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ABSTRACT This paper presents a method for the biped dynamic walking and balance control using
reinforcement learning, which learns dynamic walking without a priori knowledge about the dynamic model.
The learning architecture developed is aimed to solve complex control problems in robotic actuation control
by mapping the action space from a discretized domain to a continuous one. It employs the discrete actions
to construct a policy for continuous action. The architecture allows for the scaling of the dimensionality of
the state space and cardinality of the action set that represents new knowledge, or new requirements for a
desired task. The balance learning method utilizing the motion of robot arm and leg to shift the zero moment
point on the soles of a robot can maintain the biped robot in a static stable state. This balanced algorithm is
applied to biped walking on a flat surface and a seesaw and is making the biped’s walks more stable. The
simulation shows that the proposed method can allow the robot to learn to improve its behavior in terms of
walking speed. Finally, the methods are implemented on a physical biped robot to demonstrate the feasibility

and effectiveness of the proposed learning scheme.

INDEX TERMS Reinforcement learning, biped robot, continuous action space, zero moment point.

I. INTRODUCTION

The design of a biped robot primarily involves balance
control. A straightforward way to controlling of the balance
of a two legged walking robot typically is by mimicking
the style of humans’ walking locomotion. The structures
of biped robots, similar to humans’ skeletons, are different
from the wheeled robots or industrial robot arms, and are
capable of much flexibility and adaptability in do many
human-like motions. However, how to make robots walk
stably is still an importance issue. Recently many robot’s
walking controlling methods are concentrated on ways to
maintaining the projection of the center of gravity (CoG)
of a biped within a support area. Some research has devel-
oped mathematical models for biped robots, although the
mathematical calculation is a complex task [1]. To reduce
the computational load and enhance the robustness of biped
walking for robots, various learning methods based on rein-
forcement learning (RL) have been studied on biped robot
for walking behaviors [2]-[4]. In the walking process, many
studies based on RL methods calculate the CoG of the biped
robots [2], [3], but these methods only consider a discretized
state space. In [5], a trajectory planning method is introduced
to solve a biped’s walking motions. In [6], optimal walking

gaits based on Zero Moment Point (ZMP), which needs to
stay in a support area criterion all the time, are considered.
In [7] and [8], pressure sensors are set on the foot of the
biped robots and are used to calculate the ZMP’s position
by a feedback-force system. In addition, the ZMP’s positions
are input to a fuzzy controller to decrease the error. The
goal is to ensure the position remains in a stable region. The
tendency to fall down can be determined based on the ZMP
obtained as a cross point of the resultant vector of inertial
and gravitational force and the ground [9], [10]. Other studies
of biped walking utilizing the ZMP criterion are focused on
forcing the computed or sensed ZMP to remain inside the
support area by initially planning the reference trajectories
of the center of mass of the body [1], [4]. Some studies
have proposed standard methods for gait synthesis based on
the ZMP to assure the dynamic stability of a biped robot.
Basically, these methods consist of two stages. The first stage
is designing the desired ZMP trajectory and the second stage
is correction of the movement of the torso and pendulum
to materialize the defined trajectory in balance. However,
because the change in the ZMP due to the movement of the
torso is limited, not all desired ZMP trajectories are possible.
The ZMP position can be obtained computationally using the
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mathematical model of a robot. However, significant error
between the real ZMP and the calculated one is possible due
to the differences between the physical parameters of the real
robot and its approximated mathematical model. Thus, the
real ZMP should be measured in order to obtain a steady
stable gait. The ability to improve robot behavior, such as
balanced walking, through learning is the ultimate challenge
of Al and robotics [2], [3], [11], [12]. Learning models of
complex tasks can aid in the design of appropriate control
laws for robots in unstructured environments with uncer-
tainties. These uncertainties are primarily due to imprecise
or unobtainable sensory data, together with unpredictability
of the environment; that is, a lack of full knowledge of the
environment’s characteristics and dynamics. RL agents allow
autonomous systems to learn from their experiences instead
of exclusively from knowledgeable teachers [13]. Therefore,
RL agents are appropriate for practical systems such as
robot learning and control. Many researchers have inves-
tigated intelligent control methods to solve biped walking
problems [2]-[4], [14]. RL is one kind of intelligent learning
method for the walking tasks, and RL methods are used to
control the ZMP position for walking stability. In this paper,
we consider how to improve biped gait using an RL agent
with measured ZMP feedback. The learning balance method
is applied to the dynamic balance of a biped robot. The
learning method has no any priori knowledge about the biped
locomotion, so it needs to use measured ZMP feedback to
adjust its walking behaviors. To enhance the biped robot’s
walking behaviors, how to design the action space to fit
the biped robot is a difficult task. In RL applications, the
action space has two kinds of properties, discretized action
space and continuous action space. Most of the RL methods
apply one of two kinds of methods for the continuous action
space, either a neural network or combinations of some
discrete actions chosen by some activated nodes, for example,
the tile coding and the ART-based cognitive models. The
stochastic real value (SRV), one of the neural network algo-
rithms, provides an idea to create a real value action [15], [16].
However, since it uses the critic network to estimate the
immediate reward and update the actor network to obtain
the best immediate reward, it is only suitable for greedy
problems. Otherwise, it would easily fall into a local min-
imum. The proposed method with a self-organized state
aggregation mechanism was developed to deal with the walk-
ing problem in continuous action domains. The goal in this
paper proposes a continuous action method to fit the walking
behavior problem for a biped robot. It extends the discretized
action space to continuous action space. The simulation
and experiment results show the proposed method
can make the biped robot walk stably in different
environments. The remainder of this paper is structured
as follows. Section II details the structure of Q-Learning
and the RL algorithm. In section III, the proposed method
is introduced. In section IV, the simulation and exper-
iment results are reported; a section V concludes this

