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ABSTRACT The pervasive increasing mobile devices and explosively increasing data traffic pose imminent
challenges on wireless network design. Device-to-device (D2D) communication is envisioned to play a key
role in the fifth generation cellular networks to efficiently support much larger and more diverse set of
devices. This paper investigates the mode selection and resource allocation for D2D communications with
dynamic user arrivals and departures. We formulate the optimal resource control problem to minimize the
average energy consumption of flow transmission into an infinite horizon average reward Markov decision
process. In order to deal with the well-known curse of dimensionality problem and facilitate distributed
implementation, we approximate the mode selection Q-factor by the sum of per-queue mode selection
Q-factors. Moreover, we apply distributive stochastic online learning to estimate the per-queue Q-factors.
Simulation results show that the proposed approach outperforms various existing baseline algorithms.

INDEX TERMS Device-to-device communications, flow-level model, Markov decision process.

I. INTRODUCTION
Device-to-Device (D2D) communications commonly refer to
a type of technologies that enable devices to communicate
directly with each other without the communication infras-
tructure, e.g., access points (APs) or base stations (BSs).
With the emergence of context-aware applications and the
accelerating growth of Machine-to-Machine (M2M) appli-
cations, D2D function plays an increasingly important role.
This is because it facilitates the discovery of geographically
close devices, and enables direct communications between
these proximate devices, which increases communication
capability and reduces communication delay and power con-
sumption. To seize the emerging market that requires D2D
function, the mobile operators and vendors are exploring the
possibilities of introducing D2D communications in the cel-
lular networks [1]. D2D communication is currently accepted
as a part of fourth generation (4G) Long Term Evolu-
tion (LTE)-Advanced standard in 3rd Generation Partnership
Project (3GPP) Release 12 [2], and it is also envisioned to
continuously evolve into the fifth generation (5G) cellular
networks to efficiently support much larger and more diverse
set of devices [3].

When D2D communications are supported in cellular
networks, the data between a pair of D2D user equip-
ments (UEs) can either be routed along a one-hop route
of D2D link (direct over-the-air link) in D2D mode, or a
two-hop route of cellular links in cellular mode. Moreover,
two resource sharing paradigms are defined for D2D com-
munications: either overlay where cellular and D2D links
use orthogonal time/frequency resources, or underlay where
D2D links can access the time/frequency resources occu-
pied by cellular users [4]. Mode selection and resource
allocation are two important resource control functions in
D2D communications.

Recently, there is a vast body of work on resource con-
trol design for D2D communications under the packet-level
model, which considers that the user number is fixed, and
the traffic pattern is usually assumed to be saturated with
infinite backlogs (i.e., each user always has data to transmit).
However, the number of users varies with time in practice,
where new users arrive according to a stochastic process,
and each user has a certain amount of data for transmis-
sion [5]. A user leaves the system when the data transmis-
sion is completed. The optimal resource control policies and
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corresponding performance under the above flow-level model
can be very different from those derived and predicted under
the packet-level model. As a simple example, consider a
cellular network with overlay D2D communications. Under
the infinite backlog trafficmodel, the mode selection decision
is mostly related to the UE positions, which impact the time-
average transmission rates of the D2D links and cellular links.
On the other hand, the optimal mode under flow-level model
also depends on the user population of cellular and D2D
communications, i.e., the mode with smaller user population
is favored.

The flow-level models are extremely difficult to solve for
optimality due to the time-varying service rates and dynamic
user population. There are several important works that ana-
lyze the flow-level performance of cellular networks, which
use a simple constant-rate service process to approximate the
time-varying service rate due to fast fading [5], [6]. However,
to the best of our knowledge, there is few mathematical
model to optimize the resource control functions of cellular
networks under flow-level model with time-varying service
rate [7]. Moreover, the optimization of D2D communications
under the flow-level model is barely studied in existing work.

Compared with traditional cellular networks, the design of
resource control for D2D communications has some unique
requirements: 1) the time scale of mode selection needs to
be determined, since the selected mode should be updated
with the varying radio condition and network load for better
performance, but not updated too often to avoid large sig-
naling overhead; 2) it is preferable to perform the resource
control distributively by the UEs with proper help and control
from the BS, since a fully centralized solution as in tradi-
tional cellular networks brings an exponential computational
complexity and huge signaling overhead; 3) the resource
control functions should be jointly optimized to achieve better
performance since they are closely related, e.g., the mode
selection decision depends on the system or user performance
under each mode, which is greatly impacted by the resource
allocation and power control schemes.

In this paper, we consider an Orthogonal Frequency Divi-
sion Multiple Access (OFDMA) cellular network with over-
layD2D communications and dynamic cellular andD2Dflow
arrivals. Our objective is to design a joint distributed mode
selection and resource allocation policy with two time scales
to minimize the average energy consumption of flow trans-
mission. We formulate an infinite horizon average reward
Markov Decision Process (MDP) problem for the dynamic
optimization of mode selection and resource allocation over
frequency-selective fading channel with Adaptive Modula-
tion and Coding (AMC) scheme in the physical layer under
dynamic flow arrival and departure. The mode selection is
only adaptive to the flow dynamics, i.e., the user population
variation, while the resource allocation is adaptive to both
the channel state variation and flow dynamics. Since it is
well-known that there is generally no simple solution for
the MDP problem because the brute-force value iterations
or policy iterations could not lead to any viable solution due

to the curse of dimensionality, we use approximate dynamic
programming and online stochastic learning to reduce com-
plexity and facilitate distributed implementation. In the pro-
posed solution, every user receives a couple of per-queue
Q-factors from the BS when it first arrives, and it distribu-
tively makes mode selection decision and computes bids for
resource allocation based on the Q-factors. Then, it submits
the bids to the BS which makes the resource allocation
decision. The per-queue Q-factors are distributively updated
at the UEs, which submit the updatedQ-factors to the BS after
they finish transmission and are ready to leave the system.
Different from our previous works in [8] and [9] which are
based on the packet-level model with fixed number of users,
we focus on the flow-level model with time-varying user
population in this paper. The main contribution of this paper
lies in the following aspects:

1) We define a new performance metric under the flow-
level model, i.e., the mean flow transmission energy
consumption, which is the product of the mean flow
transmission delay and transmission power. The opti-
mization of this performance metric achieves the
best trade-off between throughput maximization and
power minimization, which are the two mostly consid-
ered optimization objectives under the infinite backlog
traffic model.

2) We formulate a queuing model and provide the under-
lyingMarkov chain for the flow-level model with time-
varying service rates, which facilitate the derivation of
the distributed solutions for resource control. Both the
statistical information in the space and time domains
are exploited.

3) We propose a two-timescale, distributed and joint mode
selection and resource allocation control under the
flow-level model, where the mode selection control is
only adaptive to the flow dynamics but not the channel
variation due to fast fading. The tradeoff between per-
formance, complexity and signaling overhead is fully
considered in the proposed solution.

The organization of the paper is as follows. Section II
reviews the related work. The system model of D2D overlaid
cellular network with flow-level dynamics is described in
Section III. In Section IV, we formulate an infinite horizon
average reward MDP model for the optimization of mode
selection and resource allocation control. In Section V we
derive a low complexity learning algorithm, which updates
the per-queue Q-factors based on real-time observations of
channel state information (CSI) and queue state informa-
tion (QSI), as well as a distributive mode selection algorithm
and a resource allocation algorithm with auction mecha-
nism. In Section V, we discuss the performance simulations.
Finally, we summarize the main results in Section VI.

II. RELATED WORK
Mode selection in D2D communications has been exten-
sively studied by many works in literature [10], almost all of
which focus on the packet-level model with fixed number of
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users - mostly adopt an infinite backlog traffic model
[11]–[16], while a few of our recent works assume the
dynamic packet arrival model [8], [9], [17]. Mode selection
can be performed at different time scales, either statically
where the selectedmode remains fixed for a pair of D2DUEs,
or dynamically per time slot. Dynamic mode selection can
capture and utilize the fast fading effects of wireless channels
opportunistically, while static mode selection has the advan-
tage of saving computation and communication overhead.
The design ofmode selection function has to take into account
the other two closely related resource control functions, i.e.,
resource allocation and power control, and the three func-
tions can be either separately [4], [11], [12], [15], [17] or
jointly [8], [9], [13], [14], [18] optimized.

