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ABSTRACT With the extensive development of Wi-Fi, indoor location services based on received signal
strength (RSS) fingerprints have attracted increasing attention from researchers. In complex indoor environ-
ments, multipath and non-line-of-sight (NLOS) conditions would lead to large errors in measured values,
thereby reducing indoor positioning accuracy. In this paper, we propose a Wi-Fi indoor localization method
based on collaboration of fingerprint and assistant nodes. First, appropriate assistant nodes based on the
similarity of RSS sequences are elaborately selected around the unknown node and distances between them
are used as auxiliary information to improve the positioning accuracy. Furthermore, in the complex indoor
circumstances that result in NLOS error, an adaptive Kalman filter with colored noise is used to mitigate the
time-of-flight ranging error. Experiments demonstrate that in complex indoor environments, our system can
outperform its counterparts with robust performance and low localization estimation error.

INDEX TERMS Indoor localization, searching model, TOF, Wi-Fi.

I. INTRODUCTION
With the booming development of mobile Internet and intel-
ligent terminals, due to its imponderable social and commer-
cial values, localization-based services (LBSs) have attracted
considerable attention from researchers. The demand for an
indoor positioning service or indoor LBS (iLBS) has also
accelerated given that people spend the majority of their time
indoors. However, the complexity of the indoor environment
often severely affects the accuracy of indoor localization.
Complications include non-line-of-sight (NLOS) reference
objects, the presence of obstacles, signal fluctuation or noise
and environmental change [1]–[4].

The indoor localization problem has been met with much
research and study. In particular, the ubiquity of wireless
fidelity (Wi-Fi) networks has made it a target of localization
efforts especially due to its pervasiveness in infrastructure
andmobile clients [5]. Many indoor localization technologies
have been promoted such as RFID, Wi-Fi and Bluetooth.
Nevertheless, due to the limitations of the hardware of a
common smart cell phone and the facilities that are installed
in open environments, location services based on Wi-Fi are
widely used in indoor navigation applications [6], [7].

Wi-Fi based localization research typically falls into
two distinct paradigms: radio propagation modeling and

radio frequency (RF) fingerprinting [8]. The former attempts
to infer the position of the target device using equations
that express wireless signals in the specific environment and
obviously it is very important and difficult of wireless sig-
nal propagation parameter estimation to obtain an accurate
position due to the complex signal transmission pattern in
indoor environment [9]. Research like [9] has indicated that
the well-known log-normal shadowing model complies with
the following formula (1).

PL (d) = PL (d0)− 10nlog10

(
d
d0

)
+ Xσ (1)

where d0 means the near-Earth reference distance (which is
determined experimentally) and d is the distance between
the transmitter and receiver. PL (d0) represents the received
strength when the distance is d0 and the same goes for PL (d)
when the distance is d. And the coefficient n indicates the
rate of the loss exponent which varies with the complexity of
environment and is always set to 2∼4 under indoor circum-
stances. Xσ is to model the shadowing effect, which follows
a Gaussian distribution (in dB) with mean zero and standard
deviation σ .
The latter has focused on Wi-Fi fingerprint-based posi-

tioning systems using RSS [10]–[13]. The fingerprinting
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positioning method results from pattern recognition. Theory
suggests that with increasing propagation distance, factors
such as indoor obstacle blocking and interference from other
wireless devices in a complex environment will attenuate the
transmission of a signal from an Access Point (AP) and will
make signal strength exhibit non-regular distribution [10].
APs generally could be observed simultaneously by termi-
nal devices in regions covered with WLAN, and the signal
strength of each AP subject to the same characteristic [11].
Therefore, the terminal device at each specific localization
can observe a group of APs and measure the RSS values
of different APs, however RSS values received from APs
set at different positions are different [12], [13]. So the
RSS information from the APs described above is called a
‘‘fingerprint’’ [14].

Usually APs periodically broadcast a beacon signal
that demonstrates the existence of APs. Therefore termi-
nal devices equipped with a wireless network card can
obtain three types of information about APs: APs’ names,
MAC addresses and RSS values through the signal trans-
mitted from APs, even though they do not communicate
with the WLAN. Using APs’ names or MAC addresses,
terminal devices could distinguish RSS values from
different APs.

The RSS-based fingerprinting localization algorithm does
not require the path-loss model of signal propagation.
The positioning process seen in Fig. 1 typically falls into
two stages.

FIGURE 1. The scheme of fingerprint localization algorithm.

