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ABSTRACT Given the possibility of ubiquitous 5Gwireless access, location data bridge the gap between the
physical world and digital online social networking services and also reflect user preferences and even inter-
dependence among users. Owing to this interdependence, the advertiser can push corresponding products
to users according to location recommendations, i.e., advertisement targeting. To achieve this mobile cloud
computing service, after moving the computing capacity away from end devices to data centres (DCs), the
converged infrastructure integrating optical metro and ubiquitous wireless access technologies is proposed
in accordance with the 5G model. To minimize energy consumption, we propose a novel design framework
of location-recommendation-aware virtual network embedding. This design framework determines the
interdependency among user groups so that we can embed the virtual networks owned by user groups with
a high interdependence into the same DC of the substrate optical-wireless hybrid infrastructure. Thus, the
adviser can locally push the corresponding products to user groups at a single DC instead of consuming a
large amount of energy to build inter-DC paths. The simulation results show that our design framework has
greater energy efficiency and more profitable advertisement targeting compared with the benchmark, and
the result of our heuristic is very close to the upper bound.

INDEX TERMS 5G-based location recommendations, energy efficiency, optical-wireless integration, virtual
network embedding, problem transformation, bound analysis.

I. INTRODUCTION
Given the possibility of ubiquitous 5G wireless access, loca-
tion data tend to bridge the gap between the physical world
and digital online social networking services; as a result, new
correlations of users will be created [1]–[4]. Location data
may be travel trajectories or location-tagged media content
such as photos and videos, as in Fig. 1(a). In particular,
users record their route connecting point locations to con-

vey basic information such as distance, visiting duration,
velocity, and even experiences along a particular travel tra-
jectory. Thus, a deeper understanding of user preferences
is enabled based on location data because users’ location
histories contain a rich set of information that reflects their
preferences. Moreover, the interdependency among users can
also be determined because two persons may co-occur in the
same point location or share similar location histories. Owing
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FIGURE 1. (a) User-location graph; (b) Location-recommendation-aware virtual network embedding.

to this interdependency, the recommendation of a stand-alone
location (a Point of Interest or POI) or sequential POIs along
a travel trajectory (a POI trajectory) becomes popular, and
the advertiser can push the corresponding products to users
according to location recommendations, i.e., advertisement
targeting [5]–[7].

As a new and emerging application, advertisement tar-
geting requires an efficient process and analysis of loca-
tion; in addition, the concept of mobile cloud computing,
where computing capacity is moving away from the end
user to Data Centers (DCs), has been introduced. Obviously,
advertisement targeting has become a classic mobile cloud
computing service, and the small-scale DC located close
to the end devices of users enables a deeper understanding
of user preferences. To collect location histories of users,
communication among the small-scale DC and users should
be achieved; then, the requirement to interconnect users
with DCs introduces the additional need for a 5G wireless
network that is seamlessly integrated with the optical
DC infrastructure [8]–[10].

Figure 1(b) shows a converged infrastructure integrating
optical metro and ubiquitous wireless access technologies in
accordance with the 5G model. In this converged network
environment, management and control information will be
exchanged across multiple domains (e.g., BaseBand pro-
cessing Units, BBUs), causing increased service setup costs
and state convergence latencies. Fortunately, the concept of
infrastructure virtualization can be utilized to create network
slices (virtual networks). Every user group has its own virtual
network that will be embedded into a part of the substrate
infrastructure. For example, the virtual networks of user
groups 1 and 2 are shown in the lower-left side of Fig. 1(b).
In each virtual network, the rectangle denotes the virtual node
to be mapped into a certain small-scale DC in the substrate
infrastructure, and its internal number represents the com-
puting resources required to understand user preferences; the
remaining circles are virtual nodes to be mapped into the end
devices of users, and the virtual link between the rectangle
and a circle represents the communication bandwidth. As in

Fig. 1(b), these two virtual networks are embedded into the
same DC of the substrate infrastructure under the principle
of minimizing the energy consumption for advertisement
targeting.

In this paper, for a certain user group, we first propose
novel recommendation methodologies of a stand-alone POI
and even a POI trajectory. Next, the interdependency (similar
recommended POI trajectories) among user groups will be
determined so that we can embed the virtual networks owned
by the user groups with a high interdependency into the
same DC of the substrate infrastructure. As a result, we can
locally push as many corresponding products as possible to
user groups at a single DC instead of consuming a large
amount of energy to build inter-DC paths. On the basis of
this, we design a new location-recommendation-aware virtual
network embedding heuristic for energy-efficient optical-
wireless hybrid networks supporting the 5G model. We also
discover that the aforementioned problem of minimizing
energy consumption is equivalent to maximizing the prof-
itability of advertisement targeting, and the corresponding
upper bound is analyzed to demonstrate the effectiveness
of our approach. The main contributions are summarized as
follows.
• This paper is the first work to focus on the location-
recommendation-aware virtual network embedding in
energy-efficient optical-wireless hybrid networks
supporting 5G models.

