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ABSTRACT We investigate the feasibility of estimating the total energy expenditure (TEE) of a human
for walking/running activities with micro-Doppler signatures. Doppler radar can capture micro-Doppler
signatures produced from limb motions when a human moves. As the micro-Doppler signatures contain
information regarding limb movement, TEE can be estimated by analyzing the Doppler spectrogram.
To understand the relationship between the TEE and micro-Doppler signatures, basic arm and leg motions
are measured by the Doppler radar, whereas a respiratory gas analyzer measures the volume of exchanged
respiratory gas (O2 and CO2) to obtain a reference TEE. The area of micro-Doppler signatures in a
spectrogram has been suggested to serve as key information to estimate TEE. For the verification of the
suggested approach, TEE was measured for seven human subjects, who performed walking and running
activities on a treadmill at five different speeds using both the Doppler radar and the respiratory gas analyzer.
We confirm that strong correlations exist between the micro-Doppler area and the TEE. Finally, a regression
model for walking and running activities is developed for a person. Then, the model calculates the TEE under
two scenarios, and we find that the estimation errors are 13.2% and 12.3%.

INDEX TERMS Human activity monitoring, indirect calorimetry, micro-Doppler, regression model, total
energy expenditure.

I. INTRODUCTION
The demand for an accurate and reliable assessment of total
energy expenditure (TEE) in humans has grown since the
increase of chronic diseases due to the lack of regular exercise
and high-calorie diets. Proper energy expenditure through
physical activities can help not only in controlling weight
but also in preventing obesity and many associated diseases
such as stroke, hypertension, type-2 diabetes, coronary heart
disease, and colon cancer. Because it is necessary to ensure
that the recommended minimum calories are consumed by an
individual on a daily basis, it is essential to track TEE using
a precise and easy method when they exercise [1], [2].

TEE is composed of three major components: activity
energy expenditure, diet-induced thermogenesis, and resting
energy expenditure [3]. Energy expenditure can be most
accurately measured by direct calorimetry, which is based
on the measurement of the heat produced by a human in a

sealed chamber. However, direct calorimetry is very imprac-
tical and expensive in a clinical setting. Therefore, several
indirect approaches to estimate the human TEE have been
proposed. Food intake and questionnaires are simple meth-
ods to calculate the TEE, although they suffer from high
estimation errors. Alternatively, methodology utilizing
instruments and sensors, such as mechanical pedometers,
heart-rate recorders, accelerometers, calorimeters, and res-
piratory gas analyzers, have been researched. Although the
respiratory gas analyzer is regarded as the gold standard
for assessing the TEE in clinical settings, it requires special
equipment that is expensive and bulky [2], [4].

Recent research has shown that the use of accelerome-
ters could be an effective method because not only does
a strong correlation exists between energy expenditure and
accelerometer output in gait analysis [5], [6], but the sen-
sor is relatively simple, portable, and accurate. Using the
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accelerometer output coming from body parts such as the
waist, wrist, and ankle, the TEE is estimated using a regres-
sion model. However, the accelerometers need to be contin-
uously attached to several parts of a body, which is quite
cumbersome. Moreover, a data consistency issue exists
because the estimation varies depending on the position
and orientation of sensors. In addition, wearable sensors
require batteries to be recharged. For these reason, sev-
eral studies show that non-wearable type of sensors are
preferable [7].

In this paper, we propose to estimate the TEE of a human
subject for walking and running activities by remotely mea-
suring the Doppler response using radar. The motion of a
weffective and suppresses clutter while detecting a moving
object. In particular, each part of the limb of a human body
produces its own Doppler shift known as micro-Doppler.
Micro-Doppler signatures have been extensively researched
to analyze micro-motions of a radar target [8]–[10].
Especially for humans, human detection, gait analysis and
human activity classification have been researched [11]–[14].
Therefore, we suggest the use of micro-Doppler signatures
as the main component for estimating the TEE. The pre-
liminary idea was presented by the authors in [15], but
not fully investigated. This current research focuses on the
investigation of the correlation between the TEE and micro-
Doppler signatures. By measuring fundamental limb motions
such as lifting an arm and a leg using Doppler radar, we
study which characteristic of the micro-Doppler signatures
are related to the TEE. We model the leg limb motion as a
pendulum. Through changing the angle of the leg motion, we
investigate the relationship between the micro-Doppler sig-
natures and TEE. We suggest the area of the micro-Doppler
signatures as physicallymeaningful features. For verification,
measurements are carried out on human subjects when they
walk and run on a treadmill because these activities are the
most common and frequent exercises in daily lives. Based
on the measurement, a regression model is constructed to
estimate the TEE when Doppler information is provided. The
maximum Doppler frequency and the frequency of a limb
motion are extracted from themicro-Doppler signatures in the
spectrogram. Finally, we estimate the TEE for the combina-
tion of walking and running activities using a trained model.
The theory, measurements, data processing, and results are
reported.