Off-line phase: a two-dimensional Cartesian coordinate
system is established in the indoor environment, and refer-
ence points (RPs) are set at a fixed interval according to
the desired positioning accuracy. Next, a RSS signature map
(which is also called an RSS locating fingerprint database)
containing the RSS values corresponded to RPs’ coordinates
is effectively built by traversing the area. In order to obtain
the database mentioned above, we need to set some RPs in
the positioned region and then an RSS data collection device
is used to traverse all RPs while recording RSS values and
coordinates.

On-line phase: for the sake of acquiring the unknown
node’s localization, its RSS values are measured, and then

matching algorithms are utilized to compare it with the data
stored in the database.

The position accuracy of the traditional fingerprint-based
localization algorithm depends on the accuracy of the match-
ing algorithm and fingerprint databases. However, in com-
plex indoor environments impacted by signal reflection,
refraction, and obstacles, RSS value has a greater error due
to large fluctuation, which seriously affects the fingerprint
database’s accuracy. Nevertheless, traditional localization
algorithms only utilize single node while neglecting other
indoor nodes’ information. In fact, current indoor environ-
ments (e.g., offices, shopping malls) are filled with Wi-Fi
devices. Therefore, our intuition is that these Wi-Fi devices’
informationmay be used to improve positional accuracy; they
can be considered assistant nodes. Hence this paper proposes
a novel Wi-Fi indoor localization algorithm based on the
collaboration of RSS and assistant nodes.

We select assistant nodes based on the principle of
RSS similarity, which will be introduced in the follow-
ing section. After calculating the values of RSS similarity
between the unknown node and surrounding ones, we can
select assistant nodes effectively. Next, we measure distances
between each pair of Wi-Fi devices through time-of-
flight (TOF) range, which can be used as auxiliary infor-
mation to improve positional accuracy. The TOF-based
methods measure the distance based on estimation of the
signal propagation delay, i.e., the TOF, between a transmitter
and a receiver since in free space or in air, radio signals
travel at the constant speed-of-light. We adopt an adaptive
Kalman filter to eliminate NLOS ranging error and build a
searching model with an exhaustive and maximum gradient
algorithm to obtain an accurate localization for the unknown
node.

In light of the great demand for indoor localization ser-
vices, we propose a novelWi-Fi indoor localization algorithm
based on the collaboration of RSS and assistant nodes in this
paper. It not only utilizes the RSS fingerprint database but
also selects assistant nodes close to the unknown node in
space by comparing the RSS values’ sequence. And then we
take the distances between all the assistants and the unknown
node into account. Aiming at the severe NLOS error caused
by the complicated indoor environment, an adaptive Kalman
filter with colored noise is used to eliminate the ranging error
to enhance localization accuracy. Based on the additional
ranging information of assistant nodes, a searching model
is established to optimize localization error and reduce the
effects of the environment’s complexity.

Unlike the traditional fingerprint-based algorithm, this
paper utilizes many other devices surrounding with the
unknown one to improve positioning accuracy. Furthermore,
NLOS mitigation method is applied in our algorithm to elim-
inate measurement error caused by complex indoor environ-
ment. That can give a better localization results than the
current literatures which just simply extend the single device
localization method into a multiple devices version, desig-
nating weights to each device according to matching result
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against the fingerprint database or distances measurements
between the devices.

It is worth to note that there is no essential difference
between node and device, and in fact we use the two nota-
tions interchangeably, while the unknown node means the
interested device whose location is unknown and needs to be
estimated.

The rest of this manuscript is organized as follows.
Section II reviews the related work on Wi-Fi localiza-
tion algorithms, and in Section III, the theoretical basis is
explained, and the system structure is depicted in detail.
In Section IV, experimental results are presented, and the
paper’s conclusions are presented in Section V.

II. RELATED WORK
Considerable research has been performed on indoor local-
ization. Paolo Barsocchi proposes a novel localization algo-
rithm which selects and weights the RSS measurements
according to their strength, and uses an automatic training that
only exploits information from the anchors, without requir-
ing human input [15]. However, information from anchor
nodes in this algorithm is not taken into account and the
propagation model of the wireless signal is simplified which
affects the localization accuracy when the system is deployed
in a complex environment. Mussa Bshara proposes using
fingerprinting localization depending on RSS-based obser-
vations for positioning and tracking in wireless networks
with a new approach called the base-station-strict (BS-strict)
methodology [16]. However, the time information (stamps)
available with the measurements are not considered. Never-
theless, Ramsey Faragher examines the unique properties of
BLE (Bluetooth Low Energy) signals and studies the appli-
cation of fingerprinting to locate BLE devices in an environ-
ment with BLE beacons without considering the effect of
people walking and the number of APs on the positioning
accuracy [17].