• We have made an NP-hard problem transformation
fromminimizing energy consumption tomaximizing the
profitability of advertisement targeting; the goal is to
determine the optimal solution, i.e., the upper bound of
profitability, in theory. The result of our heuristic has
been close to this upper bound, with a converging ratio
of 97%.

• Extensive simulation results are shown. In particu-
lar, compared to traditional virtual network embedding
without the awareness of location recommendations,
the improvement ratios of profitability and energy effi-
ciency are 20% and 38%, respectively.

3066 VOLUME 4, 2016



X. Gong et al.: Location-Recommendation-Aware Virtual Network Embedding

FIGURE 2. Our design framework.

The rest of this document is structured as follows.
Section II provides a general overview of our design frame-
work. In Section III, we give a detailed description of our
problem, including the formulation of the mathematical prob-
lem, proof of NP-hardness, the problem transformation and
analysis of the upper bound. In Section IV, we propose
heuristics to solve our problem with a low time complexity.
The simulation results for evaluating the performance of our
approach are given in Section V. We summarize the related
works in Section VI. Finally, in Section VII, we conclude
this paper.

II. DESIGN FRAMEWORK
A general description of our design framework, which manly
includes 5G-based location recommendation and energy-
efficient virtual network embedding, is shown in Fig. 2. First,
we select the POI with the highest experience value as the
recommendation of the stand-alone POI for each user group
according to the information reflected in the auxiliary user-
location graph, as illustrated in Fig. 1(a). This information
includes the friendships among users in one group and the
mapping relationship between users and POIs. Next, the
POI trajectory including sequential POIs in ascending order
of timestamp will be recommended for each user group
if that POI trajectory has acceptable temporal and spatial
distances. Finally, followed by the energy-efficient virtual
network embedding heuristic, we put the virtual networks of
the user groups with similar POI trajectories together into
a set, and embed the virtual networks from the set into the
same DC of the optical-wireless hybrid network graph, as
illustrated in Fig. 1(b).

Why is our heuristic energy efficient? As shown in Fig. 3,
if the traditional virtual network embedding without the
awareness of location recommendations is invoked, the two
virtual networks are embedded into different DCs of the sub-
strate infrastructure even though they have similar POI trajec-
tories. Then, the path between DCs 17 and 14 must be found
before the advertiser pushes the corresponding products to
user groups, thus leading to energy consumption to establish

FIGURE 3. Traditional virtual network embedding without the awareness
of location recommendations.

the inter-DC path. However, as demonstrated in Fig. 1(b),
the virtual networks owned by those two user groups will
be embedded into the same DC once they have similar POI
trajectories; then, the energy consumption for the inter-DC
path establishment will be mitigated because the adviser
can locally push the corresponding products at a single DC.
Furthermore, the larger the number of virtual networks with
similar POI trajectories embedded into the same DC, the
higher the level of energy savings that is achieved.

III. PROBLEM DEFINITIONS AND ANALYSIS
In this section, we first introduce the 5G-based location
recommendation model and optical-wireless hybrid network
model, and some key notations are also presented. We then
formulate our problem, discuss its NP-hardness and make an
effective transformation for it to find the upper bound.

A. 5G-BASED LOCATION RECOMMENDATION MODEL
We further construct an auxiliary user-location graph for each
user group in Fig. 4. Both 5G users and POIs are represented
by vertices. There are three kinds of links in this graph:
1) friendship links among users in one group; 2) the links
between users and POIs created by users; 3) the links among
POIs. In general, this graph can be denoted asG(V ,E), where
V = {v1, v2, ..., vm, vm+1, ..., vm+n} and ei,j = (vi→ vj) ∈ E
if vi is linked to vj (1 ≤ i, j ≤ m+ n). Note that n is
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FIGURE 4. Auxiliary user-location graph for one user group.

the total number of POIs, while m is the total number of
users in one group. Each POI POIk ∈ {vm+1, ..., vm+n} has
four-dimensional information including an experience value
functioning as an important criterion for recommendations,
POI name, POI location and visiting duration.

B. OPTICAL-WIRELESS HYBRID NETWORK MODEL
We describe the converged infrastructure integrating opti-
cal metro and ubiquitous wireless access technologies in
the form of the graph Gs(Vs,Ds,Es), where Vs is the set
of end devices and Ds is the set of small-scale DCs, each
with an initial computing-resource capacity CDC . Every link
of the set Es has enough initial communication bandwidth,
and the entire system will process Nug virtual networks
(i.e., there are a total of Nug user groups). In the virtual
networkGkvn(V

k
vn,E

k
vn, c, ba) of the k

th user group, the number
of virtual nodes to be mapped into end devices is determined
by the average node degree of the substrate infrastructure,
i.e., N vn

ed = |V
k
vn − 1| = ranf(2, d|Es|/(|Vs| + |Ds|)e). Here,

ranf(a, b) returns a random integer between a and b. In other
words, each user group will have N vn

ed users. In addition,
c denotes the computing resource required to understand
preferences of users in the same group, and ba is the com-
munication bandwidth between two virtual nodes.