II. MICRO-DOPPLER SIGNATURES
FROM HUMAN MOTIONS
When a human subject is illuminated by Doppler radar, an
incident wave is reflected from the torso, head, limbs, and
other parts. The Doppler shift from the torso determines the
velocity of the subject, whereas those from the limbs produce
a modulated signature in a spectrogram, as shown in Fig. 1.
The signature is so unique that it could serve as a feature for
detecting a human subject and even for classifying human
activities [13], [14]. Because most energy expenditure occurs
because of limb motions, we can possibly estimate the energy

FIGURE 1. Doppler spectrum of a walking human.

expenditure based on the Doppler signature of the limbs,
especially for a walking/running activity.

In general, arm and leg motions are synchronized when
a human walks or runs, and this make the micro-Doppler
signatures overlap in the time domain in most cases. The
micro-Doppler envelope has been reported to be mainly pro-
duced from leg motion owing to its longer length, making
the micro-Doppler signatures from the arms exist inside the
envelope [16]. In addition, the extent of limb motion is highly
correlated because large leg strides cause large arm swings,
and vice versa. Therefore, the micro-Doppler envelope itself
can be an effective representation of the extent and frequency
of the limb motion.

For the Doppler measurement, we use a continuous-wave
Doppler radar, which is a low power, compact radar operating
at a frequency of 7.25GHz. It can detect a human subject from
up to 20 m away. The average output power is −3 dBm. The
system uses an onboard dipole-type antenna with a 60◦ beam
width. The sensor output is a continuous coherent quadrature
signal (I&Q)with a frequency that corresponds to theDoppler
shift. This signal is converted into digital data using a data
acquisition board (NIUSB 6009, Austin, Texas) at a sampling
rate of 1 Ksps. The sampled data are processed on a personal
computer.

The time-varying behavior of the Doppler signal is inves-
tigated by a joint time–frequency analysis. We process
the measured time-domain signal with a short-time Fourier
transform [17].

S(t, f ) =
∫
s(t ′) · e−((t−t

′)/2σ 2)
· ej2π f (t−t

′)dt ′ = |χ | ejφ (1)

where s(t) is the time-domain signal and σ is the width of
the Gaussian window. In this study, the fast Fourier transform
size is set to 256, and the overlapping time step is 10 ms,
considering the velocity of human motions.

To extract the Doppler envelope, we process the spectro-
gram. Doppler signals have a higher signal-to-noise ratio than
theGaussian noise. Thus, wemust set a boundary between the
Doppler signal and noise to extract only the Doppler signal.
As suggested in [14], we use the distribution of signal power
to determine the threshold. The threshold is determined as
the power when the Gaussian distribution from the noise is
distorted, as shown in Fig. 2. After eliminating the noise,
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FIGURE 2. Doppler signal extraction using the distribution of signal
power.

the Doppler envelope can be robustly detected. In the spec-
trogram, the velocity of target can be calculated from the
Doppler frequency by v = fD · c/2fo.

III. MEASUREMENT OF FUNDAMENTAL LIMB MOTION
To estimate the TEE based on the Doppler signatures, we
need to extract a key feature of the micro-Doppler signatures
that would serve as an independent variable for the estima-
tion. The following measurements were carried out to under-
stand the limb motion of a human and TEE. We expect the
key feature to be obtained through these basic measurements.
All human experimentation procedures were reviewed and
approved by the Institutional Review Board, California State
University at Fresno (IRB-0917-2014). Six participants (three
males and three females) from the California State University
and seven participants (three males and four females) from
Seoul National University volunteered to participate in the
study.

For the reference measurement of the TEE, we used a
respiratory gas analysis system (Quark b2, COSMED, Rome,
Italy) during exercise and at rest. The energy expendi-
ture was determined by continuously measuring the oxygen
uptake (VO2) and carbon dioxide production (VCO2) in
expired air. Given both VO2 and VCO2, the following equa-
tion can be used to precisely convert the gas exchanges to
kilo-calorie per minute [18]:

Energy expenditure (kcal/min)

= (VO2∗3.781)+ (VCO2∗1.237) (2)

For ensuring accurate acquisition of the TEE, each subject
took a break for approximately 5 min by sitting upright
indoors before every measurement. The TEE in the following
measurement includes the resting energy expenditure and the
caloric cost due to the activity performed.