paper.
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Algorithm 1 One-Step Q-Learning Algorithm

Initialize O(s, a) arbitrarily
Repeat(for each episode):

1. Perceive a state s € s, and then select an actiona € A
using policy derived from Q(s, a).
Repeat(for each episode):
Take action a, observe next state s’ and next reward .
Update the action-value function by (s, a, §’, r).
§<§’
until s is terminal

AN

Il. BACKGROUND

Reinforcement learning is used to learn a policy that
maximizes the long-term reward for all states [13].
Q-learning is a well-known temporal difference and
model-free RL [17], [18], and it can be divided into five
parts [19]. During the learning process, the agent selects
an action a € A(s) according to its own policy in the
state s € S. After taking this action, the agent will transfer
to the next state s’ and receive an immediate reinforce-
ment signal r, which is returned from the environment. The
decision-making is strengthened or weakened according to
this reinforcement signal. In other words, when the agent
takes an action ¢ in a state s, an action-value function Q(s, a)
is used to update the policy. Based on these evaluated action-
values, the agent can learn how to search for an optimal
policy. The Q-value with state s and action a are updated as
follows

OC(ss, ar) = O(sy, ar)
talr+y max O(S1+1, ary1) — QGt, ar)) (1)

where o € (0, 1] is used as the learning rate. The y € (0, 1]
is the temporal discount factor. After many iterations, the
Q-values converge to Q* [18]. The detailed procedure of
Q-Learning is listed in Algorithm 1.

IIl. LEARNING A BALANCE METHOD FOR BIPED ROBOTS
In this section, Continuous-Action Q-Learning (CAQ) is pro-
posed to extend discrete action space to continuous action
space. In the original Q-Learning, it is necessary to design the
action space to form a discrete action space. The architecture
of the Continuous-Action Q-Learning is shown in Fig. 1.

Continuouk l I l

action

Reward
Function

Evaluation

Ubdatiesston Function reward

FIGURE 1. Architecture of the continuous-action Q-learning.
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The state space maps the sensory input vector from the envi-
ronment in the learning process, and the reward function is
used to evaluate the action that the agent takes. The action bias
generates a variety of real actions. The biped robot performs a
walking behavior in one cycle, as shown in Fig. 2. In Fig. 2(a),
for biped robot walking, the robot is standing with one leg
and the ideal ZMP’s position is designed into two positions,
at the center of a foot and on tiptoe. When the robot is
walking, the robot standing with one leg is more unstable
than when it stands on both. The robot learns to maintain
the ZMP’s position in a stable region with one leg. If the
position remains in the stable region, the robot will be more
stable during walking behavior. In the beginning, one cycle
obtains 7 phases to achieve motion straight forward motions
and ZMP transferring. Phase 1 is a starting gait pattern, but it
will be ignored in the next walking cycle. According to this
figure, the robot is using one leg in phases 2, 3 5, 6, and the
ZMP’s position is transferred to the another leg in phase 4, 7.
Q-Learning was used to learn which actions could make
walking more stable between two phases, one leg and two
legs. Furthermore, the Q-Learning with knowledge about
walking on a flat surface is transferred to another environ-
ment, the seesaw, a process referred to as Knowledge Trans-
fer Learning (KTL). The learning time could definitely be
reduced to accelerate the biped robots’ walking motion.