Researchers have shown that matching algorithms and
the RSS data’s accuracy are the most important factors in
fingerprint based positioning systems [18]. Concerning the
problems mentioned above, Chung-Hao Huang proposes
Kalman-filter drift removal and Heron-bilateration local-
ization estimation to effectively reduce RSS drift and
localization error, without any sacrifice of localization
granularity and accuracy [19]. Jianwei Niu detects WiFi
APs to form WiFi fingerprints from the signals collected
by ZigBee interfaces, and aligns a pair of fingerprints
with a matching algorithm to improve the localization
accuracy [20], [21].

However, this work does not take the effect of NLOS on
distance measurement into account.

Maxim Shchekotov describes Wi-Fi lateration methods
based on signal propagation models and signal strength data
collection for indoor localization [22]. The proposedmethods
use a log-normal path loss model for signal propagation and
RSS measurement collection for distance estimation and a
lateration approach for localization. Furthermore a traditional

radio map is replaced by special ring radio map building.
However, noise in the measured RSS is assumed to be a zero
mean Gaussian random variable with variance RSS, and the
approach is only suitable for one room if the number of APs
and their density is low.

To addresses the implementation of indoor real-time
localization systems (RLTS), Saverio Pagano presents
a RSS-based tag based on WSNs with an anchor nodes clus-
tering strategy based on the Euclidean distances to reduce
the number of anchor nodes and to increase the beacon
node localization accuracy [23]. Yet, the influence of unfixed
distance between the beacon node and anchor nodes on local-
ization accuracy has not been thought out. Unlike the tradi-
tional approaches, Chouchang Yang proposes a Wi-Fi based
positioning technique utilizing the transmission of multiple
predefined messages [24]. However, this work assumes that
eachAP has four antennas and the user device is a smartphone
with a single antenna without considering the effects of the
number of each AP’s antennae on the localization.

Zhao Fang proposes a novel gradient-based AP local-
ization approach, inferring the direction (minus gradient)
of an AP just from the locally received signal strength
variations [25]. This work introduces a direction cluster-
ing method to identify and eliminate the inaccurate gradi-
ents, but only selects partially accurate gradients to perform
optimization. Jongtack Jung proposes a range-based RSS
localization algorithm consisting of DB-assistance, a ration
based algorithm, and an elementary machine learning
algorithm [26]. However, the environmental influences on
distances converted from RSS measurements is not con-
sidered without related analysis. Yuan Zhuang proposes a
novel algorithm for automatic estimation of AP localizations,
also for propagation parameters in dynamically changing
indoor environments without requiring some knowledge of
the propagation parameters in advance [27]. However, this
work does not consider the influence of the variable caused by
shadowing not submitting to Gaussian distribution.

The localization accuracy of the traditional fingerprint-
based algorithm depends on the matching algorithm and
fingerprint databases. However, in complex indoor environ-
ments impacted by signal reflection, refraction, and obsta-
cles, RSS value has a greater error due to large fluctuation,
which seriously affects the fingerprint database’s accuracy.
Furthermore, only the unknown node’s information is used in
the traditional localization algorithmwhilemany surrounding
devices are neglected which ban be utilized to improve the
positioning accuracy.

Current localization algorithmswhich take the surrounding
devices into account just simply extend the single device
localization method into a multiple devices version, desig-
nating weights to each device according to matching result
against the fingerprint database or distances measurements
between the devices. However, they do not consider whether
a certain surrounding device can be used to improve the
positioning accuracy. Furthermore, under the complex indoor
environment, the distance measurements may vary from time
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to time due to the changing wireless signal propagation and
how to minimize the ranging error is also not revealed in the
current literatures.

In this paper, we elaborately select appropriate assistant
nodes around the unknown one based on the similarity of
RSSI sequences and study how to use the auxiliary informa-
tion to improve the positioning accuracy. Furthermore, we
also present a method based on the adaptive Kalman filter
with colored noise to mitigate the TOF ranging error in the
complex indoor circumstances.

III. Wi-Fi LOCALIZATION SYSTEM BASED ON
COLLABORATION OF FINGERPRINT AND
ASSISTANT NODES
A. ASSISTANT NODES INTRODUCTION
With the rapid development of society, various electronic
devices are used with the result that current indoor envi-
ronments seriously affect the propagation of radio signals.
A number of factors could attenuate and even block a signal,
such as a node’s feature, the antenna’s orientation, or the envi-
ronment around the node (e.g., walls, floors, obstructions).

Traditional RSS-based fingerprint localization algorithms
only take advantage of the unknown node while neglecting
otherWi-Fi devices. Around the unknown node, we can select
several nodes to provide additional information to improve
the positioning accuracy. The intuition underlying our design
is to utilize the nodes close to the unknown one. Does this
intuition make sense?