A. MEASUREMENT OF BASIC ARM- AND
LEG-LIFTING MOTION
To investigate the correlation between the Doppler infor-
mation obtained from the limb motion and the TEE, we
performed basic measurements for arm/leg lifting. First, the
fundamental arm and leg movements were measured in an
indoor environment. The subjects participating in the mea-
surement consisted of two males and two females. The par-
ticipants sat on a stool 3 m from the radar. They raised one

FIGURE 3. Measurement of (a) arm lifting and (b) leg lifting using
respiratory gas analyzer and radar.

arm up to 90◦ and lowered it every 3 s for 5 min for a total
of 100 times in the trials. The participants were positioned
orthogonal to the radar, as shown in Fig. 3, so that the radial
velocity of the arm and leg could be captured by the Doppler
radar. To determine the effect of arm speed on the TEE, the
movement was varied at three different levels from slow to
medium to high at the subject’s discretion. The total number
of movements remained the same at 100 times. In addition,
the participants were free to randomly alter both the speed and
the frequency of arm motions and perform them 100 times.
Each exercise was completed four times per person to validate
data. During the activities, the participant wore a mask for
the metabolic gas analysis system. The caloric cost of the
exercises was measured by the system.

FIGURE 4. Example of measured (a) TEE per minute and (b) heart rate of
basic limb lifting motion.

An example of measured TEE per minute relative to time
is shown in Fig. 4(a). Because the cardiopulmonary machine
produces 1-minute averaged values at the beginning in the
measurement setting, we can observe that the TEE had a
transient period of approximately 1 minute until it stabilized.
The heat rate also showed a similar trend with the TEE
in Fig. 4(b). The measured spectrograms for two different
speeds of motion are shown in Fig. 5. A slow arm move-
ment generated a low Doppler frequency (around 52 Hz)
in longer time duration, and a fast arm movement caused a
high Doppler frequency (around 107 Hz) within shorter time
duration. The caloric cost results of the arm lifting from the
metabolic gas analysis system are listed in Table 1. The values
were averaged among four measurements for each person.
The result indicates no significant influence from the speeds
of the motions when the number of motions was fixed.
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FIGURE 5. Measured spectrogram: (a) slow arm motion, (b) fast arm
motion, (c) slow leg motion, and (d) fast leg motion.

TABLE 1. Measured TEE for arm lifting.

TABLE 2. Measured TEE for leg lifting.

The average caloric costs for leg lifting are listed in Table 2.
The table also verifies that the caloric cost was not affected
by the speed of the leg motions when the number of leg
motions was fixed. Thus, we can conclude that the speed of
motion has no strong correlation to the energy expenditure
of the arm and leg lifting motions; however, the number of
motions affects the TEE. This result is physically logical
because the total work is calculated as a product of force and
height displacement, which is not a function of time or speed.
The maximum Doppler frequency and the Doppler duration
become the key features in this measurement. However, we
should note that the intensity of the three activities was cate-
gorized as easy; thus, the exercise did not reach the lactate
threshold [19]. When the intensity of an exercise is above
the lactate threshold, the caloric cost can nonlinearly change
depending on the exercise intensity.

B. MEASUREMENT OF ARM-LIFTING ACTIVITY
WITH DIFFERENT ANGLES
Wemeasured the arm-swing activity that is a part of the actual
motion of walking and running. The previous measurement

was somewhat contrived because the arm and leg lifting was
not natural in setting the lifting angle to 90◦. In addition,
the angle becomes negative owing to the back swing. As the
swing speed changes, the angle also varies. The purpose of
this measurement is to investigate the relationship between
micro-Doppler signatures and energy expenditure when the
swing angle is not set to 90◦. We measured the Doppler sig-
nals and the TEE using a different swing angle θ . The swing
time was not set; thus, the participant could naturally swing
at his/her own pace. In this case, the swing angle represented
the intensity of the exercise. The number of swings was fixed
to 200 times to ensure that the time was sufficient to saturate
the TEE. The measured maximumDoppler frequency and the
TEE are listed in Tables 3 and 4 for the arm and leg motions,
respectively. Example spectrograms are shown in Fig. 6.

TABLE 3. Measured TEE for the arm-swing movement.