Research on mode selection uses various methods to deal
with the problem. The mode that can achieve the best sys-
tem performance in terms of spectral efficiency [11], energy
efficiency [12], or delay [17] may be selected, where the
performance under every mode is estimated assuming the
power control and resource allocation algorithms are either
given or optimized. For this category of methods, the main
difference between static and dynamic mode selection lies in
whether the long-term time-average performance or instan-
taneous performance per time slot is used as the selection
criteria. Another category of methods perform distance-based
mode selection using stochastic geometry analysis [4], [15],
where [4] only considers the distances between D2DUEs and
derives an optimal distance threshold, while [15] additionally
considers the distances between D2D UEs and the BS and an
optimal bias factor is determined. This category of methods
exploits the statistical information in the space domain (i.e.,
the distributions of the UE locations) and belongs to the static
mode selection. Finally, when mode selection is performed
dynamically at each time slot, the problem becomes deciding
whether to schedule the D2D link or the cellular link for a
pair of D2D UEs. Therefore, a third category of methods
implicitly solve the mode selection problem by the resource
allocation algorithms [8], [9], [13], [14].

Mode selection can be either centrally performed by the
BS or distributively determined by the UEs themselves. Most
existing works in literature focus on the centralized scheme.
In [16], a dynamic Stackelberg game is presented in which
the BS and the D2D UEs act as the leader and the follow-
ers, respectively, to enable distributed user-controlled mode
selection.

III. SYSTEM MODEL
Consider a D2D overlaid OFDM cellular network, where
there are multiple D2D UE (DUE) pairs and cellular UEs
(CUEs) in a cell. A DUE pair consists of a source D2D UE
(src. DUE) and a destination D2D UE (dest. DUE) within
direct over-the-air communication range. The whole uplink
spectrum is divided into NF equal size subchannels, where
ηNF subchannels are allocated to cellular communications
and the rest of the (1 − η)NF subchannels are allocated to
D2D communications. The data transmission is performed

on a slot-by-slot basis, where all time slots have equal
length.

A. TRAFFIC CHARACTERISTICS
Wedefine a dynamic flowmodel for elastic traffic, where new
DUE pairs and new CUEs arrive at the system with finite-
size file transmission tasks from the src. DUEs to the dest.
DUEs and the CUEs to the BS, and leave the system after they
finish transmissions. Therefore, we will also use the terms
‘‘D2D flow’’ and ‘‘cellular flow’’ to refer to ‘‘DUE pair’’
and ‘‘CUE’’ in the rest of the paper. Under the dynamic flow
model, the number of UEs or flows in the system varies over
time due to the arrival and departure processes. Denote by
nC,t and nD,t the number of cellular flows and D2D flows at
time slot t , respectively.

The cellular (resp. D2D) flow sizes are assumed to be inde-
pendently and exponentially distributed with mean measure
σC (resp. σD). Consider cellular (resp. D2D) flows arrive at
the system as a homogeneous spatial Poisson process with
mean arrival rate λC (resp. λD), so that the rate at which
CUEs (resp. src. DUEs) arrive into an area X is λC X

πR2

(resp. λD X
πR2

) with R denoting the radius of the circular cell.
We consider the transceiver distance dD of a typical DUE pair
is Rayleigh distributed with maximum value of R [2]:

fdD (x) =
2πξxe−ξπx

2

1− e−ξπR2
, 0 ≤ x ≤ R (1)

Note that (1) implies that a dest. DUE is randomly distributed
on the circle centered at its src. DUE according to a two-
dimensional Gaussian distribution. The following analysis
can be extended to other distributions as well.

We consider that at most nCmax cellular flows and nDmax
D2D flows can be admitted into a cell simultaneously.
Cellular (resp. D2D) flows which arrive when there are
already nCmax (resp. nDmax) transfers in progress in the cell
are denied access and abandon. Let i ∈ {1, . . . , nCmax} and
j ∈ {1, . . . , nDmax} denote the cellular flow index and D2D
flow index, respectively. A flow is assigned an index that is
not used by other flows once it is admitted into the system,
and the index is released and can be assigned to new flows
after the considered flow finishes transmission and leaves the
system. The flow index and positions of the UEs remain fixed
for the duration of the transfer.

B. RESOURCE CONTROL POLICY
Mode selection needs to be performed for any new D2D flow
upon arrival. Let yj,t , j ∈ {1, . . . , nDmax} denote the selected
mode of D2D flow j at time slot t , where yj,t = 1 if D2D
mode is selected and yj,t = 0 otherwise. If D2D flow j does
not exist at time slot t , let yj,t = 0. Denote the total number of
D2D flows in D2D mode and cellular mode at time slot t by
nDd,t =

∑nDmax
j=1 yj,t and nDc,t = nD,t −

∑nDmax
j=1 yj,t ,

respectively.
The data of a cellular flow is always transmitted over the

corresponding cellular uplink, while the data of a D2D flow
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can be either transmitted over a D2D link or a cellular uplink,
depending on whether the D2D mode or cellular mode is
selected. Let lC,i0, i ∈ {1, . . . , nCmax} denote the cellular
uplink corresponding to the communication channel from
CUE i to the BS when cellular flow i exists. Let lD,j0 and lD,jj,
j ∈ {1, . . . , nDmax} denote the cellular uplink corresponding
to the communication channel from src. DUE j to the BS, and
the D2D link corresponding to the communication channel
from src. DUE j to dest. DUE j, respectively, when D2D flow
j exists. Since there are two types of links in our model, i.e.,
D2D links and cellular uplinks, we use the term ‘‘link’’ to
refer to any type of links in the rest of paper.

When the selected mode is determined for all the
D2D flows at time slot t , the sets of cellular uplinks and
D2D links for D2D flows are restricted to {lD,j0|yj,t = 0}
and {lD,jj|yj,t = 1}, respectively. We consider each of the
ηNF (resp. (1 − η)NF) subchannels is assigned to one of
the cellular uplinks (resp. D2D links) at each time slot.
Denote the index of a subchannel by m ∈ {1, . . . ,NF }. Let
x(m)C,i0,t (resp. x

(m)
D,j0,t , x

(m)
D,jj,t ) ∈ {0, 1} denote the subchannel

allocation for link lC,i0 (resp. lD,j0, lD,jj) at time slot t , where
x(m)C,i0,t (resp. x

(m)
D,j0,t , x

(m)
D,jj,t ) = 1 if subchannelm is allocated to

link lC,i0 (resp. lD,j0, lD,jj), and x
(m)
C,i0,t (resp. x

(m)
D,j0,t , x

(m)
D,jj,t ) = 0

otherwise. Moreover, let x(m)C,i0,t (resp. x
(m)
D,j0,t , x

(m)
D,jj,t ) = 0 if

cellular flow i (resp. D2D flow j) does not exist. There-
fore, for any m ∈ {1, . . . , ηNF} we have

∑nCmax
i=1 x(m)C,i0,t +∑nDmax

j=1 x(m)D,j0,t (1 − yj,t ) = 1; while for any m ∈ {ηNF +

1, . . . ,NF} we have
∑nDmax

j=1 x(m)D,jj,tyj,t = 1.
We consider a cellular uplink or D2D link uses channel

inversion for power control, i.e., P = dα , where P and d
denote the transmission power and link length, respectively,
and α > 2 denotes the path-loss exponent. This means that
the channel state processes of all UEs are symmetric in the
sense that they are subject to the same slow fading (that does
not change over the time period of interest), with the fast
fading being statistically identical for all users. We use the
term ‘‘D2D transmitter’’ to refer to a src. DUE in D2D mode,
while ‘‘cellular transmitter’’ to refer to either a CUE or a
src. DUE in cellular mode. Let PCt,i,t and PCt,j,t denote the
transmission power of a cellular transmitter corresponding to
cellular flow i or D2D flow j in cellular mode, respectively.
Let PDd,j,t denote the transmission power of a D2D trans-
mitter corresponding to D2D flow j in D2D mode. Since the
transmission power of cellular transmitters are dependent on
their distance with the BS, we divide the circular area of the
considered cell into K disjunct zones by K − 1 concentric
circles around the BS, where the zone k ∈ {1, . . . ,K } is
the region between two concentric circles with radius dk−1
and dk . Obviously, d0 = 0 and dK = R, respectively.
The transmission power of all the cellular transmitters in
zone k can be considered as approximately the same, i.e.,
PCt,i,t = PCt,j,t = P(k) = ( dk−1+dk2 )α , if CUE i and src.
DUE j are in zone k . Similarly, since the transmission power
of D2D transmitters are dependent on the distance with their
respective D2D receivers, we consider that the transmission

power of all D2D transmitters with dD ∈ (dk−1, dk ] are
approximately the same, i.e, PDd,j,t = P(k) if the distance
between DUE pair j falls within (dk−1, dk ]. Let PCt,i,t = 0
(resp. PCt,j,t = PDd,j,t = 0) if cellular i (resp. cellular j) does
not exist at time slot t .
Remark 1 (Motivation of Two Time-Scale Control Policy):

We consider that the mode selection and resource allocation
policies are performed over two different time scales. While
the resource allocation decision is made on a per-slot basis,
the mode selection decision is updated at the much slower
time scale of flow dynamics. This is because although the
channel state variation due to fast fading does have some
impact on the mode selection decision, the most essential
factors that determine the optimal decision are the number
of flows and the spatial distribution of the UEs, which only
change with the flow arrival and departure.