We did experiments to compare different devices’ RSS val-
ues sequence in the environment as illustrated in Fig. 2 which
reflects a complicated environment including many APs and
Wi-Fi devices deployed in our lab. There are also many
obstacles which affect signal propagation. In the experiments
we measured the RSS data received by nodes 1, A1 and A4
from AP1, which is plotted in Fig. 3, and compared
their respective fluctuations in RSS value under the same
circumstances.

FIGURE 2. The scheme of nodes’ spatial positions.

FIGURE 3. The RSS values of Nodes l, A1 and A4.

From Fig. 3, we can see that node l is close to A1 and A2,
while far from A3 and A4 and that the RSS data of node 1
is very similar to that of A1 but totally different from that
of A3. That’s because the nearby nodes experience a similar
multipath environment (e.g., reflectors and obstacles in the
environment). Thus if the nodes surrounding the unknown
one are selected as the assistant nodes to provide addi-
tional information in a fingerprint localization algorithm, the
positioning accuracy can be improved due to the similar
error repercussion. In addition, it has been proved that the
Cramer-Rao lower bound (CRLB) of the unbiased estimation
can be reduced when a closer AP is utilized rather than a
distant one [28]. Based on the above reasons, we selected
the nodes close to the unknown one as the assistant nodes
and derived from the above experiments an effective process
for selecting assistant nodes by comparing the similarity of
RSS data sequences. This will be described in the following
section.

B. SYSTEM OVERVIEW
Current indoor environments containmanyWi-Fi devices that
can provide beneficial auxiliary information, so we select
them as assistant nodes based on RSS similarity in indoor
circumstances and then use them to acquire the unknown
node’s coordinates and improve localization accuracy. Then,
distances measured between each pair of nodes are used as
additional information to improve localization accuracy, and
we apply TOF ranging to measure distance among Wi-Fi
devices using the method mentioned like [29].

However, TOF range error is not subject to Gaussian distri-
bution [30], in complex indoor environments. For the sake of
eliminating NLOS error, an NLOS error mitigation algorithm
based on an adaptive Kalman filter with coloredmeasurement
noise is presented. Therefore, we establish a model of colored
noise and dynamically adjust the filter parameters based on
the severity of the NLOS environment.

Meanwhile, a searching model is built according to the dis-
tances measured above and exhaustive and maximum gradi-
ent algorithms are applied to optimize localization estimation
error. Combing these methods, this paper presents a novel

2996 VOLUME 4, 2016



Q. Li et al.: Fingerprint and Assistant Nodes-Based Wi-Fi Localization

Wi-Fi indoor localization algorithm based on RSS and assis-
tant nodes collaboration.

The overall proposed scheme is shown in Fig. 4.

FIGURE 4. The indoor localization model.

Our system works as follows: first we build the fingerprint
database on the off-line stage and then assistant nodes are
acquired on the on-line stage. Next, we calculate the ini-
tial coordinates of the unknown node and assistant nodes,
and measure distance among them, eliminating NLOS range
error. Eventually, we build a searching model to acquire the
final accurate coordinates of the unknown node.

1) INITIAL LOCALIZATION
Based on the RSS fingerprint database, the coarse-grained
position of the unknown node and surrounding ones can be
acquired with a traditional localization algorithm. Distances
between on-line RSS sampling values and off-line RSS values
stored in the fingerprint database are defined as formula (2).

Di =
(∑n

j=1

∣∣RSSI j − RSSI ij∣∣2)1/2 i = 1, 2, 3 . . .m (2)

where the numbers of RPs and APs are m and n,
respectively. RSSI ij represents j AP’s RSS value stored in
fingerprint database, and RSSI j also stands for the j AP’s
RSS value at on-line phase. Next, based on the KNN algo-
rithm [31], k RPs meeting for acquirement are obtained
and their respective coordinates are (xi, yi) (i = 1, 2, 3 . . . k),
therefore we acquire the unknown node’s initial localization
through formula (3), which means the coarse-grained esti-
mated localization of the unknown node is the centroid of the
k nearest RPs.

(x, y) =
1
k

k∑
i=1

(xi, yi) (3)

2) ASSISTANT NODES SELECTION
As mentioned above, it is shown that when two nodes are
deployed close in space, they will experience almost the same
multipath environment and their RSS values’ tendency is very
similar. Thus we can select assistant nodes by comparing the
similarity of RSS data sequences.