$

LT M

Phase 1 : Phase2 1 Phase3 1 Phase4 Phase 5 | Phase 6 Phase 7

t |

Repeat
(b)

FIGURE 2. Biped robot walking pattern. (a). The biped robot walking
pattern (b). ZMP position of biped walking sequence.

A. LEARNING THE WALKING BEHAVIORS BY Q-LEARNING
The gait patterns formed the biped robot’s walking phases.
So the Q-Learning assigned to each phase is used to adjust
appropriate gaits. Finally, the robots in each phase could have
a more stable walking motion.

1) STATE SPACE CONSTRUCTION

The agent perceives the information that is called sensory
input vectors which are continuous environmental informa-
tion from the environment. In Fig. 3, when the agent per-
ceives the sensory input vectors from the environment, if
the dimensions of the vectors are large, then the curse of
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FIGURE 3. The state is derived from the environment.

dimensionality problem occurs [20]-[22]. To decrease the
influence of the curse of dimensionality problem, the agent
needs to generalize the sensory input vectors to form finite-
discrete state space. In Fig. 3, after coding the sensory input
vectors, the state of the agent will be formed. In this paper,
the finite-discrete state space is shown in Fig. 4. The ZMP
coordinates (x, y) of the robot’s gravity are projected on the
range of the robot’s foot. Force sensors, f1, f>, f3 and f1 are
installed at the two feet of the biped robot shown in Fig. 4(a).
According to torque equation, the center of the foot is set
as the origin point. The ZMP coordinates are calculated as
follows.

x =W+ — 1 +6)/200 + 2+ +f4)
y=L({(A+L)—G+HW)/20+HL+H+) 2

o W=6 cm
Forea W—/IS\ cm N
Sensor , —

o @ @)
! |
; |
o9 ‘> L=10cm . L=10cm
: \
: |
® | @)
(a) ®)

FIGURE 4. The finite-discrete state space. (a) Construction of one robot
foot (b) Definition of stability regions and state partition.

After calculating the ZMP coordinates, the finite-discrete
state space formed as the subregion at the bottom of the
robot’s feet and the space is divided into 81 cells as shown
in Fig. 4(b). The red cell in the center of the robot’s foot
means the most stable region. If the ZMP coordinates fall
within the 81 cells, it will indicate that the biped robot remain
without falling down problem. However, there is a special
situation. The robot falls down in that the coordinates don’t
fall in these cells. So, a new cell needs to be assigned in this
situation. Therefore, the total number of elements in state
space, |S| includes 82 cells.

2) ACTION SPACE
After perceiving the environmental information to form the
state, the robot needs to select an action by estimating the
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appropriate policy. A huge action space will influence the
learning efficiency, because the robot has to explore many
times to find a good action in the state. Because the biped
robot includes 18 degrees of freedom, they are mapped to the
7 elements { hip, leg,, leg;, arm,., army, shoulder,, shoulder; },
as shown in Fig. 5. The element Aip is to control the angle
of hip joint; leg, and leg; are to adjust the swing angles
of corresponding left and right foot which can lift forward
or backward. The elements arm, and arm; are to adjust
the swing angles of the corresponding left and right arms
which can move up and down. The elements shoulder, and
shoulder; use the same control method as arms. The following
section will explain how to make the action space discrete
by these seven joints to form the joint action vector
0p = {61, 02, 03, 64, 05, 06, 67}

arm 1
/f ’_Em‘\

FIGURE 5. Control elements.

Left up % Right up

Left down Right down

Down

FIGURE 6. Motion vectors of ZMP by 16 join actions.

a: DISCRETE ACTION SPACE

The action space in this balance method is used to control
the ZMP’s movement directions. There are 8 directions of
movement for the ZMP’s directions, as shown in Fig. 6.
One direction includes two kinds of movement distances, the
green line and the red line. The green line can make the
ZMP move a short distance and the red line can make it
move a long distance. So, the total number of actions is 16.
These movement directions are controlled by the joint action
vectors, which are composed of 7 angle elements, {01, 62, 63,
04, 65, 06, 07} with the variations of angles, A0 = {A6, Ab,,
AB3, Aby, AOs, Abg, AB7}. Thus, the discrete action is shown
as follows.