C. INSTANTANEOUS DATA RATE
The path loss of the wireless channels is compensated by the
power control mechanism.We consider that the instantaneous
channel gain comprising only the fast fading effect of link
lC,i0 (resp. lD,j0, lD,jj) on any subchannel m remains constant
within a time slot and i.i.d. between time slots, the value of
which is denoted byG(m)

C,i0,t (resp.G
(m)
D,j0,t ,G

(m)
D,jj,t ). The Signal

to Noise Ratio (SNR) of a link lC,i0 (resp. lD,j0 and lD,jj) on a

subchannel m at time slot t can be derived as γ (m)
C,i0,t =

G(m)
C,i0,t

N (m)
C,i0,t

(resp. γ (m)
D,j0,t =

G(m)
D,j0,t

N (m)
D,j0,t

, γ (m)
D,jj,t =

G(m)
D,jj,t

N (m)
D,jj,t

), where N (m)
C,i0,t (resp.

N (m)
D,j0,t , N

(m)
D,jj,t ) denotes the noise power on subchannel m at

time slot t .
We assume that Adaptive Modulation and Coding (AMC)

is used in the physical layer, where the SNR values are
divided into V non-overlapping consecutive regions. For any
v ∈ {1, . . . ,V }, if the SNR value γ (m)

C,i0,t (resp. γ
(m)
D,j0,t , γ

(m)
D,jj,t )

of link lC,i0 (resp. lD,j0, lD,jj) falls within the v-th region
[0v−1, 0v), the corresponding data rate r (m)C,i0,t (resp. r

(m)
D,j0,t ,

r (m)D,jj,t ) is a fixed value Rv according to the selected modu-
lation and coding scheme in this state. Obviously, 00 = 0
and 0V = ∞. Also, we have R1 = 0, i.e., no packet is
transmitted in channel state 1 to avoid the high transmission
error probability. Define the channel state information (CSI)
of link lC,i0 (resp. lD,j0, lD,jj) asHC,i0,t := {H

(m)
C,i0,t }

ηNF
m=1 (resp.

HD,j0,t := {H
(m)
D,j0,t }

ηNF
m=1, HD,jj,t := {H

(m)
D,jj,t }

NF
m=ηNF+1

), where

H (m)
C,i0,t (resp. H (m)

D,j0,t , H
(m)
D,jj,t ) denotes its channel state on

subchannel m, which equals v if γ (m)
C,i0,t (resp. γ

(m)
D,j0,t , γ

(m)
D,jj,t )

is between [0v−1, 0v). Let H
(m)
C,i0,t = 1 (resp. H (m)

D,j0,t = 1,

H (m)
D,jj,t = 1) if cellular flow i (resp. D2D flow j) does not

exist at time slot t .
Let rC,i0,t (resp. rD,j0,t ,rD,jj,t ) be the instantaneous data

rate of link lC,i0 (resp. lD,j0, lD,jj) during time slot t , which
is equal to the sum of the instantaneous data rate r (m)C,i0,t

(resp. r (m)D,j0,t , r
(m)
D,jj,t ) of link lC,i0 (resp. lD,j0, lD,jj) on all the
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subchannels that are assigned to it at time slot t , i.e., rC,i0,t =∑ηNF
m=1 r

(m)
C,i0,tx

(m)
C,i0,t , rD,j0,t =

∑ηNF
m=1 r

(m)
D,j0,tx

(m)
D,j0,t (1−yj,t ) and

rD,jj,t =
∑NF

m=ηNF+1
r (m)D,jj,tx

(m)
D,jj,tyj,t .

IV. PROBLEM FORMATION
In this paper, we study the design of the mode selection
and resource allocation mechanisms in order to optimize the
flow-level performance. In this section, we shall formulate
the problem into an infinite-horizon average reward MDP
model, which consists of four elements: states, actions, state
transition probabilities, and rewards.

A. SYSTEM STATE
Before defining the system state of the MDP model, we
first formulate a queuing model based on the system model
described above. We consider there are nCmax+nDmax virtual
queues in a single cell, where {qC,i}

nCmax
i=1 denotes the set of

queues for cellular flows, while {qD,j}
nDmax
j=1 denotes the set

of queues for D2D flows. A cellular (resp. D2D) flow that
arrives at the system is immediately assigned by a virtual
flow dispatcher to an empty queue qC,i, i ∈ {1, . . . , nCmax}

(resp. qD,j, j ∈ {1, . . . , nDmax}) once admitted into the system.
On the other hand, an occupied queue becomes empty after
the corresponding flow finishes transmission and departs. Let
QC,i,t (resp.QD,j,t ) denote the length of queue qC,i (resp. qD,j)
at time slot t . Thus,QC,i,t ,QD,j,t ∈ {0, 1}, i ∈ {1, . . . , nCmax},
j ∈ {1, . . . , nDmax} indicate whether the i-th queue for cellular
flows and j-th queue for D2D flows are occupied or not,
respectively. Since at most nCmax cellular flows and nDmax
D2D flows can be admitted in a cell,

∑nCmax
i=1 QC,i,t = nC,t

and
∑nDmax

j=1 QD,j,t = nD,t represent the number of cellular
flows and D2D flows at time slot t , respectively.
Based on the above queuing model, the global system

state at time slot t can be characterized by the global queue
state information (QSI) and CSI, i.e., St = (Qt ,Ht ). The
global QSI is defined as Qt = (QC,t ,QD,t ), where QC,t =

{QC,i,t ,PCt,i,t }
nCmax
i=1 , QD,t = {QD,j,t ,PCt,j,t ,PDd,j,t }

nDmax
j=1 .

The global CSI is defined as Ht = (HC,t ,HD,t ) with HC,t =

{HC,i0,t }
nCmax
i=1 and HD,t = {HD,j0,t ,HD,jj,t }

nDmax
j=1 . Recall that

HC,i0,t (resp. HD,j0,t ,HD,jj,t ) is the CSI of link lC,i0 (resp.
lD,j0, lD,jj) at time slot t as given in section III.
For the system state space S, we have S = Q×H, where

Q represents the queue state space with |Q| = (K+1)nCmax+

(K 2
+ 1)nDmax and H represents the channel state space with

|H| = V (nCmax+2nDmax)NF .

B. CONTROL POLICY
At each time slot t , based on the current state St ,
an action at = {yt , xC,t , xD,t } is taken from the
set of allowable actions in the action space A, which
is discrete and finite. The action is composed of the
mode selection action yt = {yj,t }j∈{1,...,nDmax}, sub-
channel allocation action of cellular uplinks xC,t =

{{x(m)C,i0,t }i∈{1,...,nCmax}∪{x
(m)
D,j0,t }j∈{1,...,nDmax}|m = 1, . . . , ηNF},

as well as subchannel allocation action of D2D links

xD,t = {{x
(m)
D,jj,t }j∈{1,...,nDmax}|m = ηNF + 1, . . . ,NF}. Note

that A = Ay × AxC × AxD, where y ∈ Ay, xC ∈ AxC, and
xD ∈ AxD. There are 2nDmax actions in the set Ay, (nCmax +

nDmax + 1)ηNF actions in the set AxC and (nDmax + 1)(1−η)NF

actions in the set AxD.
A control policy prescribes a procedure for action selection

in each state at all decision epoches t . We consider stationary
Markovian control policies. A deterministic control policy
� is a mapping S → A from the state space to the action
space, which is given by �(S) = a ∈ A, ∀S ∈ S.
In this paper, the policy � is composed of the mode selec-
tion policy �y and resource allocation policy �x, where
�(S) = (�y(Q), �x(Q,H)).