As shown in Fig. 5, node A is close to node B with
n APs surrounding (represented by solid and dashed lines,
respectively). In order to obtain their RSS similarity we

FIGURE 5. The scheme of RSS similarity.

collect their respective RSS values which is shown as
RSSIA = (RSSIA1,RSSIA2 . . .RSSIAn) and RSSIB =

(RSSIB1,RSSIB2 . . .RSSIBn).
In Fig. 3, it can be observed that in spite of the first two lines

sharing similar trends, they are asynchronous in the time axis,
which means that they reach their maximum and minimum
values at different times. Thus it is unsuitable to use Euclidean
distance to measure the similarity of the two time series of
RSS data. In order to solve this problem, we are inspired by
the word matching problem in speech recognition [32].

Even if the same person says the same word twice, she may
intonate and speed up differently causing the same word to
be stretched and scaled differently across clips. The speech
recognition community matches such warped time signals
using a technique called Dynamic Time Warping (DTW),
which we adopt for our problem. We use DTW instead of
Euclidean distance to measure the similarity of the two time
series of RSS data.

The basic principles of DTW are explained as follows: in
order to distinguish the similarity between two sequences,
we need to bend the two sequences at local time which is
beneficial for searching the optimal alignment of the two
sequences. Compared with Euclidean distance, DTW dis-
tance (mean optimized path) effectively takes advantage of
time bending and could reduce the influence due to different
sampling time, which could better reflect the logic similarity
of two sequences. If two labels are close in space, the impact
of radio due to surroundings is the same. And if the RSS
similarity of two labels is large, we likely consider them close
to each other. Therefore DTW distance can be applied to
distinguish the similarity of two labels close in space, which
helps us determine the spatial position of the two labels. For
the sake of eliminating the influence resulting from different
sampling time, DTW distance between two nodes is defined
as formula (4).

Ddtw = Dbase (RSSIA1,RSSIB1)

+min

Ddtw (RSSIA1,RSSIB1 [2 : −])
Ddtw (RSSIA1 [2 : −] ,RSSIB1)
Ddtw (RSSIA1 [2 : −] ,RSSIB1 [2 : −])


(4)
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In this paper, Minkowski distance is used as base dis-
tance (Dbase) and with Ddtw decreasing, distance between
two nodes is closer which shows that node A is closer to
node B in space. If Ddtw > δ, the surrounding node can be
selected as an assistant node of the unknown one and δ is
usually recognized as empirical value.

3) TOF RANGING AND NLOS MITIGATION
In this paper, distances between the unknown node and
assistant nodes are measured as auxiliary information to
improve positioning accuracy. For this study, we use the
same TOF ranging method [29]. However, the TOF measure-
ments change significantly when some objects shadow the
wireless link in complex indoor NLOS environments [28].
Obviously, this NLOS error changes with the environment,
and its distribution is often difficult to obtain. To elimi-
nate the NLOS error, a Kalman filter is frequently used
which originally is designed to smoothWhite Gaussian noise.
However, it is proven that TOF ranging error caused by mul-
tipath and NLOS propagation is not subject to Gaussian dis-
tribution [29]. Due to this mismatch, the traditional Kalman
Filter is not sufficient enough to limit the huge ranging
error.

Thus, we present an algorithm for NLOS error mitigation
based on an adaptive Kalman filter with coloredmeasurement
noise to eliminate NLOS error. A colored noise model is
firstly established according to measurement noise and the
filter parameters are adjusted dynamically based on the sever-
ity of the NLOS environment.

a: THE PROCESS OF KALMAN FILTER WITH COLORED NOISE
Considering the linear systemwith state space representation,
the system state equation and observation equation is defined
as follows:

xk+1 = Axk + Bαk (5)

rk = Cxk + βk (6)

where A, B, and C are known constant matrices, αk is process
noise and βk is ranging error. In (6) rk is a one-dimensional
observation vector and xk is defined as:

xk =
[
dk ḋk

]T (7)

where dk denotes distance to be estimated and ḋk denotes the
first derivative of dk and βk is colored noise. Colored noise
of the k times consists of the previous noise and zero-mean
White Gaussian Noise [33]. Therefore, βk can be given by

βk = Nk−1βk−1 + γk (8)

where Nk is an auto-regression coefficient and γk is White
Gaussian Noise.

Thus the entire algorithm of the Kalman filter with colored
noise can be described as follows.

