �t of all individuals however it knows the
status mt . System complexity and communications overhead
are therefore reduced.

III. ANALYSIS OF THE MEAN FIELD GAME
The solution of the mean field game theoretic optimal charg-
ing framework, known as the Nash-Mean Field Equilibrium
(Nash-MFE) [30], is discussed. As the mean field game is
transformed from a K -person game, the definition of feed-
back Nash-MFE is stated based on Definition 1, as follows.
Definition 2: The Nash-Mean Field Equilibrium in

feedback strategies of the charging optimisation game is
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a control a∗ ∈ S̄, consistent with the distribution m∗ of the
charging dynamics for a given initial state ofm0, and satisfies

J (a∗,m∗) ≤ J (a,m∗), ∀a ∈ S̄, a 6= a∗. (12)

Having followed the equilibrium strategy of a∗, individ-
ual players of the game (EVs) have no incentive to deviate
from a∗. Hence the dynamics of battery states will be accord-
ing to m∗. Therefore it is claimed that their optimal charging
processes with an actual finishing time of T ∗ are determined.

A. THE COUPLED STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS
Based on the work in [30], a mathematical scheme is
formulated using coupled stochastic partial differential
equations (SPDE) in order to obtain cost minimisation and the
optimal behaviour of the statistical trajectory, and to generate
the MFE of the game.

Firstly, consider the cost minimisation problem which has
the objective as in (6), however without the index k as now
only the mean field ‘average’ player is considered. At any
particular time t , the player will obtain a T fixed by the
observation of mt , and the agent is looking for the optimal
control a∗ for the minimum cost-to-go. The cost-to-go value
function U (t ′, x) : [0, τ ] × [0, 1] 7→ R has the following
form:

U (t ′, x) = min
at ,t≤t ′≤τ

E
[
1
2

∫ τ

t ′
a2t dt + CT (t̂, τ,T )

]
, (13)

subject to the dynamics of x as defined in (9).
The optimal solution of the cost minimisation is

the value function U which satisfies the backward
Hamilton-Jacobi-Bellman (HJB) equation:

∂tU +min
a

(
1
2
a2 + a∂xU

)
+
σ 2

2
∂2xxU = 0. (14)

Solving the minimisation part by using the optimal control
term a∗ = −∂xU , this equation is formulated as:

∂tU −
1
2
(∂xU )2 +

σ 2

2
∂2xxU = 0, (15)

with the boundary conditions U (τ, 1) = CT (t̂, τ,T ) cor-
responding to the endpoint cost when fully charged, and
U (tmax , x) = CT (t̂, tmax , tmax) corresponding to the endpoint
cost defined in terms of the maximum allowed charging
delay time. Provided an optimal m∗t , the HJB equation will
determine the functionU and hence indicate the optimal a∗(t)
of the player.

The optimal movement ofm∗t , for a givenm0, is determined
by the following forward Fokker-Planck-Kolmogorov (FPK)
equation,

∂tm+ ∂x(a∗m)−
σ 2

2
∂2xxm = 0, (16)

with the compact boundary conditions of m(·, 0) = 0
and m(·, 1) = 0. It is observed in the FPK equation that
a∗ is exactly the optimal control strategy results from the

HJB equation. Solving the two coupled SPDEs will deter-
mine the MFE, if exists. There is no general methods to
solve such nonlinear systems. As they are inherently dis-
tributed, iterative learning algorithms have been proposed in
order to obtain the solution with reasonable computational
complexity [41], [42].

B. EXISTENCE AND UNIQUENESS OF THE MFE
The justification of the above mathematical scheme stems
from proving the existence and uniqueness of a MFE solu-
tion. Similar to classical games, Brouwer fixed point theo-
rem is used for establishing the equilibrium point from the
best responses mapping. For the proposed optimal charging
mean field game, the mapping is between the optimal con-
trol a∗ andm∗ consisting all players’ controls. It is discovered
that, one chooses best strategy a∗ by solving the HJB equation
corresponding to a given T . T is determined by the dynamics
of flow m∗ which is given by the FPK equation. Hence it
is useful to investigate the time T coherent with the rational
behaviours of the players. The MFE is eventually a matter of
locating the fixed point of the mapping T 7→ T .