0 = 0y + Al 3)

where k = 16 indicates the cardinality of a discrete action
space.
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For example, the ZMP’s directions *“ /*‘ can be expressed
as {01 —3.9375,0,40,05 —4.875,04+7.5, 0540, 66+9.375,
67 + 0}, and this control makes the ZMP’s directions move
to the expected position by increasing or decreasing each
parameter. In the same way, the ZMP’s directions ““ /** can
be expressed as {0] +8.625,6,+0,03+9, 04— 18.75, 65 +0,
06 — 15, 67 4+ 0}.

b: CONTINUOUS ACTION SPACE

One of the objectives of this work is to extend conventional
Q-Learning to generate continuous effort from a set of
actions. The continuous state problem is always an issue
in reinforcement learning. The architecture of the proposed
algorithm can be divided into two layers; the first of which
is similar to conventional Q-Learning. One important issue is
that if the discrete action space is designed to be low resolu-
tion, so the biped robot cannot adjust its motion accurately.
On the other hand, if the space is high resolution; the robot
needs to spend much time to learn policy. However, on the
second layer, the concept of the stochastic action generation
method is applied to reinforcement learning. In addition,
the reward returned from the environment is based on the
maximal Q-value referred to in the first layer. In other words,
this algorithm uses the Gaussian distribution to produce a
stochastic and real-valued output, and tries to record the
maximum expected future reward and the action under this
policy. The algorithm adjusts the mean and the variance of
the Gaussian distribution so as to increase the probability
of producing an optimal real-valued output for each input
pattern. This proposed method expands the robot’s discrete
action into a continuous action. Before using this method, it is
necessary to first have a discrete action space. The action bias
extends an equation that is for discrete action to form contin-
uous action. As illustrated in Fig. 7, each paradigm action
has a corresponding action bias mean, B, and an action
bias variance, B,. The items, A@ are used as the paradigm
action and the corresponding action bias mean. The items,
B, are set as the upper and lower bounds of one direction,
as shown in Fig. 6. One direction has two kinds of moving
distances. In the same direction, the red line is set as the
upper bound and the green line is set as the lower bound. One
moving distance needs to control 7 angle elements. While the
agent obtains the state from the environment and evaluates
an action, the algorithm utilizes the normal distribution to

Output Output
Ab e AD, e,
A

B ~N(B,, B,)

Paradigm action
A,y

FIGURE 7. lllustration of action bias.
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find the action bias, B~N(B,,, B,) in each angle element.
B,, and B, are the action bias mean and action bias variance
to the selected action.

A9i,new = Aei,ald + Bi (4)

wherei=1,2,...,7, A0 yon € Aby, B; € B.

The action bias creates a suitable action as the output of the
agent. Then, the value of the action bias mean and action bias
variance are updated according to the following method.

(i) ACTION BIAS MEAN: The action bias mean is
used to slightly adjust the quantized action. In addition to
tailoring conventional Q-learning for the application of biped
robot walking learning, one of the objectives of this paper is to
expand the discreet action space to a continuous one to make
actions more dexterous and improve the performance. The
action bias mean is updated according to the estimation error
of the sate-action value rather than the immediate reward.
The estimating error of the state action value is obtained as
follows.

AQ(s,a) = (r +y - Max(Q(s', @) — Os, o)~ (5)

After obtaining the estimating error, the action bias mean
is updated as follows.

Bm <~ Bm + lgm |AQ| [B - Bm] (6)

where §,, is a learning rate.

The explorative direction demonstrates the difference
between the action bias and the action bias mean. The
QO-function is utilized to calculate the estimated error, shown
in equation (5), and to criticize the explorative performance
rather than the estimated error of the immediate reward.
If AQ is negative, it means that B is worse than By, but it does
not indicate what the suitable bias is. The learning rate might
be a smaller value. On the other hand, when AQ is positive, it
means that B is better than B,,, and thus the learning rate can
be a large value to speed up the learning. For that reasons,
B can be set as different values according to the estimated
error as follows.

_JB iFAQ=0
B ifAQ <0

where 3, represents a learning rate using in action bias mean.

When the AQ is greater than or equal to zero, it means
the learning action bias mean is effective, and the correct
explorative direction should be adjusted quickly. On the other
hand, if the AQ is smaller than zero, the explorative direction
should be adjusted slowly.