Pk,k−1 = APk,k−1AT + BQBT (9)

Hk−1 = [CA− Nk−1C] (10)

Gk =
(
APk−1,k−1HT

k−1 + BQB
T )

·
(
Hk−1Pk−1,k−1HT

k−1 + CBQB
TCT
+ R̂k−1

)−1
(11)

Pk,k = (A− GkHk−1) · Pk−1,k−1AT + (I − GkC)BQBT

(12)

x̂k/k = Ax̂k−1/k−1+Gk ·(vk − Nk−1vk−1−Hk−1x̂k−1/k−1)

(13)

where Pk,k−1and Pk,k denote the predicted error covariance
matrix and the estimated error covariance matrix, respec-
tively, Hk denotes the coefficient matrix, Q denotes the noise
covariance matrix, R̂k denotes the ranging error covariance
matrix, Gk and x̂k/k denote the filtering gain and estimated
state of the k times. In this algorithm, the observation vector is
obtained by TOF ranging and the TOF distance measurement
error is estimated first. The state is estimated through the
algorithm in the end. From the entire process, it can be
observed that x̂k/k relates with the current input and previous
estimated state, so real time processing can be realized only
with the previous saved state value.

b: KALMAN FILTER WITH ADAPTIVE COLORED NOISE
We have presented the iterative process of the Kalman filter
with colored noise in the above, in which the auto-regression
coefficient Nk is known in advance. However, in realistic
environments, movement of nodes, changes of surrounding
environments, and complex wireless propagation paths all
result in ranging error difficult to predict and model. It is
clear that the Nk of ranging error is difficult to obtain in
realistic environments. In the following, we will show how
to estimate Nk and combine the estimation with the Kalman
filter with colored noise. In addition, the change of ranging
noise covariance Rk reflects the movement of ranging error,
so we can utilize Rk to compute Nk . According to the Kalman
filter and mathematics, the formulas can be given by

x̂k/k−1 = Ax̂k−1/k−1 (14)

zk = rk − Cx̂k−1/k−1 (15)

zi =
1
i

i∑
j=1

zj (16)

Ŝk =
1

k − 1

k∑
i=1

(zi − zi) (zi − zi)T (17)

R̂k = Ŝk − CPk,k−1CT (18)

where xk/k−1 and zk are defined as the kth predicted distance
and innovation value, respectively. γ and β are independent
of each other, and according to their covariance we can find

R̂k = N 2
k−1R̂k−1 + var (γk) (19)

where var (γk) is the covariance of γk and R̂k is the estimation
of Rk . For the sake of simplicity, it is generally assumed that
var (γk) is equal to Q and NLOS error is positive and much
larger than noise, and therefore Nk is also positive. In the
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actual process of filtering, it is possible that R̂k is less than
var (γk). It is obvious that the possible outcome does not
match the algorithm. Therefore, we setNk−1 = 0 in that case,
which does not affect the result of the filter. Based on the
above, we have

Nk−1 =


√
R̂k − var (γk)

R̂k−1
R̂k > var (γk)

0 otherwise

 (20)

Thus, we can conclude that the whole process of the
Kalman filter with adaptive colored noise is based on formu-
las (8) ∼ (13) and the auto-regressive coefficient N which
can be computed by formulas (14) ∼ (20). In order to show
the whole process better, we draw the overall flow diagram
of the Kalman filter with adaptive colored noise shown
in Fig. 6.

FIGURE 6. The overall diagram of the Kalman filter with adaptive
colored noise.

4) MODELING AND SEARCHING
Now we can seek the optimal position of the unknown node.
After the initial localization process described in Section III
Subsection B using KNN algorithm [31] is conducted, and a
coarse-grained initial guess of the unknown nodes’ and assis-
tant nodes’ positions could be obtained. After the NLOS error
mitigation algorithm is performed, the TOF-based distance
measurements are accurate, which make the spatial model,
including the unknown node, and all of the assistant nodes
intact. Then the fixed structure with additional ranging infor-
mation can be used to estimate the optimal position based on
coordinates obtained in the initial localization process. Under
these circumstances, we can search for the ultimate localiza-
tion result by setting a searching scope (circle of radius R)
around the initial position. During searching process, the
spatial structure consisted of the unknown and assistant nodes
keeps fixed and can be moved in the scope, as illustrated
in Fig. 7.