C. NOTATION DEFINITIONS
To facilitate discussion, we list important notations below.
• CDC : Initial computing-resource capacity of each DC.
• Nug: Total number of virtual networks (user groups) that
will be processed by the entire system.

• N vn
ed : Number of virtual nodes to be mapped into end

devices, for each virtual network, i.e., the total number
of users in one group.

• c: Computing resource required to understand prefer-
ences of users in the same group.

• ba: Communication bandwidth between virtual nodes.
• al : Energy consumed by in-line amplifiers on the
link l ∈ Es.

• β
l,w
i,j : is 1 if the link l is used by the path with consuming

wavelength w from DC i to DC j; it is 0 otherwise.
• W : Set of wavelengths.

• γ s: Energy consumed for wavelength switching.
• cli,j: Number of paths from DC i to DC j on the
link l ∈ Es.

• hv,s,k : is 1 if the virtual node v ∈ V k
vn is mapped onto the

substrate node s ∈ Vs ∪ Ds; it is 0 otherwise.
• Pay: Relevant fees paid if the advertisement has been
recommended for a user group.

D. PROBLEM FORMULATION
With themodel and assumptions, we investigate the following
problem: How to implement the location-recommendation-
aware virtual network embedding for energy-efficient
optical-wireless hybrid networks supporting 5G models,
such that 1) the POI trajectory can be effectively rec-
ommended for each user group; 2) the following energy
consumption of inter-DC path establishments can be
minimized.

Minimize E =
∑
l∈Es

∑
i,j∈Ds:i6=j

∑
w∈W

αl · β
l,w
i,j

+

∑
l∈Es

∑
i,j∈Ds:i 6=j,src(l)6=i,j

γ s · cli,j (1)

In Eq. (1), the first item defines the total energy consumed
by the in-line amplifiers on all links, while the second item
gives the total energy consumed by the optical switches
for the wavelength switching of all paths. To formulate
the problem, the above objective shall satisfy a number of
constraints.∑
s∈Vs∪Ds

hv,s,k = 1, ∀v ∈ V k
vn; ∀k ∈ [1,Nug] (2)

∑
v∈V kvn

hv,s,k ≤ 1, ∀s ∈ Vs ∪ Ds; ∀k ∈ [1,Nug] (3)

Nug∑
k=1

∑
v∈V kvn

hv,s,k ≤ CDC , ∀s ∈ Ds (4)

∑
l∈Louts

cli,j −
∑
l∈Lins

cli,j = 0, ∀i, j ∈ Ds : i 6= j;

∀s ∈ (Vs ∪ Ds − {i, j}) (5)

cli,j =
∑
w∈W

β
l,w
i,j , ∀l ∈ Es; ∀i, j ∈ Ds : i 6= j (6)

∑
∀i,j∈Ds:i 6=j

β
l,w
i,j ≤ 1, ∀l ∈ Es; ∀w ∈ W (7)

∑
l∈Louts

β
l,w
i,j −

∑
l∈Lins

β
l,w
i,j = 0, ∀i, j ∈ Ds : i 6= j;

∀s ∈ (Vs ∪ Ds − {i, j}); ∀w ∈ W (8)

Equations (2) and (3) both guarantee that a virtual node
is mapped onto only one substrate node. Equation (4) is the
capacity constraint of each substrate DC node. Constraint (5)
ensures that the amount of outgoing pathsmust be equal to the
amount of incoming ones at each intermediate substrate node.
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Equations (6) and (7) both guarantee that, on the link tra-
versed by a path, there is only one wavelength assigned to
this path. Equation (8) ensures that, for each path, the number
of wavelengths used for the incoming and outgoing paths are
the same at each intermediate substrate node.