Consider the following representation of the SPDE
scheme:

T 7→ CT 7→ U 7→ −∂xU 7→ m 7→ ∂xm(t̃, x)|x=1 7→ T ,

(17)

It can be seen that the scheme is from [t̂, tmax] to [t̂, tmax]
itself. In order to obtain a fixed point result for the mapping,
it is needed only to show the scheme is continuous [43].

The first part of the scheme, CT (t̂, τ,T ) is assumed to be
a C2 continuous function. Following the second part, it can
be observed that function U is continuous in CT . It is further
stated that the HJB equation provides a solution of U ∈ C2

with −∂xU is Lipschitz continuous according to [40]. Also,
the solution m of the FPK equation is C1 continuous and
∂xm(t̃, x)|x=1 ∈ C0 admits a positive lower bound for any
T ∈ [t̂, tmax]. Now the final mapping of the scheme is
considered, which is 0 : ∂xm(t̃, x)|x=1 7→ T . Define
γ1 and γ2 to represent the two different flows of dynamics
reaching 1. They are both bounded by a common ε. Assuming
T1 = 0(γ1) and T2 = 0(γ2), t̂ ≤ T1 < T2 ≤ tmax , it has∫ T2

0
γ2 ≤

∫ T1

0
γ1 ⇒

∫ T2

T1
γ2 ≤

∫ T1

0
(γ1 − γ2). (18)

The left term
∫ T2
T1
γ2 is bounded by ε(T2−T1) while the value

of
∫ T1
0 (γ1 − γ2) is below tmax(||γ1 − γ2||∞). Thus,

(T2 − T1) ≤
tmax
ε

(||γ1 − γ2||∞), (19)

which satisfies the Lipschitz condition. Therefore the map-
ping 0 is C0 continuous. The overall scheme is a continuous
mapping of T 7→ T , which admits a fixed point T ∗ coherent
with the behaviours a∗ andm∗. Hence, the existence of aMFE
solution for the charging game is established. However, in
order to produce a unique MFE, the game theoretic formu-
lation requires additional monotonicity conditions in relation
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to the cost optimisation in the HJB equation [40]. It can be
argued that these conditions are subject to individual game
modelling, and they are not necessarily general premises in
EV charging scenarios.

C. MEAN FIELD GAME VERSUS K-PERSON GAME
The formulation of mean field game introduces a generalisa-
tion approach by which the interaction among large popula-
tions can be analysed, based on the assumptions that players
are treated indistinguishable and continuum. The settings of
mean field players have advantages in the sense of increased
computational efficiency [30]. By formulating players into a
continuum, it enables the use of powerful differential calculus
and statistics for analysing the optimal behaviours of the
players. As they take actions based only on the statistical
state of the total mass, information exchange in terms of their
exact game play can be omitted. This reduces the system ICT
overhead while enhancing privacy. Moreover, comparing to
K -person game where players are sensitive to the changes
of the others, changes of particular players in a mean field
game has little impact on the performance of the total mass.
Therefore the optimal strategy choice of every player can
remain. This enhances the efficiency and the stability of the
optimisation system. However, the mean field players result
in less sophisticated than that of K -person games, because
players are able to observe and respond to the exact moves of
all others in a K -person game.

In addition, the mean field solutions can be considered as
the limit approximation of K -person games as K →∞. It is
claimed that a corrective term in the order of 1/K is sufficient
to describe the precision of the approximation [40]. Thus, the
efficient mean field game approach can be applied to a wider
range of practical applications including those with limited
dimension (small K ), for example in oil production, and in
the case of EV charging.

IV. NUMERICAL RESULTS AND PERFORMANCE
EVALUATION
A. SYSTEM SET UP
Consider a charging station with the total ability to charge a
fleet of 500 EVs. The scheduled time length of charging is
t̂ = 120 minutes, with the allowed maximum extension to
tmax = 150 minutes. A quorum rule of θ = 90% is used to
determine T . The station’s pricing policy has been defined as
in (1). Two terminal costs for all EVs will be determined by
the following linear functions: c1(t̂, τ ) = 3([τ − t̂]+), and
c2(T , τ ) = 4([τ − T ]+). The battery capacity of the EVs,
as well as the charging status parameter x, are represented
by percentage values in between 0 and 100. Assume that
each EV has a full battery capacity of 40KWh. However they
have been assigned with different initial charging states. For
the simulation the initial battery capacity value is assumed
randomly between 20 and 30 percent. The charging speed
of the EVs is bounded between amin = 0.25 percent per
minute and amax = 1.5 percent per minute. Considering the

FIGURE 2. Optimal charging speed for one EV in a mean field game
scenario (T ∗ = 147).