C. STATE TRANSITION PROBABILITY
The induced random process can be represented by the
discrete-time Markov chain (DTMC) {St }t=0,1,.... Given a
system state St and an action at at time slot t , the state
transition probability of the DTMC is given by

Pr.{St+1|St , at } = Pr.{Ht+1|Qt+1}Pr.{Qt+1|Qt ,Ht , at }

= Pr.{Ht+1|Qt+1}

nCmax∏
i=1

Pr.{Qi,t+1,PCt,i,t+1|Qt ,Ht , at }

×

nDmax∏
j=1

Pr.{Qj,t+1,PCt,j,t+1,PDd,j,t+1|Qt ,Ht , at }. (2)

We assume that the time slot duration τ is substantially
smaller than the average flow inter-arrival time as well as
the average flow service time. There is a flow departure at
the t-th slot if the remaining service time of a flow is less
than the current slot duration. By the memoryless property
of the exponential distribution, the remaining flow length at
any slot t is also exponentially distributed. Thus, a Bernoulli
random variable BC,i,t denotes the departure of cellular flow
i ∈ {1, . . . , nCmax} at time slot t , with

BC,i,t =


1, w.p. 1− exp(−

rC,i0,t
σC

)

0, w.p. exp(−
rC,i0,t
σC

).

A Bernoulli random variable BD,j,t denotes the departure of
D2D flow j ∈ {1, . . . , nDmax} at time slot t with

BD,j,t =



1, w.p. 1− exp(−
rD,j0,t
σD

) if yj = 0

w.p. 1− exp(−
rD,jj,t
σD

) if yj = 1

0, w.p. exp(−
rD,j0,t
σD

) if yj = 0

w.p. exp(−
rD,jj,t
σD

) if yj = 1.

Since a newly arrived flow is randomly dispatched to an
empty virtual queue, the probability of a cellular flow (resp.
a D2D flow) arrival event at an empty virtual queue can be
denoted by a Bernoulli random variable BC,i,t (resp. BD,j,t )
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with

BC,i,t =


1, w.p.

λC∑nCmax
i=1 (1− QC,i,t )

0, w.p. 1−
λC∑nCmax

i=1 (1− QC,i,t )
,

BD,j,t =


1, w.p.

λD∑nDmax
j=1 (1− QD,j,t )

0, w.p. 1−
λD∑nDmax

j=1 (1− QD,j,t )
.

Based on the above discussion, the queue state transition
probability in (2) can be derived as

Pr.{Qi,t+1,PCt,i,t+1|Ht ,Qt , at }

=



Pr.{BC,i,t = 1},
if QC,i,t = 1,PCt,i,t ∈ {P(k)}Kk=1
and Qi,t+1 = 0,PCt,i,t+1 = 0
Pr.{BC,i,t = 1}pCt,k ,
if QC,i,t = 0,PCt,i,t = 0
and Qi,t+1=1,PCt,i,t+1=P(k),∀k ∈ {1, . . . ,K }
Pr.{BC,i,t = 0},
if QC,i,t = Qi,t+1 = 1,PCt,i,t = PCt,i,t+1
Pr.{BC,i,t = 0},
if QC,i,t = Qi,t+1 = 0,PCt,i,t = PCt,i,t+1 = 0.

(3)

Pr.{Qj,t+1,PCt,j,t+1,PDd,j,t+1|Ht ,Qt , at }

=



Pr.{BD,j,t = 1},
if QD,j,t = 1,PCt,j,t ,PDd,j,t ∈ {P(k)}Kk=1
and Qi,t+1 = 0,PCt,i,t+1 = 0
Pr.{BD,j,t = 1}pCt,kpDd,k ′ ,
if QD,j,t = 0,PCt,j,t = PDd,j,t = 0
and Qj,t+1 = 1,PCt,j,t+1 = P(k)

PDd,j,t+1 = P(k
′),∀k, k ′ ∈ {1, . . . ,K }

Pr.{BD,j,t = 0},
if QD,j,t = Qj,t+1 = 1,PCt,j,t = PCt,j,t+1,
PDd,j,t = PDd,j,t+1
Pr.{BD,j,t = 0},
if QD,j,t = Qj,t+1 = 0,PCt,j,t = PCt,j,t+1,
PDd,j,t = PDd,j,t+1 = 0.

(4)

where pCt,k and pDd,k are the probabilities that a cellu-
lar transmitter and a D2D transmitter have transmission

power P(k), respectively, where pCt,k =
d2k−d

2
k−1

R2
and

pDd,k =
∫ dk
dk−1

fdD (x).

D. REWARD FUNCTION
Under the flow-level model, we define a new performance
metric, i.e., the mean energy consumption for the transmis-
sion of a flow, which equals the product of the mean delay for
the transmission of a flow and the transmission power. The
mode selection policy will impact the mean delay through

its impact to the traffic load of cellular and D2D commu-
nications, while it will also impact the transmission power
depending on the UE locations. The mode selection policy
should consider both factors and also be jointly optimized
with the subchannel allocation policy, which also impacts
the mean delay. We consider the low load regime where the
blocking probability is negligible.

We are interested in the weighted sum of the mean energy
consumption for the transmission of a cellular flow and a
D2D flow, which is given by

Ū = Eπ (�) [g(S, �(S))] ,

g(S, �(S)) = ωC

nCmax∑
i=1

QC,iPCt,i
λC

+ωD

nDmax∑
j=1

(QD,j − yj)PCt,j + yjPDd,j
λD

, (5)

whereωC andωD represent the relative importance of the cel-
lular flows and D2D flows, andEπ (�)[x] denotes the expecta-
tion operation taken w.r.t. the unique steady-state distribution
induced by the given policy �. The proof of the derivation
of Ū is given in Appendix A.
Our objective is to design of the optimal mode selection

and resource allocation control policy to minimize Ū . Using
the MDP formalism, the optimization problem is formulated
as the infinite horizon MDP problem

min lim
T→∞

1
T

T∑
t=1

E�[g(St , �(St ))]

= minEπ (�)[g(S, �(S))]. (6)

where the equality holds under any unichain policy.
Therefore, the reward function g(St , �(St )) can be derived
directly from g(S, �(S)) given in (5). Note that the reward
function is only dependent on the QSI Qt and the mode
selection action �y(Qt ). Therefore, we will use the notation
g(St , �(St )) and g(Qt , �y(Qt )) interchangeably in the rest of
the paper.

V. OPTIMAL SOLUTION
The formulated problem is a classical infinite horizon average
reward MDP problem, which can be solved by the Bellman’s
equation.

θ + V (S) = min
�(S)

{
g(S, �(S))+

∑
S′∈S

Pr.[S′|S,

�(S)]V (S′)

}
, ∀S ∈ S, (7)

where V (S) is the value function representing the average
reward obtained following policy � from each state S, while
θ represents the optimal average reward per-period for a
system in steady-state.

As a remark, note that the Bellman’s equation (7) rep-
resents a series of fixed-point equations, where the num-
ber of equations are determined by the number of value
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functions V (S), which is |S|. Theoretically, the BS can use
the brute force value iteration method to offline solve (7)
and derive the optimal control policy, in which |S| value
functions need to be stored and the computation complexity
is O(|S|2|A|) in one iteration. Therefore, the offline value
iteration algorithm is too complicated to compute due to curse
of dimensionality.