The ultimate localization result can be obtained from the
following objective.

argmin

 m∑
i=1

n∑
j=1

(RSSMij − RSS
F
ij )

2

 (21)

wheremmeans the total number of the unknown and assistant
nodes selected, and n means the number of deployed APs.
RSSMij is RSS data measured by each node, while RSSFij is

RSS data calculated against the fingerprint database with

FIGURE 7. Fixed structure with four assistant nodes.

each node’s coordinates using KNN algorithm similar to [31]
during the searching process. Equation (21) produces the final
results by finding locations of each node against the finger-
print database, by minimizing the sum of RSS distances, each
of which is between RSS measurement data and the signature
data at different location in the searching scope. In the interest
of acquiring the ultimate localization, two solving methods
are applied as follows in this paper.

a: EXHAUSTIVE ALGORITHM
In exhaustive searching method, the circle mentioned above
would be divided into α equal parts. At each part we can
get the new coordinates of unknown and assistant nodes.
After exhaustive calculating all the data differences using
equation (21), the ultimate position can always be acquired.

b: MAXIMUM GRADIENT DESCENT METHOD
The steps of the unconstrained maximum gradient descent
method is shown as follows:

Step 1: the objective function f
(
xk
)

f
(
xk
)
= argmin

√√√√ m∑
i=1

(
(x i − xi)2 +

(
yi − yi

)2) (22)

where x0 respectively means the initial localizations of the
unknown node and assistant nodes, meanwhile xk = (xk , yk)
and localization estimation error ε > 0 k := 0;

Step 2: calculating ∇f
(
xk
)
based on equation (23)

∇f
(
xk
)
=


∂f
(
xk
)

∂ (x)
∂f
(
xk
)

∂ (y)

 (23)

If
∥∥∇f (xk)∥∥ ≤ ε, stopping the iteration and acquiring the

output xk , otherwise the process switches to Step 3.
Step 3: in order to acquire searching orientation pk ,

pk = −∇f
(
xk
)
= −


∂f
(
xk
)

∂ (x)
∂f
(
xk
)

∂ (y)


where p0 = −∇f

(
x0
)
, k := 0, k := k + 1.
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Step 4: calculating step size tk by formula (24)

f (xk + tkpk ) = mint≥0 f (xk + tpk ) (24)

until mint≥0 f
(
xk + tpk

)
exiting, where xk+1 = xk + tkpk ,

k := k + 1 and the process is switches to Step 2.
Step 5: optimal step size tk resulting from equation (25)

f (xk − t∇f (xk )) = ϕ(t) (25)

where ϕ̇ (t) = 0.
After finishing the whole schedule, the localization of the

unknown node can be estimated with the help of the assistant
nodes. Benefiting from the NLOS error mitigation algorithm,
our system greatly improves the localization accuracy of the
target, especially in complex indoor environments with severe
NLOS error.

IV. EXPERIMENTAL EVALUATION
In order to evaluate our proposed system, several related
experiments were conducted. The experiments’ environment
is shown as Fig. 10, and they have been conducted in Lab
306 of Yifu Technology Building of our university. As seen
from Fig. 10, 12 RPs and 4 APs are set in the room, in
addition many students are engaged in the daily work and
many other experimental equipments are used in the lab
including manyWi-Fi devices. Instead of general laptops, we
use Beaglebone Black platforms with an Ubuntu system and
omnidirectional antenna wireless cards to collect RSS data
taking advantage of fast acquiring speeds and lower packet
loss rate, which is shown in Fig. 8. Other equipment used in
the experiments includes: a ProBook441sHP computer, 4 TP-
LINK wireless routers named TL-WR742N.

FIGURE 8. RSS data collection platform.

To generate the TOF samples, we use the acknowledge
mechanism of the IEEE 802.11 standard similar with [34].
Figure 9 is an illustration of this implementation mechanism.

For every data packet a round trip time is measured from
the start of the transmission to the reception of the corre-
sponding acknowledgement (tMEAS (d)). The time the target
waits is defined in the standard as tSIFS and the duration of an
acknowledgement tACK is constant. Therefore the propagation

FIGURE 9. Illustration of TOF measurements.

delay can be expressed as

tP (d) =
tMEAS (d)− tSIFS − tACK

2

From this equation, we can see that the propagation delay
is proportional to the measured time for a given distance.
In order to avoid additional delay, the time is measured
directly in the Beaglebone Black firmware and not in the
driver. This measurement is provided by the resolution of the
General Purpose Timer of the firmware, which is clocked at
88MHz. Every time a measurement is made, the firmware
writes the data into a defined register in the shared memory
block which the driver can access to and retrieve the measure-
ment once an acknowledgement is received.

The experiments were performed strictly following our
system schedule. In the off-line fingerprint database con-
struction stage, we select 10000 RSS data from the collected
RSS data at each RP to reduce environmental influence and
to improve the stability of RSS data as much as possible.
During the localization stage, we collected RSS data of the
target and surrounding nodes, performed initial localization,
selected assistant nodes based on RSS time series similarity,
measured distances between each pair of nodes, mitigated
the NLOS ranging error and finally searched for the accurate
position of the unknown node.