(ii) ACTION BIAS VARIANCE: The action bias vari-
ance performs exploration. Since larger variance leads to
more exploration, the variance should be decreased with
learning. The action bias variance should be small when the
action bias mean indicates the proper value, which is not
known in advance. This only guarantees that the action bias
mean is updated toward the suitable value. It also indirectly
implies that if AQ is approximately O, the action bias mean is

Bm where 8, > 8, > 0. ©)
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inclined toward the suitable value. Therefore, the action bias
variance is updated as follows.

Bv < Bv+ B,(|AQ| — Bv) (8)

where B, is a learning rate.

3) REWARD FUNCTION

In the learning process, after an agent passes a decision action
to the environment, the environment returns a reward to the
agent. The reward function provides a learning guideline for
the agent. When the environment returns a good reward to the
agent, it will strengthen the decision action; on the other hand,
when the agent gets a bad reward, it will weaken the decision
action. In other words, the agent can use the reward function
to update the learning policy. In this learning task, the reward
function gives the biped robot positive rewards for moving
forwards with good balance, and negative rewards for moving
unstably or falling over. The reward function is designed by
the ZMP’s position. In Fig 4(b), the stable region is set in the
middle of the sole of a foot. When the ZMP’s position can
be moved to this region, the controlled action is viewed as
good decision-making. In Fig. 8, the red point in the center
represents the ZMP’s desired position. The reward function
is established as follows:

—10 if fallingdown
R(s) =10 if fallingstableregion
—xy/(x—x0)2+(y—y0)2 Otherwise

©))

where A € [0, 0.5] is a predefined constant.

W=6 cm

} L=10cm

(X0, Yo)

FIGURE 8. Setting of ideal ZMP position and calculation of the reward.

If a robot walks stably, the transient ZMP must reside in
the stable region and the reward is set to 0. In the worst case,
the robot falls down, the episode ends, and it is penalized by
a —10 reward value. On the other hand, if the current state
is out of that region, the robot obtains a penalty of distance
between the center point and ZMP’s coordinate. This reward
function allows the robot learn stable walking. The policy
selects a proper action according to the current state. The
goal of training the policy is to find an optimal action that
can maximize the Q-value associated with that state. The
learning rule used to adjust the Q-value can be described as in
equation (1). The algorithm of the proposed method is briefly
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Algorithm 2 Continuous-Action Q-Learning Algorithm

Initialize Q(s, @) arbitrarily for all state s and action a
Repeat(for each episode):
1. Perceive the current sensory input vector from the
environment to form state s.
2. Select an action a according to the action-value func-
tion and generate a real-valued action depends on (4).
3. Take the real-valued action, receive an immediate
reward r and observe the next state s’
Update the action-value function as equation (1).
Update the action bias mean by (6).
Update the action bias variance by (8).
DR
until s is terminal

PNk

summarized in Algorithm 2. The action bias mean and action
bias variance will be updated by the reward because it can be
used to adjust the AQ. After learning iteration, action bias
will correct suitable value for controlling the robot action.
The action space is extended from Fig. 6 to Fig. 9.

A

1
|
|
I
|
|
|
|
|
b | A
v

FIGURE 9. Moving distance controlled by the continuous action.

B. KNOWLEDGE TRANSFER LEARNING BASED ON
CONTINUOUS-ACTION Q-LEARNING

The concepts of knowledge transfer learning are derived from
human beings. For example, when a human learns how to
walk on flat ground and climb slope, they can realize to
walk on the seesaw. To apply these concepts for biped robot,
the CAQs are implemented to this idea, named knowledge
transfer learning (KTL). Using the KTL can be divided into
two parts. The first part implements CAQs to solve some
learning problems. In this paper, there are three learning
tasks, walking on flat ground, uphill and downhill. These
learning tasks are solved using three CAQ methods. To merge
three CAQ methods to apply for another learning task, the
seesaw, another Q-learning is used to learn how to switch
three knowledgeable CAQs, which can be fitted to different
situations. For example, the seesaw task is divided into three
stages as shown in Fig. 10. If the current situation in this task

S S—
Ground Ground Ground
(a (b) (©

FIGURE 10. The seesaw task. (a). First Stage (b). Second Stage
(). Third Stage.
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FIGURE 11. Architecture of KTL.

is the first stage, the robot needs to use its uphill experience.
If the robot walks to the middle seesaw, the robot should
switch to the walking on flat ground experience. Finally,
the robot has to use its downhill experience. The architec-
ture of KTL is shown in Fig. 11. The KTL method uses
the seesaw’s board as the state space, and the action space
includes some actions, which are used to switch the CAQ’s
experience by the perceiving states. In the process of KTL,
the learning tasks are executed based on existing experience
(CAQq, CAQqy,...,CAQy). The reward function of KTL is set
as follows.