A. EQUIVALENT BELLMAN’s EQUATION
In order to reduce the state space of the above MDP, we
construct an equivalent Bellman’s equation. We first define
the partitioned actions of a policy � as follows.
Definition 1 (Definition of Partitioned Actions): Given a

control policy �, we define

�(Q) = {�(Q,H)|∀H} ⊆ A

as the collection of |H| actions, where every action is mapped
by policy � from a system state with given QSI Q, and a
different realization of CSI H ∈ H.
Lemma 1: The control policy obtained by solving the orig-

inal Bellman’s equation (7) is equivalent to the control policy
obtained by solving the reduced-state Bellman’s equation (8)

θ + V (Q) = min
�(Q)

g(Q, �y(Q))+
∑
Q′∈Q

Pr.[Q′|Q,

�(Q)]V (Q′)

}
, ∀Q ∈ Q, (8)

where V (Q) = EH

[
V (Q,H)|Q

]
=
∑

H∈H Pr.[H|Q]V (Q,H)
is the conditional expectation of value function V (S) taken
over the channel state space H, while g(Q, �y(Q)) =

EH

[
g(Q,H, �(Q,H))|Q

]
and Pr.[Q′|Q, �(Q)] = EH[

Pr.[Q′|Q,H, �(Q,H)|Q]
]
are the conditional expectations

of reward function g(Q,H, �(Q,H)) and transition prob-
ability Pr.[Q′|Q,H, �(Q,H)] taken over the channel state
spaceH.

Proof: Please refer to Appendix B.
As a remark, note that the equivalent Bellman’s equa-

tion (8) represents a series of fixed-point equations, where the
numbers of equations are determined by the possible values
of value functions V (Q), which is |Q|. Therefore, we only
need to solve |Q| instead of |H| × |Q| fixed-point equations
with the reduced-state Bellman’s equation (8). In order to
solve one such fixed-point equation using value iteration, the
R.H.S. of (8) has to be minimized with given value functions
V (Q′). For this purpose, the R.H.S. of (8) can be written as

min
�(Q)

∑
H∈H

Pr.[H|Q]f (Q,H, �(Q,H)), (9)

where

f (Q,H, �(Q,H)) = g(Q, �y(Q))

+

∑
Q′∈Q

Pr.[Q′|Q,H, �(Q,H)]V (Q′). (10)

Since (9) is a decoupled objective function w.r.t. different CSI
realizations H with a given QSI Q, we need to obtain |H|
optimal actions in order to achieve the minimization objective
in the R.H.S. of (8), where every optimal action is w.r.t. a sys-
tem state (H,Q) with givenQ and a different CSI realization
H ∈ H that minimizes the value of f (Q,H, �(Q,H)). This
means that the control policy obtained by solving (8) is based
on the system state S instead of only the QSI Q.

B. Q-FACTOR
To facilitate the mode selection control which is only adap-
tive to Q, we introduce the mode selection control Q-factor
Q(Q, y) as

θ +Q(Q, y) = min
�x(Q)

g(Q, y)+ ∑
Q′∈Q

Pr.[Q′|Q, y,

�x(Q)]V (Q′)

, ∀Q ∈ Q,∀y ∈ Ay.

(11)

where y is an arbitrary action in state space Ay. Therefore,
according to (8), we have

V (Q) = min
y∈Ay

Q(Q, y), ∀Q ∈ Q (12)

and Q(Q, y) satisfies the following ‘‘Q-factor form’’ of the
Bellman’s equation

θ +Q(Q, y) = min
�x(Q)

g(Q, y)+ ∑
Q′∈Q

Pr.[Q′|Q, y,

�x(Q)] min
y′∈Ay

Q(Q′, y′)

,
∀Q ∈ Q,∀y ∈ Ay. (13)

Moreover, the optimal mode selection control is given by

�∗y(Q) = arg min
y∈Ay

Q(Q, y) ∀Q ∈ Q. (14)

Given �∗y(Q), the optimal subchannel allocation control
�∗x(Q,H) can be derived as

�∗x(Q,H) = arg min
x∈Ax

f (Q,H, �∗y(Q), x), (15)

where f (Q,H, �∗y(Q), x) is obtained by taking �∗y(Q) into
the R.H.S of (10), and replacing V (Q′) with Q(Q, �∗y(Q)).
As a remark, by the two-timescale requirement, the mode

selection control policy is defined on the partial system
stateQ, while the resource allocation control policy is defined
on the complete system state S = (Q,H). We need to solve
|Q| × |Ay| fixed-point equations with the Q-factor structure,
which still faces the curse of dimensionality problem. Thus,
we will develop a solution with reduced complexity using
linear value approximation and online stochastic learning in
the following sections.
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C. LINEAR APPROXIMATION ON MODE
SELECTION Q-FACTOR
In this section, we use linear approximation method to further
reduce the state space and facilitate distributed implemen-
tation. We first introduce a randomized base policy, under
which the Q-factor satisfying (13) can be decomposed into
the additive form, i.e.,

Q(Q, y) ≈
nCmax∑
i=1

QC,i(QC,i,PCt,i)

+

nDmax∑
j=1

QD,j(QD,j,PCt,j,PDd,j, yj). (16)

Definition 2 (Randomized Base Policy): A randomized
base policy is denoted as �̂ = (�̂y, �̂x). A randomized base
policy for mode selection �̂y is given by a distribution on
the action space of y, i.e., Ay. A randomized base policy for
subchannel allocation policy is given by a mapping from the
CSIH to a probability distribution �̂x(H) on the action space
of x, i.e., Ax.
Under a randomized base policy �̂, the corresponding

Q-factors have the following decomposition structure.
Lemma 2: Given any randomized base policy �̂, the mode

selection Q-factor Q̂(Q, y) can be decomposed into the sum
of per-queue mode selection Q-factors Q̂C,i(QC,i,PCt,i) and
Q̂D,j(QD,j, PCt,j,PDd,j, yj) as given in (16), where the per-
queue Q-factors satisfy the following fixed point equations
for each queue i ∈ {1, . . . , nCmax} and j ∈ {1, . . . , nDmax},
respectively:

θC,i + Q̂C,i(QC,i,PCt,i)

= gC,i(QC,i,PCt,i)+
∑

Q′C,i,P
′

Ct,i

P̂r

· [Q′C,i,P
′

Ct,i|QC,i,PCt,i]V̂C,i(Q′C,i,P
′

Ct,i), (17)

θD,j + Q̂D,j(QD,j,PCt,j,PDd,j, yj)
= gD,j(QD,j,PCt,j,PDd,j, yj)

+

∑
Q′D,j,P

′

Ct,j,P
′

Dd,j

P̂r.[Q′D,j,P
′

Ct,j,P
′

Dd,j|QD,j,PCt,j,PDd,j, yj]

V̂D,j(Q′D,j,P
′

Ct,j,P
′

Dd,j), (18)

where

gC,i(QC,i,PCt,i) = ωC
QC,iPCt,i
λC

,

gD,j(QD,j,PCt,j,PDd,j, yj) = ωD
(QD,j − yj)PCt,j + yjPDd,j

λD
,

P̂r.[Q′C,i,P
′

Ct,i|QC,i,PCt,i] = E�̂y

×[EH[E�̂x [Pr.[Q′C,i,P
′

Ct,i|QC,i,PCt,i,H, y, x]|H, y]]],

P̂r.[Q′D,j,P
′

Ct,j,P
′

Dd,j|yj] = E�̂y [EH[E�̂x [Pr.

[Q′D,j,P
′

Ct,j,P
′

Dd,j|QD,j,PCt,j,PDd,j,H, y, x]|H, y]]],

V̂C,i(Q′C,i,P
′

Ct,i) = Q̂C,i(Q′C,i,P
′

Ct,i),

V̂D,j(Q′D,j,P
′

Ct,j,P
′

Dd,j) = E�̂y [Q̂D,j(Q′D,j,P
′

Ct,j,P
′

Dd,j, y
′
j)].

Proof: Please refer to Appendix C.

Note that under the randomized base policy �̂y, the value
function can also be written in the decomposed form, i.e.,

V̂ (Q) = Q̂(Q, �̂y(Q)) ≈
nCmax∑
i=1

V̂C,i(QC,i,PCt,i)

+

nDmax∑
j=1

V̂D,j(QD,j,PCt,j,PDd,j). (19)

where the approximate equality is by (16) and the defini-
tion of V̂C,i(QC,i,PCt,i) and V̂D,j(QD,j,PCt,j, PDd,j) are given
in Lemma 2.

Based on the randomized base policy �̂, we shall obtain a
low complexity deterministic policy �̂∗ by Q-factor approx-
imation (16). In this section, we first assume we could
obtain the per-queue Q-factors {Q̂C,i(QC,i,PCt,i)}

nCmax
i=1 and

{Q̂D,j(QD,j,PCt,j,PDd,j, yj)}
nDmax
i=1 via some means (e.g., via

offline value iteration) and focus on deriving the optimal
action under every system state. The solution is elaborated
below.