E. PROBLEM ANALYSIS
First, we demonstrate the NP-hardness of the aforementioned
problem using the following proposition.
Proposition 1: Our problem is NP-hard.
Proof: The authors in [8]–[10] have highlighted the tradi-

tional virtual network embedding without the awareness of
location recommendations is a NP-hard problem. In addition
to the constraints (listed in Eqs. (2)-(8)) necessary for virtual
network embedding, the POI trajectory recommendation also
needs to be solved for our problem. In other words, our
problem is at least as hard as traditional virtual network
embedding. Therefore, our problem is NP-hard.
Proposition 2:The aforementioned problem ofminimizing

energy consumption is equivalent to maximizing the prof-
itability of advertisement targeting.
Proof: As mentioned in section II, the more virtual net-

works with similar POI trajectories that are embedded into
a single DC, the higher the level of energy savings. Coinci-
dentally, the larger the number of user groups at a single DC
to which a POI trajectory is locally recommended, the higher
the profitability. Therefore, the aforementioned problem of
minimizing energy consumption is equivalent to maximizing
the profitability of advertisement targeting. Note that, within
each DC, only when the number of successfully embed-
ded virtual networks with similar POI trajectories exceeds a
threshold T , will the corresponding profitability be earned.
This constraint is rational because it is impossible for the
adviser to recommend a POI trajectory for a few user groups
at a high expenditure.
Proposition 3: The upper bound of our problem, i.e., the

maximal profitability, is Pay · [(|Ds| · CDC )/c].
Proof: The maximal total number of successfully embed-

ded virtual networks will be obtained by assuming that all
DCs are replaced by one large DCwith aggregated computing
resources, i.e., (|Ds| · CDC )/c. Then, without considering the
constraint of the threshold T , the maximal profitability is
Pay · [(|Ds| ·CDC )/c], which will demonstrate the optimality
of our design framework.

IV. HEURISTICS
Asmentioned in subsection III.D, there are two sub-problems
that are required to be solved: 1) the POI trajectory can be
effectively recommended for each user group; 2) the energy
consumption of inter-DC path establishments can be mini-
mized. Correspondingly, for a certain user group, we first pro-
pose novel recommendation methodologies of a stand-alone
POI and even a POI trajectory in subsections IV.A and IV.B
orderly. Next, in subsection IV.C, to minimize energy con-
sumption, a novel location-recommendation-aware virtual
network embedding is designed for optical-wireless hybrid

networks supporting 5Gmodels. Finally, the time complexity
is given in subsection IV.D. Some important notations used in
this section are listed as follows.
• as: Experience value (authority score) of a POI.
• husers: Hub-score vector, where each dimension is the
hub-score of one user who has visited a specified POI.

• Wu−POI : Link-weight vector, where each dimension is
the weight of the link from the user to one of his
visited POIs.

• hs: Hub score (hs) of one user who has visited a
specified POI.

• Wu: Link-weight vector, where each dimension is the
weight of the friendship link between two users.

• asPOIs: Authority-score vector, where each dimension is
the authority-score of the POI visited by a specified user.

• WPOI−u: Link-weight vector, where each dimension is
the weight of the link from one POI to a specified user
who has visited this POI.

• A1i : Friendship vector of the user Ui.
• A2i : Transition vector of the user Ui.
• g(Ui,Uj): Social distance between users Ui and Uj.
• deg(i): Number of friends owned by the user Ui.

A. RECOMMENDATION METHODOLOGY OF
A STAND-ALONE POI
The experience value (authority score as) of a POI is deter-
mined by the average hub score of the users who have visited
this POI, which is in Eq. (9). Here, 0 < β < 1. The hub
score (hs) of one user who has visited a specified POI is
decided by the average hub score of this user’s friends who
have visited this POI (please see (1−β)·Wu·husers in Eq. (10)),
the average authority score of POIs visited by this user (pls.
see (1−β) ·WPOI−u ·asPOIs in Eq. (10)), and this user’s initial
hub score hs0.

as = (1− β) ·Wu−POI · husers (9)

hs = (1− β) · [Wu · husers +WPOI−u · asPOIs]+ β · hs0

(10)

In Fig. 4, the number beside a friendship link denotes the
direct relationship degree between users at two ends of that
friendship link. Based on pre-determined direct relationship
degrees, we introduce an additional two vectors to enable the
creation of Wu.

1) Friendship vector A1i of the user Ui: In Fig. 4, the
direct relationship degree between users A and B is 0.7.
User B knows C through A, i.e., B and C are not
friends now, so the direct relationship degree between
users B and C is 0. Correspondingly, if users Ui and Uj
are not friends now, the friendship vector element
A1i [j] = 0. Obviously, A1i [i] = 0.

2) Transition vector A2i of the user Ui: First, we
should know the friendship vector of each user under
principle 1). For example, the friendship vector of
user B in Fig. 4 is A1B[A] = 0.7, A1B[B] = 0,
A1B[C] = 0, A1B[D] = 0, and A1B[E] = 0.3; thus,
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A1B = {0.7, 0, 0, 0, 0.3}. Similarly, the friendship
vectors of other users are
A1A = {0, 0.7, 0.9, 0.6, 0.2},
A1C = {0.9, 0, 0, 0, 0},
A1D = {0.6, 0, 0, 0, 0},
and A1E = {0.2, 0.3, 0, 0, 0}.
Then, the transition vector A2B of the user B is∑

k∈{v1,v2,...,vm}(A
1
B[k] · A

1
k ) =

{0.06, 0.58, 0.63, 0.42, 0.14}.