To evaluate the performance of our system in a complex
indoor environment, we conducted the experiments three
times, once during a time when nobody was in the lab, once
during a time when 8 students were in the lab, and once when
there were 30 students in the lab (in the latter two scenar-
ios, the students worked as usual and moved from time to
time). The NLOS environment grew worse as more and more
students moved in the lab.

During the assistant nodes selection stage, the similarity
threshold δ will affect the number of assistant nodes such that
the larger it is, the fewer nodes will be selected. In the experi-
ments, we studied how this threshold impacts the positioning
accuracy in the 30 students’ scenario, and the distribution is
illustrated in Fig. 10.

We plot how the average localization error changes with
the normalized threshold in Fig. 11. And it can be observed
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FIGURE 10. The students’ distribution.

FIGURE 11. Impact of similarity threshold δ.

that when δ is 0.9, the localization error is almost stable with
little fluctuation.

Furthermore, we also study the parameter of α described in
the exhaustive algorithm of final searching stage mentioned
in section 3.2.4. We also plot how the average localization
error changeswith α in Fig. 12. It can be observed that when α
reaches 100, the localization estimation error almost remains
the same.

FIGURE 12. The divided parameter α.

FIGURE 13. Absolute ranging error.

To evaluate the performance of the NLOS mitigation
algorithm proposed in Section III, we simply measured
the distance between node A1 and A4 (the real distance
is 25.4 m) using a TOF-ranging method and later per-
formed the Kalman Filter with adaptive colored noise elimi-
nation. As a comparison, we also implemented the adaptive
Kalman filter (AKF) [35]. TheNLOSmitigation performance
is illustrated in Fig. 13 and 14.

As shown in Fig. 13, the error curve of the Kalman filter
with adaptive colored noise is clearly located in the bottom,
which indicates that the Kalman filter with adaptive colored
noise in this paper has smaller error than the adaptive Kalman
filter (AKF). Meanwhile, Fig. 14 demonstrates that the curve
of theKalman filter with adaptive colored noise lies in the top,
and its cumulative probability is larger in the same absolute
error. Moreover, the larger error of the Kalman filter with
adaptive colored noise is smaller than the larger error of the
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FIGURE 14. CDF of absolute ranging error.

measurements AKF. These results show that the Kalman filter
with adaptive colored noise has better performance.

Based on the above parameters setting, we studied the
overall performance of our Wi-Fi localization method based
on Collaboration of Fingerprint and Assistant Nodes (dubbed
CFAN) and compared it with other classical algorithms,
such as RADAR [36] and Curve Filter with RSS [37]
in the three scenarios (0, 8, and 30 students) mentioned
above. Fig. 15, 16 and 17 show the localization error cumu-
lative distribution functions (CDFs) of the testing points.
Moreover, the performance line indicated by CFAN with
NLOS presents the accuracy of localization system affected
by NLOS error in a complex indoor environment.

FIGURE 15. Localizaiton performance with 0 student.

From these figures, great performance improvements can
be observed, with CDF curves shifting to the left sig-
nificantly around nodes assistant and NLOS mitigation.
It can be determined that NLOS mitigation is essential for
improving localization accuracy: the long CDF tail has been
reduced 30%.

Secondly, Fig. 15, 16 and 17 illustrate that the algorithm
proposed in this paper has a lower localization estimation
error and higher localization accuracy than other methods.
Furthermore, the CFAN algorithm proposed in this paper
reduces the maximum localization error from 9.1 m to 6.1 m
over the experiments, as it eliminates NLOS.

FIGURE 16. Localizaiton performance with 8 students.

FIGURE 17. Localizaiton performance with 30 students.

From these figures, we can observe great performance
improvements with our algorithm. As seen from Fig. 15,
Fig. 16 and Fig. 17, NLOS severely affects the three algo-
rithms in this paper with higher error, even though the algo-
rithm proposed in this paper is better.

V. CONCLUSIONS
In complex indoor environments, multipath andNLOS condi-
tions lead to large errors in measured values, thereby reducing
indoor positioning accuracy. However, existing approaches
have yet to be demonstrated to be effective in many business
scenarios. To address the limitations of traditional indoor
positioningmethods, this paper presents aWi-Fi indoor local-
ization algorithm based on RSS and assistant nodes collabo-
ration, which leverages positioning accuracy by TOF ranging
and NLOS mitigation. Extensive experiments have demon-
strated our approach is suitable for complex indoor environ-
ments. Our future work is to lessen the RSS data so that
extra training effort can be effectively reduced. Moreover we
will add more obstacles as in different real-time environment
instead conducting experiment in limited environment.
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