1) MODE SELECTION POLICY
According to (14), the mode selection control is given by

�̂∗y(Q) = arg min
y∈Ay

[nCmax∑
i=1

Q̂C,i(QC,i,PCt,i)

+

nDmax∑
j=1

Q̂D,j(QD,j,PCt,j,PDd,j, yj)

, (20)

which is equivalent to

y∗j = arg min
yj∈{0,1}

Q̂D,j(QD,j,PCt,j,PDd,j, yj),

∀j with QD,j = 1. (21)

2) SUBCHANNEL ALLOCATION POLICY
Since the duration of the time slot is relatively short with
respect to the size of the flows (e.g., the minimum scheduling
time unit is 1ms in 3G LTE, while it usually takes at least sev-
eral seconds to transmit a flow), we have rC,i0

σC
� 1, rD,j0

σD
� 1,

rD,jj
σD
� 1. Therefore, the probability of a cellular flow i (resp.

a D2D flow j in D2D mode or cellular mode) departs in time
slot t approximately equals 1 − exp(− rC,i0,t

σC
) ≈ rC,i0,t

σC
(resp.

1− exp(− rD,j0,t
σD

) ≈ rD,j0,t
σD

or 1− exp(− rD,jj,t
σD

) ≈ rD,jj,t
σD

). Under
the mode selection action y∗ obtained by (21), the subchannel
allocation policy can be obtained by the R.H.S. of (15), and
replaces V (Q′) by the decomposed form of V̂ (Q′) as given
in (19).

�̂∗x(Q,H)

= min
�x(Q,H)

g(Q, y∗)+ ∑
Q′∈Q

Pr.[Q′|Q,H, y∗, �x(Q,H)]

×

nCmax∑
i=1

V̂C,i(Q′C,i,P
′

Ct,i)+
nDmax∑
j=1

V̂D,j(Q′D,j,P
′

Ct,j,P
′

Dd,j)


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= arg min
�x(Q,H)

×


nCmax∑
i=1

∑
Q′C,i,P

′

Ct,i

Pr.[Q′C,i,P
′

Ct,i|Q,H, y
∗, �x(Q,H)]

×V̂C,i(Q′C,i,P
′

Ct,i)+
nDmax∑
j=1

∑
Q′D,j,P

′

Ct,j,P
′

Dd,j

Pr.

×[Q′D,j,P
′

Ct,j,P
′

Dd,j|Q,H, y
∗, �x(Q,H)]

×V̂D,j(Q′D,j,P
′

Ct,j,P
′

Dd,j)



= arg max
x∈Ax


ηNF∑
m=1


nCmax∑
i=1

r (m)C,i0x
(m)
C,i0

σC
1V̂C,i(1,PCt,i)︸ ︷︷ ︸
W (m)

C,i0

+

nDmax∑
j=1

r (m)D,j0x
(m)
D,j0(1− y

∗
j )

σD
1V̂D,j(1,PCt,j,PDd,j)︸ ︷︷ ︸
W (m)

D,j0



+

NF∑
n=ηNF+1


nDmax∑
j=1

r (m)D,jjx
(m)
D,jjy

∗
j

σD
1V̂D,j(1,PCt,j,PDd,j)︸ ︷︷ ︸

W (m)
D,jj




.

(22)

where 1V̂C,i(1,PCt,i) = V̂C,i(1,PCt,i) − V̂C,i(0, 0) and
1V̂D,j(1,PCt,j,PDd,j) = V̂D,j(1,PCt,j,PDd,j) − V̂D,j(0, 0, 0).
Recall that for any m ∈ {1, . . . , ηNF} we have∑nCmax

i=1 x(m)C,i0,t +
∑nDmax

j=1 x(m)D,j0,t (1 − yj,t ) = 1; while for any

m ∈ {ηNF + 1, . . . ,NF} we have
∑nDmax

j=1 x(m)D,jj,tyj,t = 1.
Therefore, the problem becomes determining the largest ele-
ment within set {W (m)

C,i0}i∈{1,...,nCmax}

⋃
{W (m)

D,j0}j∈{1,...,nDmax} on
every subchannel for cellular communications and the largest
element within set {W (m)

D,jj}j∈{1,...,nDmax} on every subchannel
for D2D communications, i.e.,

x(m)C,i0 =


1, if i = argmaxi′ W

(m)
C,i′0

and maxi′ W
(m)
C,i′0 ≥ maxj′ W

(m)
D,j′0,

0, otherwise
∀i = 1, . . . , nCmax,m = 1, . . . , ηNF. (23)

x(m)D,j0 =


1, if j = argmaxj′ W

(m)
D,j′0

andmaxj′ W
(m)
D,j′0 ≥ maxi′ W

(m)
C,i′0,

0, otherwise
∀j = 1, . . . , nDmax,m = 1, . . . , ηNF. (24)

x(m)D,jj =

{
1, if j = argmaxj′ W

(m)
D,j′j′

0, otherwise
∀j = 1, . . . , nDmax,m = ηNF + 1, . . . ,NF. (25)

The proposed control policy �̂∗y(Q) and �̂∗x(Q,H) can be
implemented in a distributed fashion as follows:
• Step i (Storage and transfer of per-queue Q-factors):
The BS stores all the per-queue Q-factors. When a
new cellular flow i ∈ {1, . . . , nCmax} (resp. D2D flow
j ∈ {1, . . . , nDmax}) arrives at the system, the BS sends
the per-queue Q-factors Q̂C,i(1,PCt,i), (resp. {Q̂D,j(1,
PCt,j,PDd,j, yj)} to CUE i (resp. src. DUE j), where
PCt,i (resp. PCt,j, PDd,j) can be determined by the UE
according to its measured Reference Signal Received
Power (RSRP) in LTE system and reported to the BS.
Note that the transmission power remains unchanged
during the transmission of the flow.

• Step ii (Mode selection policy): The mode selection is
performed distributively. Each src. DUE only needs to
determine its mode by choosing the larger per-queue
Q-factor between two candidates based on its local QSI
according to (21).

• Step iii (Subchannel allocation policy): Each CUE i
(resp. src. DUE j (based on its mode selection
action)) distributively calculates its bid {W (m)

C,i0}
ηNF
m=1

(resp. {W (m)
D,j0}

ηNF
m=1 if yj = 0 and {W (m)

D,jj}
NF
m=ηNF+1

if yj = 1) according to (22), and submits the bid to the
BS. The BS determines the optimal subchannel alloca-
tion action according to (23), (24), and (25).

Remark 2 (Complexity Reduction Due to the Linear
Approximation): We can represent the |Q| × |Ay| global
Q-factors with nCmax(K + 1) + nDmax(2K 2

+ 1) per-queue
Q-factors by the linear approximation architecture, which
greatly reduce the storage capacity at the BS. Moreover, each
CUE only needs to store one local per-queue Q-factor, while
each src. DUE only need to store 2 local per-queue Q-factors.
The complexity of determining the mode selection action at
each src. DUE is 1. The complexity of determining the sub-
channel allocation action at the BS based on the submitted bid
of the UEs isO((nCmax+nDmax)NF) instead of |AxC|×|AxD|

without the linear approximation.
The following theorem shows that the proposed distributed

policy always achieves better performance than the random-
ized base policy.
Theorem 1 (Performance Improvement): If Pr.[Q′|Q, y,

xC, xD] 6= Pr.[Q′|Q, y′, x′C, x
′

D] for any (y, xC, xD) 6=
(y′, x′C, x

′

D) and Q ∈ Q. Since the minimum R.H.S of (15)
can be achieved with proposed solution, we have θ∗(Q) < θ,

∀Q ∈ Q, where θ∗(Q) is the average reward under the
proposed solution starting from state Q and θ is the average
reward under any randomized base policy, respectively.

D. ONLINE STOCHASTIC LEARNING
1) ONLINE STOCHASTIC LEARNING
The above discussion in Section V.C assumes that the
per-queue Q-factors are already known and derive a dis-
tributed control policy. However, we still have to determine
the per-queue Q-factors. For this purpose, instead of solv-
ing the fixed point equation using offline value iteration,
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we will estimate per-queue Q-factors {Q̂C,i(QC,i,PCt,i)}
nCmax
i=1

and {Q̂D,j(QD,j,PCt,j,PDd,j, yj)}
nDmax
j=1 using online stochastic

learning algorithm on the instantaneous observation.