After these two types of vectors are decided upon, the
social distance g(Ui,Uj) between users Ui and Uj is found
in Eq. (11). Here, w1 and w2 are weight coefficients, and
w1 + w2 = 1. Because a smaller social distance indicates
a deeper friendship, the weightWu(i, j) of the friendship link
between users Ui and Uj is computed according to Eq. (12).
Then, the vectorWu can be finally determined. Similarly, the
values ofWu−POI andWPOI−u are found in Eqs. (13) and (14),
respectively. Here, NPOI k records the total number of users
who have visited POI k , and N (Ui) records the total number
of POIs visited by the user Ui.

g(Ui,Uj) =
1

w1 · A1i [j]+ w2 · A2i [j]
, ∀i (11)

Wu(i, j) =
1

deg(i) · g(Ui,Uj)
, ∀i (12)

Wu−POI =
1

NPOI k
, ∀k (13)

WPOI−u =
1

N (Ui)
, ∀i (14)

Here, the variables i, j, k are only indices of users or POIs.
Obviously, the scope of them is between 1 and the maximal
number of users or POIs.

For a certain user group, we compute experience values
(authority scores) for all possible POIs using Eqs. (9) and (10)
and rank these POIs in descending order of the experience
value. If only one POI should be recommended for the user
group, we merely need to select the top POI with the maximal
experience value.

B. RECOMMENDATION METHODOLOGY
OF A POI TRAJECTORY
A POI trajectory includes sequential POIs in the ascending
order of timestamp, and every POI along a trajectory is repre-
sented asPOI k = (xk , yk , tk , ask ). Here, ask is the experience
value (authority score) determined by Eqs. (9) and (10);
tk is the timestamp; xk and yk are the latitude and longitude
where POI k originates, respectively. Thus, if two POIs have a
space-time relationship, there will be a link with the weights
of the spatial and temporal distances between them. The
spatial distance Dist(POI i,POI j) is the spherical distance
between the locations of two POIs POI i and POI j, which
is found in Eq. (15). The temporal distance Int(POI i,POI j)
between POI i and POI j is the time interval computed by
Eq. (16). To avoid a case where multiple POI trajecto-
ries are recommended for the same user group, the spatial

threshold θs and temporal threshold θt are pre-determined.
Then, the most qualified POI trajectory Tra should have
a high total experience value

∑
POI k∈Tra ask , and its total

spatial and temporal distances should not exceed thresholds.
Finally, Tra will be recommended for a user group.

Dist(POI i,POI j)

= R · arccos[cos(POI i.x) · cos(POI j.x)

· cos(POI j.y− POI i.y)+ sin(POI i.x) · sin(POI j.x)]

(15)

Int(POI i,POI j) = |POI j.t − POI i.t| (16)

C. LOCATION-RECOMMENDATION-AWARE VIRTUAL
NETWORK EMBEDDING
Based on the aforementioned recommendation result of
POI trajectories, we design a novel location-recommendation-
aware virtual network embedding heuristic for optical-
wireless hybrid networks supporting 5G models. In this
heuristic, we embed the virtual networks with similar rec-
ommended POI trajectories into the same DC of the substrate
infrastructure. The main step of the heuristic with the pseudo
code in Algorithm 1 is described as follows.
Step 1:We divide Nug virtual networks intoM sets, and the

virtual networks in every set have similar recommended POI
trajectories.
Step 2: In a certain set of virtual networks, one virtual

network will first be mapped into the substrate DC that has a
high node degree and available computing resources. After
determining the substrate DC dc∗, we compute candidate
paths from every substrate end device to dc∗. The band-
width provisioning of links along these N vn

ed substrate paths
are updated, and the computing-resource capacity of dc∗ is
updated as well.
Step 3: The profitability of advertisement targeting will

be computed until an attempt has been made to embed all
virtual networks into the substrate infrastructure. Moreover,
the value of T should not exceed Nug/M .
Step 4: The energy consumption for inter-DC path estab-

lishments is also computed until an attempt has been made
to embed all virtual networks into the substrate infras-
tructure. Note that only when there is more than one DC
accepting virtual networks with similar POI trajectories will
the energy consumption of inter-DC path establishments be
computed.

D. TIME COMPLEXITY ANALYSIS
As inAlgorithm 1, we will execute step 1 and step 2M times,
and then the corresponding time complexity is O[M · (Nug +
|sub_w| · |vs|)]. With the inclusion of step 3 and step 4, the
final time complexity is about O[M · (Nug + |sub_w| · |vs| +
2 · |Ds| + |dc_w|)].