FIGURE 3. Optimal trajectory of the charging battery capacity for one EV
in a mean field game scenario (T ∗ = 147).

restraints of battery charging at different capacity levels, the
maximum charging speed is halvedwhen the capacity reaches
85 percent.

B. PERFORMANCE EVALUATION
The simulation demonstrates that all charging EVs are par-
ticipating in the proposed mean field game to optimise their
cost of charging. Figure 2 and Figure 3 depict the optimal
charging results in terms of dynamic charging speed and
the battery capacity trajectory for one randomly chosen EV
from the 500 participants, respectively. As seen, the battery is
charged in a dynamic however modicum fluctuated charging
speed around 0.7 percent per minute. The battery capacity
increases smoothly. When the capacity reaches 90 percent,
the charging speed slows down significantly. The charging
finishes with full capacity at the elapse of 147 minutes, which
is exactly T ∗, the finishing time determined by the MFE of
the 500 EVs. In this way, the lateness cost at the endpoint has
been successfully minimised, with a final cost of 78 which
is only due to the penalty as defined in c1. Therefore it can
be claimed that the optimisation has efficiently made the full
utilisation of the permitted time and obtained the optimal
strategy for the EV. Since all EVs optimise the charging
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FIGURE 4. Distributions of battery capacity over charging duration
(T ∗ = 147).

FIGURE 5. Optimal battery capacity dynamics of 500 EVs (T ∗ = 147).

according to the mean field, their behaviour will be similar
and the overall result will be less dynamics in time.

Detailed distributions of the battery capacity of all the
EVs over the charging period is depicted in Figure 4. The
distributions are shown in eight different times from the start
of charging towards the finish, with 24 minutes intervals
during the first 144 minutes and three minute intervals in the
final period from 144 to 150 minutes. As seen, the variation
of batteries capacity remains in a range of approximately
10 percent of full capacity. The distributions at different times
over the charging period have a fairly low standard deviation
that is between 0.8 and 2.3. As the charging moves near to
the finish point, the variation becomes smaller. The major-
ity of the EVs finish their charging as the time approaches
147 minutes. At 147 minutes, 23 EVs do not obtain
full recharge and the distribution remains unchanged until
150 minutes. This reflects the setting of the quorum rule.

Figure 5 depicts the dynamics of battery capacity for all the
500 EVs (i.e. the optimal trajectory m∗). It can be observed
that all EVs behave similarly as they follow theMFE strategy.
From the charging station’s demand management perspec-
tive, the charging is optimised in the sense of balancing
the consumption over time. Figure 6 shows the accumulated
charging power for the fleet of 500 EVs over the charging
time. A reasonably smooth power profile is seen without

FIGURE 6. Total energy consumption of 500 EVs (T ∗ = 147).

FIGURE 7. Optimal battery capacity dynamics of 500 EVs (T ∗ = 135).

significant instant peaks. Such power profile is claimed to be
beneficial to the reliability of the grid. The power profile has
a maximum value of 7.9MW , which means an approximately
18KW maximum charging power for every EV.

The charging finishes with a 27 minute delay to the sched-
uled finishing time. However, it is seen that after 130minutes,
the power drops significantly, because themajority of the EVs
has already charged to a high capacity. Therefore, we claim
that even delay in operation is introduced, it is not causing
severe impact on the reliability of demand management. The
station can issue more critical punctuality costs to regulate
the charging EVs and urge them to finish sooner. Figure 7
depicts the dynamics of all EVs with an increased terminal
cost of c1(t̂, τ ) = 4([τ − t̂]+), while other settings remain
the same. As seen, the charging of the batteries become
quicker. The charging finishes at T ∗ = 135 minutes, which
is an improvement by 12 minutes compared to the previous
scenario.

V. CONCLUSION
This paper proposed a dynamic game theoretic optimisation
framework based on stochastic mean field game approach
for charging electric vehicles in smart grids. It is designed
for an optimal charging scenario where a large number of
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EVs charge simultaneously in an aggregated charging station.
Given the pricing policy of the charging station and the sta-
tistical charging status of all EVs, the game theoretic frame-
work provides an optimal solution for every individual EV
to proactively control its charging rate in order to minimise
the cost of charging. Numerical results have been presented
to demonstrate the performance of the proposed framework.
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