TABLE 4. Measured TEE for the leg-swing movement.

FIGURE 6. Measured spectrogram: (a) 15◦ arm motion, (b) 80◦ arm
motion, (c) 15◦ leg motion, and (d) 45◦ leg motion.

From the measurements, we observed that the maxi-
mum Doppler frequency and TEE increased with the limb
swing angle. In addition, a nonlinear relationship existed
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between the maximum Doppler and TEE. In terms of the
period, the relationship was not deterministic.

IV. MODELING OF TEE FROM MICRO-DOPPLER
SIGNATURES OF HUMAN LIMB MOTION
Based on the previous measurements, we proposed to use the
micro-Doppler area as a main feature to estimate the TEE per
minute because the area is calculated based on the maximum
Doppler frequency, Doppler duration, and frequency of the
limb motion when the time window is given. Therefore, the
area extracted from a spectrogram is assumed to be a function
of the TEE. The function can be linear or nonlinear depending
on the activity type and its intensity under which the human
subject is performing.

To verify and expand this idea, we modeled the limbmove-
ment as a pendulum and calculated the expected Doppler
shift depending on the angular velocity. In the first mea-
surement case presented in Section III A, assuming that the
angular velocity is constant when a human swings its arms
and neglecting a short duration for acceleration, the radial
velocity relative to the radar is calculated as

v = rω · cos(ωt) (3)

where r corresponds to the limb length and ω is the angular
velocity of the limb. The expected Doppler shift depending
on ω while a limb is lifted to 90◦ and brought back to the
original position is shown in Fig. 7(a). The micro-Doppler
area for the quarter periods is calculated by

AreaMicroD =

π/2ω∫
0

rω · cos(ωt)dt = r (4)

FIGURE 7. Limb model for the calculation of Doppler area, (a) when the
arm lift is 90 degrees, and (b) when the arm lift is non 90 degrees.

This equation indicates that the estimated TEE depends only
on r and is not a function of ω. This result implies that the
micro-Doppler area can be a valid feature because the TEE
should remain the same for the basic limb-lifting motion
regardless of the arm speed, as listed in Tables 1 and 2. This
result is physically reasonable because total work is deter-
mined only by the force and displacement that were constant
in the measurement. For the verification, the calculated area
of the micro-Doppler and TEE versus the speed of the limb
is shown in Fig. 8(a) and (b). In this case, approximately a
constant (linear) relationship is observed between the micro-
Doppler area and TEE. However, the relationship might be
nonlinear for different human activities.

FIGURE 8. Measured TEE and micro-Doppler area, (a) TEE/min/swing
of 90◦ arm and leg lifting for the arm, (b) MicroDoppler area for 90◦ arm
and leg lifting for the arm, (c) TEE/min/swing of non-90◦ arm and leg
lifting, and (d) MicroDoppler area for non-90◦ arm and leg lifting for
the arm.

For the second measurement presented in Section III B, the
lifting angle was varied as Fig. 7(b); thus, the Doppler area
was calculated as follows:

AreaMicroD =

θ1/ω∫
0

rω · cos(ωt)dt = r · sin(θ1) (5)

From (5), the relationship between the micro-Doppler area
and TEE becomes nonlinear because the total work done
by the lifting motion should be proportional to the height
displacement r · (1 − cos(θ1)). However, the two functions
(Eq. (5) and r · (1− cos(θ1))) have similar shape and mono-
tonically increase with respect to θ1. We have plotted the cal-
culated the area of each micro-Doppler and TEE per minute
versus the limb angle and shown it in Figs. 8(c) and 8(d). The
micro-Doppler area and the TEE per minute show a strong
correlation with the increase in the limb angle. Even though
the nonlinear relationship can be confirmed by the graph, the
TEE per minute can be expressed as a function of the micro-
Doppler area. From the results of the two measurements, we
set the micro-Doppler area as a key feature to estimate the
TEE per minute.

V. MEASUREMENT OF TEE IN HUMANS FOR WALKING
AND RUNNING ACTIVITIES ON TREADMILL
A. INVESTIGATION AND MODELING
OF HUMAN LIMB MOTION
We study the limb motion in practical walking and running
activities to investigate the relationship between the TEE and
micro-Doppler signatures. The angle of the limb motion is
not 90◦, and the arm moves backward with respect to the
torso. Furthermore, rather than the armmotion, the legmotion
occupies a significant part in both micro-Doppler and energy
expenditure. Usually, micro-Doppler signatures from the legs
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override those of the arms. Thus, to model the limb motion,
we must investigate how the limb-motion frequency, limb
angle, and angular velocity vary relative to the speed of a
human, through measurements.