V. SIMULATION RESULTS AND DISCUSSIONS
We first discuss the rational setting of parameters utilized
in our location recommendation methodologies based on the

3070 VOLUME 4, 2016



X. Gong et al.: Location-Recommendation-Aware Virtual Network Embedding

Algorithm 1 Pseudo Code of Location-Recommendations-
Aware Virtual Network Embedding
Input: Gs(Vs,Ds,Es), CDC , Nug, c, ba, M , T , Pay
Output: Profitability of advertisement targeting, Pro; Total energy

consumed by establishing inter-DC paths, E
1: Initialization: Pro← 0, E ← 0, the set of Nug virtual networks:

w ← {G1
vn,G

2
vn, ...,G

Nug
vn }, and N vn

ed = ranf (2, d|Es|/(|Vs| +
|Ds|)e);

2: for i = 1, 2, ...,M do
3: Initialize the set of virtual networks with similar POI trajec-

tories: sub_w← Null;

4: for {G1
vn,G

2
vn, ...,G

Nug
vn } ∈ w do

5: sub_w← sub_w+ {Gkvn|G
k
vn.group_index = i};

6: end for /* Line 4 → Line 6: step 1; time complexity:
O(Nug) */

7: for Gkvn ∈ sub_w do
8: Determine the substrate DC: dc∗ ← {dc|CDC ≥

c, argmax [node_degree(dc)]};
9: for j = 1, 2, ..., |Vs| do
10: Update the set of candidate paths: P ← P + {pak ←

Dijkstra(j, dc∗)};
11: end for
12: if |P| ≥ N vn

ed then

13: Select N vn
ed shortest ones as substrate paths from P;

14: Update the bandwidth provisioning of links along these
N vn
ed substrate paths;

15: Update the computing-resource capacity of dc∗;
16: end if
17: end for /* Line 7 → Line 17: step 2; time complexity:

O(|sub_w| · |Vs|) */
18: end for
19: for |Ds| DCs do
20: for i = 1, 2, ...,M do
21: Count the number Ti of successfully embedded virtual

networks with the group index i;
22: if Ti > T then
23: Pro← Pro+ Ti · Pay;
24: end if
25: end for
26: end for /* Line 19 → Line 26: step 3; time complexity:

O(|Ds| ·M ) */
27: Return Pro;
28: for i = 1, 2, ...,M do
29: Initialize the DC set: dc_w← Null;
30: for DC1, ...,DC j, ...,DC |Ds| do
31: Count the number T ji of successfully embedded virtual

networks with the group index i for DC j;
32: if T ji > 0 then

33: Update the DC set: dc_w ← dc_w + DC j, ascending
(T ji );

34: end if
35: end for
36: DCsrc = dc_w.top();
37: dc_w.pop();
38: for DCk ∈ dc_w do
39: pak ← Dijkstra(DCsrc,DCk );
40: E ← E + E(pak );
41: end for
42: end for /* Line 28 → Line 42: step 4; time complexity:

O[(|Ds| + |dc_w|) ·M ] */
43: Return E .

FIGURE 5. Real-data-based graph recording direct relationship degree
among users in a group.

given auxiliary user-location graph for one user group, where
five males and three females are included. The direct rela-
tionship degree among users is pre-determined by tracking
the actual data from life, and this is shown by the number
beside the graph edge in Fig. 5, which only demonstrates the
upper part of Fig. 4. The users rank the initial hub score based
on the real status data published in the network chat soft-
ware. Five kinds of POIs with a total of 22 actual candidate
locations (4 hotels, 3 stations, 4 educations, 6 shops and
5 canteens) are involved in our simulations so that there will
be at most 4 × 3 × 4 × 6 × 5 = 1440 recommended
POI trajectories.

A. SIMULATION RESULTS OF LOCATION
RECOMMENDATION METHODOLOGIES
As demonstrated in Eq. (10), the initial hub score plays the
more important role in updating the authority score if we
have a large β, thus making the authority-score difference
among various kinds of locations for a POI small. As in Fig. 6,
where four locations of the ‘hotel’ POI are only considered,
the large β, especially when β = 0.9, makes the recommen-
dation of a stand-alone POI difficult since the authority-score
difference is very narrow. Therefore, the rational value of β
will be set so that the effect of the initial hub score on the
authority score updating weakens, such as the case β = 0.4
in Fig. 6

As mentioned in section IV, the spatial and temporal
thresholds both decide whether we can recommend a POI
trajectory for the user group; thus, their rational value range
cannot exceed the maximal spatial or temporal length. Then,
we obtain the threshold by letting the maximal length be
multiplied by an increasing factor smaller than one. In Fig. 7,
we can see that the number of POI trajectories grows with
the rise in the spatial threshold, but this tendency will finally
tend to be stable. Moreover, the rational value of the spa-
tial threshold should be set to obtain the largest number of
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FIGURE 6. Authority score of one POI vs. β.