FIGURE 1. The implementation flow of the proposed solution.

Fig. 1 illustrates the implementation flow of the overall
solution with detailed steps as follows:
• Step 1 (Initialization): Set t=0. The {Q̂C,i,0(QC,i,

PCt,i)}
nCmax
i=1 and {Q̂D,j,0(QD,j,PCt,j,PDd,j , yj)}

nDmax
j=1 are

initialized at the BS. The second subscript denotes the
index of time slot.

• Step 2 (Control Action Determination): At the begin-
ning of time slot t , for any new cellular flow i (resp.
D2D flow j) that arrived during the previous time slot
t − 1, the BS sends its local per-queue Q-factors as
specified in the Step i of Section V.C. Based on its local
per-queue Q-factors, every src. DUE j first calculates
the mode selection control action y∗j,t as specified in the
Step ii of Section V.C, and then every CUE and src.
DUE calculates and submits its bid to the BS, which
determines the subchannel allocation action x∗C,t and
x∗D,t and notifies the corresponding UEs, as specified in
the Step iii of Section V.C.

• Step 3 (Q-factor Update): At the end of time
slot t , the per-queue Q-factors {Q̂C,i,t (QC,i, PCt,i)}

nCmax
i=1

and {Q̂D,j,t (QD,j,PCt,j,PDd,j, yj)}
nDmax
j=1 can be updated

to the per-queue Q-factors {Q̂i,t+1(QC,i,PCt,i)}
nCmax
i=1

and {Q̂j,t+1(QD,j,PCt,j,PDd,j, yj)}
nDmax
j=1 using the update

functions (26) and (27). Specifically, every CUE
(resp. src. DUE) updates its respective local per-queue

Q-factor(s) Q̂C,i(1,PCt,i) (resp. {Q̂D,j(1,PCt,j,PDd,j,
yj)}yj∈{0,1}) based on the randomized policy. Remark-
ably, the per-queue Q-factors Q̂C,i(0, 0, 0) = 0 and
Q̂D,j(0, 0, 0, 0) = 0 according to the update functions
(26) and (27). If a flow finishes transmission at the end
of time slot t , it sends its updated per-queue Q-factors
Q̂C,i(1,PCt,i,t ) or {Q̂D,j(1,PCt,j,PDd,j, yj)}yj∈{0,1} to
the BS.

Q̂C,i,t+1(QC,i,PCt,i) = Q̂C,i,t (QC,i,PCt,i)

+ ετC,i(QC,i,PCt,i,t) ×1Q̂C,i,t (QC,i,PCt,i), (26)

Q̂D,j,t+1(QD,j,PCt,j,PDd,j, yj)

= Q̂D,j,t (QD,j,PCt,j,PDd,j, yj)

+ ετD,j(QD,j,PCt,j,PDd,j,yj,t)

×1Q̂D,j,t (QD,j,PCt,j,PDd,j, yj), (27)

where

1Q̂C,i,t (QC,i,PCt,i) = ωC
QC,iPCt,i
λC

+E�̂y [EH[E�̂x [(1−

∑ηNF
m=1 r

(m)
C,i0x

(m)
C,i0

σC
)|H, y]]]

V̂C,i,t (1,PCt,i)−
K∑
k=1

λCpCt,k
nCmax − nC,t̄

V̂C,i,t (1,P(k))

− Q̂C,i,t (QC,i,PCt,i),

1Q̂D,j,t (QD,j,PCt,j,PDd,j, yj)

= ωD
(QD,j − yj)PCt,j + yjPDd,j

λD

+E�̂y [EH[E�̂x [(1− (

∑ηNF
m=1 r

(m)
D,j0x

(m)
D,j0(1− yj)

σD

+

∑NF
m=ηNF+1

r (m)D,jjx
(m)
D,jjyj

σD
))|H, y]]]

V̂D,j,t (1,PCt,j,PDd,j)

−

K∑
k=1

K∑
k ′=1

λDpCt,kpDd,k ′

nDmax − nD,t̄
V̂D,j,t (1,P(k),P(k

′))

−Q̂D,j,t (QD,j,PCt,j,PDd,j, yj),

ετC,i(QC,i,PCt,i,t)

=

t∑
t ′=0

I[(QC,i,t ′ ,PCt,i,t ′ ) = (QC,i,PCt,i)],

ετD,j(QD,j,PCt,j,PDd,j,yj,t)

=

t∑
t ′=0

I[(QD,j,t ′ ,PCt,j,t ′ ,PDd,j,t ′ , yj,t ′ )

= (QD,j,PCt,j,PDd,j, yj)],

t̄ 1= sup{t : (QC,i,t ,PCt,i,t ) = (0, 0)}

or

t̄ 1= sup{t : (QD,j,t ,PCt,j,t ,PDd,j,t ) = (0, 0, 0)}.
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In the above equations, {εt } are the sequences of step
sizes, which satisfy:

εt ≥ 0,
∞∑
t=1

εt = ∞,

∞∑
t=1

ε2t <∞. (28)

• Step 4 (Termination):If ‖Q̂t+1 − Q̂t‖ < δ, stop; other-
wise, set t := t + 1 and go to Step 2.

Remark 3 (Signaling Overhead): The signaling overhead
involved in the proposed solutionmainly consists of two parts.
The first part is related to the per-queue Q-factors transfer
between the BS and UEs. After a new cellular flow (resp.
D2D flow) arrives and before a cellular flow (resp. D2D
flow) leaves, the BS and CUE (resp. src. DUE) needs to
exchange 1 (resp. 2) real numbers. The second part is related
to the determination of the subchannel allocation action,
where every CUE and src. DUE in cellular mode needs to
submit ηNF bid, while every src. DUE in D2D mode needs to
submit (1−η)NF bid. Moreover, every src. DUE needs to send
a one bit flag to the BS if its mode selection action changes.
Compared to the Best-CSI subchannel allocation algorithm
which allocates a subchannel to the UE with best channel
state at any time slot, the additional signaling overhead per
time slot is (nC,t + nDc,t )ηNF, since the src. DUEs in D2D
mode has to submit its CSI to the BS in the Best-CSI algorithm
and the signaling overhead is the same with the proposed
solution.

TABLE 1. Simulation parameters.

VI. SIMULATION RESULTS
In this section, we evaluate the performance of our pro-
posed mode selection and resource allocation algorithm with
approximate MDP and online stochastic learning via simu-
lation. We develop discrete event system-level simulator for
D2D communications system with dynamic flow arrivals and
our simulation parameters are summarized in Table 1. The
carrier frequency and the time slot duration are set to 2GHz
and 1ms, respectively. The system bandwidth is 10MHz and a
subchannel corresponds to a resource block in 3GLTE system
with 180KHz bandwidth. We select L = 6 MCSs from the
32 MCSs in 3G LTE specification [19] and the parameters
are given in Table 2.

We compare the proposed algorithm against the follow-
ing baseline algorithms in terms of the average power con-
sumption per flow. These baseline algorithms are simple yet
classical algorithms that can be used to clearly reveal the

performance improvement achieved by considering the flow-
level model.
• Mode Selection:

– RN: Each DUE pair randomly determines its mode
with 50% probability for each mode.

– DS: Each DUE pair chooses the mode with the
minimum distance between the transmitter and
receiver [20].

• Resource Allocation:
– MaxR: A subchannel is allocated to the link with

the maximum achievable rate in a time slot [11].
– MaxRPR: A subchannel is allocated to the link

with the maximum ratio between its achievable rate
and its transmit power as in [18] to achieve the best
power-efficiency in a time slot.

FIGURE 2. The mean energy consumption over all UEs versus the mean
arrival rate of cellular flows λC , where λC is equal to the mean arrival rate
of D2D flows λD.

Fig. 2 shows that the mean energy consumption over
all UEs versus the mean arrival rate of cellular flows λC ,
where λC is equal to the mean arrival rate of D2D flows
λD. It can be observed that the performance of the proposed
MDP algorithm is better than that of DS-MaxR algorithm,
DS-MaxRPR algorithm, RN-MaxR algorithm and
RN-MaxRPR algorithm. The algorithms with DS have lower
mean energy consumption than RN algorithms. When λC
(resp. λD) grows, the mean energy consumption gradually
increases, but the increasing rate of the proposed MDP
algorithm is the slowest.