FIGURE 9. (a) Limb model of walking/running activity. (b) Frequency of
limb motion versus treadmill speed. (c) Limb angle versus treadmill
speed. (d) Angular velocity versus treadmill speed.

From the measurements obtained using a treadmill, exam-
ple relationships are shown in Fig. 9. The frequency of the
limb motion increases almost linearly with the treadmill
speed, as shown in Fig. 9(b). A rapid change occurs at the
speed of 8 m/s when the human subject starts to run. During
running, the stride decreases, whereas the frequency of the
limb motion increases. Fig. 9(c) shows that θ1 and θ2 increase
with the treadmill speed while walking. When a human
starts running, θ1 decreases compared with when walking,
whereas θ2 keeps on increasing because the kinematics of
walking and running are different in that running involves
more vertical movement. However, the Doppler signatures
come from θ2, which is larger. The angular velocity of the leg
also displays an approximately linear relationship, as shown
in Fig. 9(d).

Based on the previous observation, the leg swing is mod-
eled as symmetrical, and the maximum angle is a function of
angular velocity ω to calculate the Doppler frequency. In this
case, the Doppler area is calculated by (6) by assuming that
the limb angle is modeled as a function of the leg angular
velocity. When θ1 and θ2 are the same as θ

AreaMicroD =

θ (ω)/ω∫
−θ (ω)/ω

r · ω · cos(ωt)dt·

= r ·
(
sin(ω ·

θ (ω)
ω

)+ sin(ω ·
θ (ω)
ω

)
)

= 2r · sin (θ (ω)) = 2r · sin
(
ω · Tp

)
(6)

Here, Tp is the Doppler period. Angular velocity ω can be
calculated by the maximum Doppler frequency using (3).

Since θ = ω · Tp, we have

AreaMicroD = 2r · sin
(
ω · Tp

)
= 2r · sin

(
fDmax · c
2fc · r

· Tp

)
(7)

The micro-Doppler area thus depends on the maximum
Doppler frequency fDmax and the period of the Doppler sig-
nature when r is given. We observe that the Doppler area
is not affected by ω. Now, when a certain human activity is
consistent within a certain time window (TD), the TEE can be
modeled as

TEE = Ac · Sub · K (Tp) · AreaMicroD · N

= Ac · Sub · K (Tp) · AreaMicroD ·
TD
Tp

= Ac · Sub · K (Tp) · 2r · sin
(
fDmax · c
2fc · r

· Tp

)
·
TD
Tp
(8)

Here, Ac is a constant related to the activity type, Sub is a
factor related to the individual human subject, and K (Tp) is a
factor associated with the intensity of the activity depending
on the period of activity. N is the total number of micro-
Doppler signatures within TD, fc is the carrier frequency
of the Doppler radar, and fDmax is the maximum Doppler
shift in the spectrogram. We should note that K (Tp) is a
constant for the basic arm- and leg-lifting motions because
the intensity of the activity is not severe. However, the TEE
would nonlinearly increase when the exercise reaches the
lactate threshold. Therefore, including the factor that varies
depending on the intensity of activity is reasonable. The
relationship between the micro-Doppler area and TEE could
be nonlinear and complex depending on the activity type and
its intensity. Thus, the equation for the estimation of the TEE
is generally formalized as

TEE = f1(AreaMicroD) · N

= f2(Ac, Sub, r,Tp, fDmax,TD) (9)

This equation shows that the TEE is a function of the mea-
sured maximum Doppler frequency, micro-Doppler period,
and total time duration. Therefore, instead of calculat-
ing the micro-Doppler area, the two Doppler features,
namely, maximum Doppler frequency and frequency of the
micro-Doppler in the spectrogram, need to be estimated.
The maximum Doppler frequency and frequency of periodic
signature in the spectrogram are more convenient and robust
to identify. However, they suffer from the limitation in that
the proposed method is only valid for activities in which the
energy expenditure is mainly contributed by the limbs with a
radial velocity. The orthogonal movement relative to the radar
would not be captured by the Doppler radar.