FIGURE 7. Number of POI trajectories vs. spatial threshold.

POI trajectories (e.g., the rational spatial threshold should
have 15km in Fig. 7). Figure 8 demonstrates the similar
variation tendency and the value setting for the temporal
threshold.

B. SIMULATION RESULTS OF PROFITABILITY
The test topology with 24 nodes (i.e., |Vs| + |Ds| = 24) and
49 links (i.e., |Es| = 49) is shown in the right part of Fig. 1(b);
its average node degree is 3, i.e., the number of users in one
group N vn

ed = ranf (2, 3). We let c = ba = Pay = 1.
We obtain four sets (i.e., M = 4) of virtual networks
followed by our recommendation methodologies, and the
virtual networks in every set have similar POI trajectories.
The benchmark is the traditional virtual network embedding
algorithm without the awareness of location recommenda-
tions [8], [9]. In the benchmark, the virtual networks will
be embedded into the substrate network as many as possi-
ble, while the virtual networks with similar recommended
results cannot be screened out and they would be scattered in
different DCs, thus leading to the high energy-consumption
of inter-DC path establishment and low profitability for

FIGURE 8. Number of POI trajectories vs. temporal threshold.

advertisement targeting. First, as in Fig. 1(b), four nodes
labelled 17, 18, 14 and 8 are assumed to be small-scale DCs
because their node degree is large, and the remaining nodes
are end devices, i.e., |Vs| = 20 and |Ds| = 4.
We then compare the profitability among the upper bound

analyzed by us, our solution and the benchmark with the
increase in initial computing-resource capacity assigned for
each DC. Based on the bound analysis above, because
CDC = {50, 60, 70, 80, 90, 100}, the corresponding maximal
number of virtual networks successfully embedded Nmax =
{200, 240, 280, 320, 360, 400}, and we let Nug = Nmax . As a
result, the upper bound of profitability is also 200, 240, 280,
320, 360, and 400, respectively, because Pay = 1, which
can be seen in Fig. 9(a). We let T = Nug/(5 · M ), i.e.,
T = {10, 12, 14, 16, 18, 20}, because the value of T should
not be larger than Nug/M . The simulation results of Fig. 9(a)
show that our solution has higher profitability compared to
the benchmark, as only when the number of successfully
embedded virtual networks with similar recommended POI
trajectories exceeds the threshold will there be the corre-
sponding profitability. In our solution, virtual networks with
similar recommended POI trajectories tend to be processed as
a single set in the same DC, thus leading to high profitability,
and the improvement ratio can be as high as 20% over the
benchmark. Moreover, the profitability of our solution is very
close to the upper bound, with an average converge ratio
of 97%, which demonstrates the optimality of our solution.

Given CDC = 50 and Nug = Nmax = 200, we compare
the profitability between our solution and benchmark under
different settings of the threshold T = {5, 10, 15, 20, 25} in
Fig. 9(b). We can see that with the increase in T , although the
profitability of our solution slightly decreases, the improve-
ment ratio of profitability over the benchmark becomes high;
the larger the threshold is, the greater is the constraint on the
ability of the benchmark to obtain profitability.

Given CDC = 50 and T = 10, we compare
the profitability of our solution and the benchmark with
Nug = {120, 140, 160, 180, 200} in Fig. 9(c). Although the
profitability of the benchmark and our solution becomes high
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FIGURE 9. Simulation results of profitability and energy consumption. (a) Profitability vs. initial computing-resource capacity.
(b) Profitability vs. threshold. (c) Profitability vs. number of virtual networks. (d) Profitability vs. number of DCs. (e) Energy
consumption vs. initial computing-resource capacity. (f) Energy consumption vs. number of virtual networks.

with the increasing number of successfully embedded virtual
networks, our solution always has higher profitability than the
benchmark.

Finally, given CDC = 50 and T = 10, we compare
the profitability between our solution and the benchmark if
the number of DCs in the test topology becomes a variable,
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i.e., |Ds| = {4, 5, 6, 7, 8}, in Fig. 9(d). When |Ds| = 8, based
on the bound analysis, the corresponding maximal number
of virtual networks successfully embedded Nmax = 400.
Thus, we let Nug = Nmax = 400. We can see that with the
increase in |Ds|, the profitability of the benchmark and our
solution becomes high, and as expected, our solution always
has higher profitability than that of the benchmark.