R(s) {—19 if fallintgdown (10,

e ¢ —1 Otherwise

where ¢ is the number of the state transition between
sy to §;41. If the value of ¢ is small, then the environment
will return a good reward. On the other hand, if the c is
large, then the environment will return a bad reward. When
the robot falls down, then the environment will return the
worst reward. The reward function makes the robot select an
appropriate experience to let the robot walk on the seesaw
stably.

IV. SIMULATIONS AND EXPERIMENTS

To demonstrate the proposed methods, the CAQ and KTL
approaches are verified in the simulator, Webots and in the
actual environment. The learning results derived from the
simulator are mounted on physical robots, called Bioloid
robots, in the actual environment. The simulated and experi-
mental results verify that the Bioloid can walk stably on the
different walking environments.

A. SIMULATED AND EXPERIMENTAL ENVIRONMENT

The simulation environment is shown in Fig. 12. In Fig. 12(a),
the size of this field with physics properties (gravity and
friction) is 6(m) x 8(m). These properties will increase the
difficulty in the learning process. In Figs. 12(b) and 12(c),
the biped robot learns to walk up and down a slope
with the degree of slope of about 5. The seesaw is set to
verify the KTL method, as shown in Fig. 12(a). In the exper-
iment, the walking environment is similar to the simulated
environment.
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(© (d)

FIGURE 12. Walking environments in the simulation. (a) Walking on flat
ground. (b) Uphill environment. (c) Downhill environment. (d) Seesaw.

B. SIMULATED ROBOT AND REAL BIPED ROBOT

The biped robots are the same and illustrate their
three-dimensional link structure in the simulator and real
environment, as shown in Fig. 13. In Fig. 13(a), the biped
robot is built in the Webots simulator. The real robot is
shown in Fig. 13(b). The robots are actuated by 18 RC
servo motors with a mass of about 1.91 kg in total. In other
words, the robots include 18 degrees of freedom (DOF).
Each arm has three degrees of freedom (DOF) and each
leg has six active DOFs; three DOFs are available at the
hip and there is one DOF at the knee and two DOFs at the
ankle joint. Each foot is equipped with four force sensors to
provide the contact forces between the feet and the ground,
as shown in Fig. 13(a) and Fig. 13(b). In the experiment,
four ASAKUSA force sensors (AS-FS) are equipped on the
bottom of each foot. Because the simulation environment is
similar a real environment, the learning experience is valuable
for implementing on the real robot.

C. SIMULATION RESULTS
The simulation results include two parts. The first part exam-
ines the CAQ method in three learning tasks. After the learn-
ing experience, three CAQs with different experience are
merged by the KTL method and implemented in the seesaw
task. In the CAQ method, when the robot takes an action, this
paper introduces a policy listing as follows.
&= 1/(1 + e_E/T)
& <—random(0, 1)
if§ > ¢

The robot selects a random action.
else

The robot selects an action with max Q-value.

where E is the number of episodes and T is a decay parameter.

The reward function, which is returned from the environ-
ment, is given according to the ZMP of the biped robot.
If the ZMP remains in the stable region, which is described
as a simple walking state, then the environment feeds back a
reward of 0. These results demonstrate the task of the balance
control for the biped robots.

1) LEARNING TASKS BY USING CAQ
The first learning task is to walk on flat ground, as shown in
Fig. 12(a). In one training round, the robot walks in a straight
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(2) (b)
FIGURE 13. Biped robots. (a) Simulated robot. (b) Real robot.

TABLE 1. Simulation parameters.