Fig. 3 shows that the average delay over all UEs versus
the mean arrival rate of cellular flows λC , where λC is equal
to the mean arrival rate of D2D flows λD. From Fig. 2,
it can be observed that when λC (resp. λD) increases from
0.1 to 0.4 packets/slot, the proposed MDP algorithm has
the lowest mean energy consumption, but it can not achieve
the lowest average delay. In Fig. 3, it is obvious that DS
algorithms have lower average delay than RN algorithms, and
the average delay of the proposed MDP algorithm is close
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TABLE 2. AMC parameters for LTE.

FIGURE 3. The average delay over all UEs versus the mean arrival rate of
cellular flows λC , where λC is equal to the mean arrival rate of D2D
flows λD.

FIGURE 4. The mean energy consumption over all UEs versus the ratio of
the mean arrival rate of cellular flows λC to D2D flows λD, where
λC + λD = 0.6.

to those of DS algorithms when λC (resp. λD) is smaller
than 0.3 packets/slot. When 0.3 < λC (resp. λD)≤ 0.4, the
proposed MDP algorithm has larger average delay than the
two DS algorithms. Therefore, the proposed MDP algorithm
achieves better performance for delay when λC (resp. λD) is
small.

Fig. 4 shows the mean energy consumption over all UEs
versus the ratio of the mean arrival rate of cellular flows λC
to D2D flows λD, where λC + λD = 0.6. The ratio denotes

the degree of traffic load imbalance between cellular flows
and D2D flows. Because the performance of the proposed
MDP algorithm is far better than the RN algorithms, we
just show the comparison results of MDP algorithm with
DS algorithms. It can be observed that with the increase
of ratio between λC and λD, the mean energy consumption
also increases, but the increasing rate of the mean energy
consumption in the proposed MDP algorithm is the slowest
among the three algorithms. The proposed MDP algorithm
achieves a better performance when the gap between λC and
λD is greater, which means MDP algorithm can effectively
cope with the traffic load imbalance between cellular flows
and D2D flows.

FIGURE 5. The mean energy consumption over all UEs versus the
spectrum partition ratio η.

Fig. 5 shows that the mean energy consumption over all
UEs versus the spectrum partition ratio η. For example, when
η = 0.25, the number of subchannels allocated to cellular
flows is 25, while the number of subchannels for D2D flows
is 75. We increase η from 0.25 to 0.45, where smaller η
leads to greater gap between the number of subchannels
allocated to cellular flows and D2Dflows. It is obvious that as
η decreases, but increasing rate of the mean energy consump-
tion for the DS-MaxR algorithm and DS-MaxRPR algorithm
are greater than the proposedMDP algorithm. This is because
the mode selection Q-factors take η into consideration in
proposed MDP algorithm.

VII. CONCLUSION
In this paper, we have proposed mode selection and resource
allocation algorithm for D2D communications with dynamic
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flow arrivals, which minimizes the average energy con-
sumption of flow transmission. The optimal resource control
problem is cast into an infinite horizon average reward MDP.
We addressed the issue of exponential memory requirement
and computational complexity by using Q-factor approxima-
tion techniques to reduce the state space. Moreover, online
stochastic learning algorithm was adopted to update the
Q-factors based on the real-time observations of CSI.
The obtained solution has a simple structure with lim-
ited signaling overhead. Simulation results show that the
proposed approach outperforms various existing baseline
algorithms, which can be applied in the future 5G wire-
less system to support the massive number of connected
devices.

APPENDIX
A. DERIVATION OF Ū
First, according to the definition of Ū , we have Ū = ωCŪC+

ωDŪD, where ŪC and ŪD are the mean energy consumption
for the transmission of a cellular flow and aD2Dflow, respec-
tively. According to Little’s law, the mean delay of a cellular
flow equals nC,t

λC
, and we have ŪC =

∑nCmax
i=1

QC,iPCt,i
λC

by the
definition of mean energy consumption of a flow. On the
other hand, ŪD = pDdŪDd + pDcŪDc, where pDd (resp. pDc)
is the probability that a D2D flow selects D2D mode (resp.
cellular mode), and ŪDd (resp. ŪDc) is the mean energy con-
sumption of a D2D flow in D2D mode (resp. cellular mode).
According to Little’s law, the mean delay of a D2D flow in
D2D mode (resp. cellular flow) equals nDd,t

λDpDd
(resp. nDc,t

λDpDc
),

and we have ŪD =
∑nDmax

j=1
(QD,j−yj)PCt,j+yjPDd,j

λD
by the def-

inition of mean energy consumption. This completes the
proof.

B. PROOF OF LEMMA 1

θ + V (Q,H) = min
�(Q,H)

{g(Q,H, �(Q,H))

+

∑
Q′,H′

Pr.[Q′,H′|Q,H, �(Q,H)]V (Q′,H′)


(a)
= min

�(Q,H)
{g(Q,H, �(Q,H))

+

∑
Q′

Pr.[Q′|Q,H, �(Q,H)]

(∑
H′

Pr.(H′|Q′)V (Q′,H′)

)
(b)
= min

�(Q,H)
{g(Q,H, �(Q,H))

+

∑
Q′

Pr.[Q′|Q,H, �(Q,H)]V (Q′)

, ∀Q ∈ Q, H ∈ H,

where (a) is due to (2) by the i.i.d. assumption of CSI
over time slots, (b) is due to the definition V (Q) given
in Section IV.A.

Taking the conditional expectation (conditioned on Q) on
both sides of the equation above, we have ∀Q ∈ Q

θ + V (Q) = EH

[
min
�(Q,H)

{g(Q,H, �(Q,H))

+

∑
Q′

Pr.[Q′|Q,H, �(Q,H)]V (Q′)




(c)
= min

�(Q)

g(Q, �y(Q))+
∑
Q′

Pr.[Q′|Q, �(Q)]V (Q′)

,
where (c) is due to the definition of ‘‘conditional
reward’’ g(Q, �y(Q)) and ‘‘conditional transition probabil-
ity’’ Pr.[Q′|Q, �(Q)] given in Section IV.A.

C. PROOF OF LEMMA 2
Under the randomized base policy �̂, we have the following
Bellman’s equation:

θ+Q(Q, y) = g(Q, y)+
∑
Q′∈Q

P̂r.[Q′|Q, y]E�̂y [Q(Q′, y′)]︸ ︷︷ ︸
V̂ (Q′)

.

(29)

where P̂r.[Q′|Q, y] = EH[E�̂x [Pr.[Q′|Q,H, y, x]|H, y]].
First, assume the additive property w.r.t. the Q-factor and

value function hold under the randomized base policy �̂.
Next, we have

g(Q, y) =
nCmax∑
i=1

gC,i(QC,i,PCt,i)

+

nDmax∑
j=1

gD,j(QD,j,PCt,j,PDd,j, yj) (30)

where gC,i(QC,i,PCt,i) and gD,j(QD,j,PCt,j,PDd,j, yj) are
given in Lemma 2. Thus, from (29) and (30) we have
nCmax∑
i=1

θC,i +

nDmax∑
j=1

θD,j +

nCmax∑
i=1

Q̂C,i(QC,i,PCt,i)

+

nDmax∑
j=1

Q̂D,j(QD,j,PCt,j,PDd,j)

=

nCmax∑
i=1

gC,i(QC,i,PCt,i)+
nDmax∑
j=1

gD,j(QD,j,PCt,j,PDd,j, yj)

+

nCmax∑
i=1

∑
Q′C,i,P

′

Ct,i

P̂r.[Q′C,i,P
′

Ct,i|QC,i,PCt,i]

V̂C,i(Q′C,i,P
′

Ct,i)+
nDmax∑
j=1

∑
Q′D,j,P

′

Ct,j,P
′

Dd,j

P̂r.[Q′D,j,P
′

Ct,j,P
′

Dd,j|QD,j,PCt,j,PDd,j, yj]

V̂D,j(Q′D,j,P
′

Ct,j,P
′

Dd,j)

The structure in (31) is decoupled under the additive assump-
tion, θC,i and θD,j are unique, as well as {V̂C,i(QC,i,PCt,i)}
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and {V̂D,j(QD,j,PCt,j,PDd,j)} are unique up to an additive
constant [21]. Therefore, the per-queue Bellman’s equation
(17) and (18) hold.
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