C. SIMULATION RESULTS OF ENERGY CONSUMPTION
FOR INTER-DC PATH ESTABLISHMENTS
Similarly, as in Fig. 1(b), four nodes labelled 17, 18,
14 and 8 are assumed to be small-scale DCs because their
node degree is large, and the remaining nodes are end devices,
i.e., |Vs| = 20 and |Ds| = 4. In addition, to facilitate a
visualized result demonstration, we make the corresponding
normalization processing for energy-consuming parameters
γ s/al ≈ 1.75, al = 1, which is not measured in Watts
because they are natural constants that have negligible influ-
ence on the variation tendency of the energy consumption
for inter-DC path establishments. According to Eq. (1), this
part of energy consumption is related with the number of
established inter-DC paths and the number of routing hops
owned by those paths.

We first compare the energy consumption for inter-DC
path establishments of our solution and the benchmark with
the increase in initial computing-resource capacity assigned
for each DC, i.e., CDC = {50, 60, 70, 80, 90, 100}, and
we let Nug = Nmax = {200, 240, 280, 320, 360, 400},
T = {10, 12, 14, 16, 18, 20}. The simulation results of
Fig. 9(e) demonstrate that our solution has lower energy
consumption compared to that of the benchmark because the
virtual networks with similar recommended POI trajectories
tend to be processed as a single set in the sameDC; as a result,
the adviser can locally push the corresponding products to
users instead of consuming a large amount of energy to
establish inter-DC paths. Compared to the benchmark, the
improvement ratio of energy efficiency can be as high as 38%.

Next, givenCDC = 50 and T = 10, we compare the energy
consumption for inter-DC path establishments of our solution
and the benchmark with Nug = {120, 140, 160, 180, 200} in
Fig. 9(f). Although the energy consumption of the benchmark
and our solution becomes fairly high with the increasing
number of successfully embedded virtual networks, our solu-
tion always has lower energy consumption compared to the
benchmark.

VI. RELATED WORK
Because location recommendation is a broad topic, in this
section, we focus on 5G-based location recommendation,
which can be divided into two categories based on the objec-
tive of their recommendation: 1) stand-alone POI recommen-
dation systems that provide users with individual locations
that match its preferences [4]–[6], and 2) sequential location
recommendation systems that recommend a series of loca-
tions to a user based on its preferences and some constraints
in terms of temporal and spatial distances. Compared to the

stand-alone POI recommendation, user-generated trajectories
contain a richer set of information, such as the path trav-
elled. As a result, the trajectory data can be used to more
accurately estimate a user’s preferences [7]. However, the
aforementioned works only focused on the location recom-
mendation for a user, not a user group. More importantly,
the specific application of the recommendation results has
not been adequately discussed, for example, advertisement
targeting based on location recommendations, as mentioned
in our work.

In the case of virtual network embedding, existing works
mainly proposed corresponding design frameworks tailored
to traditional optical data center networks [11]–[13]. In par-
ticular, the authors in [11] and [12] presented a model that
reflects the linear power growth of fibre links and servers.
Based on the variable power consumption information, each
user or cloud provider selfishly selected the most power-
efficient virtual lightpath. Eventually, the proposed approach
exhibited convergence to the global optimum performance.
Considering the multi-priority service requests, the authors
in [13] proposed a multi-period virtual network embedding.
High-priority service requests must be processed instantly,
and low-priority service requests can be served anytime
within a maximal delay. With the accurate estimation of
the time-varying service requests, the least power-consuming
virtual lightpaths were found in the current time period. In
fact, given the possibility of ubiquitous 5G wireless access,
it is necessary to move computing capacity from end devices
to DCs for mobile cloud computing services such as adver-
tisement targeting based on location recommendations. Cor-
respondingly, the integration of metro optical and ubiquitous
wireless access technologies has become increasingly nec-
essary [8]– [10]. Therefore, the virtual network embedding
approaches utilized in traditional optical data center networks
cannot be directly utilized for new optical-wireless hybrid
networks in accordance with 5G models.

Above all, this paper is the first work to focus on
location-recommendation-aware virtual network embedding
in energy-efficient optical-wireless hybrid networks support-
ing 5G models.

VII. CONCLUSIONS
In this paper, a novel design framework for location-
recommendation-aware virtual network embedding has been
proposed to minimize the energy consumption associated
with inter-DC path establishments in optical-wireless hybrid
networks that support 5G models. This problem has been
formulated as a scenario in which the profitability of adver-
tisement targeting is maximized. The NP-hardness and upper
bound of the transformed problem have been analyzed.
To find a solution to the problem that involves a short com-
putation time, a novel heuristic has also been designed. The
simulation results have demonstrated that our design frame-
work can obtain higher profitability and energy efficiency
with improvement ratios of 20% and 38%, respectively, com-
pared to the benchmark. More importantly, the profitability
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obtained by our heuristic is very close to the upper bound,
with a converging ratio of 97%. Since this paper is the first
work to focus on location-recommendation-aware virtual net-
work embedding in optical-wireless hybrid networks support-
ing 5G models, only the simulation results have been shown.
In the near future, a real experiment would be performed in a
small-scale testbed with the necessary hardware.
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