Parameters Value
Learning rate(a) 0.9
Discount rate(y) 0.9

By 0.6
B 0.4
‘Walk on flat ground
300
250 — DAQ

" — CAQ

o

@

2 DAQ

CAQ

1251 s01 751 1001 1251 1501 1751 2000 2251 2501
Episodes

FIGURE 14. Comparison of learning steps between CAQ and DAQ.

line for each episode. The results are compared with another
method that was proposed in [23], where a discrete-action
Q-Learning (DAQ) is introduced to control the biped robot.
In the learning process, when the number of learning steps
reaches 300 or the robot falls down, an episode is terminated.
The robot in each simulation runs 2500 episodes per round.
The parameter settings in the learning problem are listed
in Table 1. Fig. 14 shows the average number of learning
steps required for the biped robot to walk on flat ground
for each episode. The x-axis represents the episodes and the
y-axis represents the learning steps. The two curves represent
DAQ and CAQ. It can be seen that the proposed CAQ shows
clear improvement in learning speed. This method makes
the robot walk without falling down. Although the CAQ lets
the biped robot walk stably, but the continuous action space
in the CAQ moves the ZMP shortly in the former stage as
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FIGURE 15. Comparison of walking distances between CAQ and DAQ.
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FIGURE 16. Learning curve for the robot walking uphill.

shown in Fig. 15. The x-axis represents the episodes and the
y-axis represents the walking distance. In the latter stage,
the action bias can be adjusted to an appropriate value, so
the biped robot can walk stably and quickly and the walking
distance will overtake the DAQ in the 2000 episode. The
longest distance using CAQ is approximately 3.3m. Details
of the walking distance in the last five episodes are shown
in Table 2 where the CAQ makes the robot walk on flat ground
farther than DAQ. To demonstrate CAQ, uphill and downhill
learning tasks are introduced; there are the same tasks. In the
uphill task, the robot starts on the top of the slope, as depicted
in Fig. 12(b). In the downhill task, the robot starts on the
bottom of the slope, as shown in Fig. 12(c). The degree of
the slope is about 2.5. In the two simulations, the two CAQs
are used to control the biped robot to learn to walk on these
two environments. In these simulations, the robot runs for
2500 episodes and 100 steps in an episode. In each episode,
if the number of steps is greater than 100 and the robot
does not fall down, the episode is terminated. The parameters
for the simulation are the same as Table 1. Figs. 16 and 17
show the learning curves of the robot walking uphill and
downhill, respectively. These two figures indicate that the
robot frequently meets the falling down problem in the former
stages. The robot reaches 30 learning steps in episode 1200
and episode 1255, and then the robot will walk more and more
stably. The uphill curve shows that the robot reaches 100 steps
in 2100 learning episode. The downhill curve shows that the
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FIGURE 17. Learning curve for the robot walking downhill.
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FIGURE 18. Using Knowledge Transfer Learning for walking on the
seesaw.

robot reaches 100 steps in the 2105 learning episode. By using
the uphill and downhill simulations; it is verified that the CAQ
can be applied for various learning tasks.

2) LEARNING ON THE SEESAW BY USING KTL

Humans can use their experience to successfully execute
different tasks. For example, when humans have experience
moving uphill and downhill, they can apply their experience
to move up and down stairs. Similarly, KTL is used to achieve
these concepts, and this method allows the robot to transfer
existing experience to accomplish the tasks. Therefore, a
demonstrating task, walking on the seesaw is designed to test
the KTL, and the architecture is shown in Fig. 11. In this
learning demonstration, the robot first develops experience
from different learning experience. In this paper, the different
types of experience are established from three tasks, walking
on flat ground, uphill and downhill. After establishing these
types of experiences, another Q-Learning cycle learns how
to switch these experiences. In this simulation, the board of
seesaw tilts its position based on the robot’s position. Three
kinds of position are listed in Fig. 10, and the moving position
makes the robot walk on the board unstably. The simulation
result is depicted in Fig. 18, according to which, the robot
walks on the seesaw stably by using 100 episodes. The estab-
lished experience can speed up the robot’s learning. To verify
the efficiency of KTL, the four experiences directly used in
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FIGURE 19. Using different learning experiences for walking on the
seesaw.

the seesaw task and the results are listed in Fig. 19. The
x-axis indicates the episode and the y-axis indicates the walk-
ing distance on the seesaw. The curve of green line represents
using downhill experience for walking on the seesaw. The
curve of the blue line represents using the experience of
walking on flat ground; the curve of the black line represents
using uphill experience, and the curve of red line represents
using KTL experience. In this figure, the downhill experience
is not sufficient for the robot to walk on the seesaw stably.
Because the seesaw in the initial stage is similar to the uphill
task, as shown in Fig. 10(a), the experience cannot be used
for walking on the seesaw. The uphill experience is the best
for walking on the seesaw. Then robot walks to the latter part
of the seesaw’s board, as shown in Fig. 10(c). The walking
distance of uphill is 1.22(m) and the walking distance of flat
ground is 0.77(m). Thus the KTL method can use the down-
hill experience to walk stably on the seesaw. However, the
KTL method consumes some time to switch the experience,
so it is slower than uphill experience. But the KTL is the only
method that can finish the seesaw task.

D. EXPERIMENTAL RESULTS

This section implements the simulation results to the real
robot in different kinds of learning environment, including
flat ground, uphill, downhill, and seesaw, as shown in Fig. 20.
The settings of the experiment are the same as the simu-
lations. The AS-FS single-point force sensors are used to
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FIGURE 20. Walking environments in the experiment. (a) Walking on flat
ground. (b) Uphill environment. (c) Downhill environment. (d) Seesaw.
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TABLE 2. Detailed comparisons of DAQ and CAQ.

Episodes Distance(CAQ)  Distance(DAQ)
2496 3.1309(m) 2.5724(m)
2497 3.2305(m) 2.5996(m)
2498 3.2682(m) 2.5727(m)
2499 3.1559(m) 2.5725(m)
2500 3.2442(m) 2.5728(m)

calculate the ZMP’s position. The perceived values of force
sensors are analog signals. An AGB65-ADC converter that
is equipped on the back of the robot transforms the signals
to digital signals. These signals are sent to the computer
system using a Bluetooth module that is installed on the
robot. Then the computer will send a controlling action to
the robot after receiving these sensor values. In Fig. 20, the
size of the wooden board is 35(cm) x 80(cm) and is marked
5 (cm) x 5 (cm) grids. To decrease the amount of time
needed, the simulation results are directly implemented to the
actual robot. Fig. 21 shows that the robot can walk on flat
ground. Fig. 22 shows that the robot learns to move uphill, and
Fig. 23 shows it learns to move downbhill. The three figures,
Fig. 21(a), Fig. 22(a), and Fig. 23(a) show that the robot
starts in the initial position. The robot takes an action in a
state by using the sensor values. The three figures, Fig. 21(b),
Fig. 22(b), and Fig. 23(b) show the robot walking in the

(b)

(©)

FIGURE 21. The experiment result for flat ground. (a) Initial stage. (b) Middle stage. (c) Final stage.
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FIGURE 23. Experimental results of downhill. (a) Initial stage. (b) Middle stage. (c) Final stage.
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FIGURE 24. Experimental result of the seesaw. (a) Initial stage. (b) Middle stage. (c) Final stage.

middle stage of the tasks. Then the robot finishes the learning
tasks as shown in Fig. 21(c), Fig. 22(c), and Fig. 23(c). After
finishing the three tasks, the learning experiences which were
collected in advance are merged to apply for the seesaw task
and Fig. 24 shows the learning results. As shown in Fig. 24(a),
the robot stays in the initial stage and the uphill experience
can be implemented to walk on the seesaw. In the middle
stage, the KTL switches the plain ground and downhill expe-
rience to walk on the seesaw, as shown in Fig. 24 (b). In the
final stage, the downhill experience is used to finish the task.
According to the experiment results, the robot can accomplish
the goal. The video recording the scenarios, plain ground,
uphill, downhill, and seesaw, as seen in the final results of
the experiments, can be accessed at [23].

V. CONCLUSION

Controlling a biped robot walking in real time using the
dynamic model of ZMP is complicated and difficult. The pro-
posed Q-Learning architecture allows for a real-time control
of robots. This learning method is based on the control of
the ZMP’s location acquired through force sensors placed
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on the soles. To relieve the loading in mapping the sen-
sory receptions to the state space, a simple state aggregation
method is applied in the architecture of the Q-Learning.
In addition, the RL approach in this paper utilizes a simple
Q-Learning architecture though it has the drawback suffer-
ing from a limited number of action options. To tackle this
problem, the Continuous-Action Q-Learning is proposed.
Based on the proposed method, a continuous action policy
is constructed and shown to be more stable and robust
after learning in a reasonable elapsed time. In the contin-
uous policy, an action bias generates a smooth action to
fit the requirements of applications. In learning processes,
three experienced CAQs are combined to form the KTL.
The proposed KTL architecture with three CAQs is used
to complete a new task. To demonstrate the effectiveness
of the proposed method, simulations and experiments on
some learning tasks have been conducted. The simulation
and experimental analysis demonstrate that it is possible for
a robot to learn, without a dynamic model initially, walking
gaits and improve its balance capability by the proposed
method.
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