B. INVESTIGATION OF TEE AND MICRO-DOPPLER
SIGNATURES OF A HUMAN
To explore the relationship between the Doppler frequency
and TEE, the participants were simultaneously measured
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by the radar and respiratory gas analyzer as the treadmill
speed varied. During these exercises, the subject was always
located within the detection range in front of the radar to
receive the Doppler signal. The measurement setup is shown
in Fig 10(a). Because a human torso does not produce a signif-
icant Doppler shift in the treadmill, micro-Doppler signatures
from a limb motion can be easily identified. Seven partic-
ipants (four males and three females) from Seoul National
University volunteered to participate in the study. Prior to the
measurement, the physical information of the participants,
including age, height, weight, and sex, were recorded because
this information is known to be a factor that influences the
resting energy expenditure in the TEE [20]. The physical
characteristics of the subjects are listed in Table 5.

FIGURE 10. (a) Measurement setup at the treadmill and (b) measured
spectrogram.

TABLE 5. Physical characteristics of subjects.

Each human subject ran for 20 min, and the treadmill
speed was set to 3, 5, 7, 9, and 11 km/h for 4 min. The
Bruce protocol [21] is the most commonly used; however,
we did not employ it because it changes the slope as well
as the speed of the treadmill to control the intensity of the
activity. We only controlled the speed of the treadmill to vary
the exercise intensity. The measured spectrogram from one
subject is shown in Fig. 10(b) as an example. We observe that
the maximum Doppler frequencies were 41.6 Hz at 3 km/h,
68.9 Hz at 5 km/h, 96.2 Hz at 7 km/h, 110.6 Hz at 9 km/h, and
141.8 Hz at 11 km/h. As the speed increased, the observed
maximum Doppler frequency increased approximately in a
linear manner. The recorded VO2 and VCO2 are shown in
Fig. 11(a), and the TEE per minute calculated based on (2) is
shown in Fig. 11(b). We observe that the recorded VO2 and
VCO2 were strongly correlated, and they increased by a step
with a lagging time. The TEE and TEE per minute relative to
time are shown in Figs. 11(c) and 11(d). We observe similar
phenomena for all seven participants.

FIGURE 11. (a) Measured VO2 and VCO2 after low-pass filtering.
(b) Measured TEE per minute and the averaged value for five steps.
(c) Measured TEE. (d) Treadmill speed versus TEE per minute and
sin

(
fD max · c · Tp/(2fc · r )

)
/Tp of the participant.

FIGURE 12. TEE per minute and sin
(
fD max · c · Tp/(2fc · r )

)
/Tp of the

seven participants.

From (8), we can use the maximum Doppler and its
period, instead of the micro-Doppler area, to estimate
the TEE. Finally, the relationship between sin(fDmax · c · Tp/
(2fc · r))/Tp and TEE per minute for each participant are
shown in Fig. 12, verifying that the TEE per minute is
strongly correlated with the micro-Doppler area, and they
have a nonlinear relationship. Each participant has a specific
curve. If a nonlinear model is constructed based on several
measurements, then the TEE can be estimated using the
micro-Doppler area.

VI. ESTIMATION OF ENERGY EXPENDITURE DURING
WALKING/RUNNING USING A REGRESSION MODEL
On the basis of the previous results, we estimated the TEE of a
participant who performed two different protocols. Because
the relationship between the area of the micro-Doppler and
the TEE per minute was determined for five points, as
shown in Fig. 11, the curve could be interpolated with a
regression model using a smoothing spline that consisted of
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FIGURE 13. Regression between the micro-Doppler area and TEE for the
seventh participant.

piecewise polynomial. The fitted curves are shown in Fig. 13
using a smoothing parameter of 0.99. The curve would be
used to estimate the TEE per minute when the Doppler area
is given. For the verification of the model, the TEEs for two
experiment protocols were estimated.

FIGURE 14. (a) Measured VO2 and VCO2 after low pass filtering.
(b) Measured TEE per minute and the averaged value for five steps,
(c) Measured TEE. (d) Measured spectrogram.

The first protocol increased the treadmill speed and gradu-
ally decreased it every 2min for 18min. The speeds were 2, 4,
6, 8, 10, 8, 6, 4, and 2 km/h. The measured VO2 and VCO2
are shown in Fig. 14(a). The measured TEE per minute is
shown in Fig. 14(b), and the TEE relative to time is shown in
Fig. 14(c). The final TEEwas 104.6 Kcal.We observe that the
TEE per minute also gradually changed with the same pattern
as that of the intensity of the activity. The spectrogram of a
3-s cropped example for each speed is shown in Fig. 14(d).
We extracted the maximum micro-Doppler frequency, limb-
motion frequency, and time-window size where the limb fre-
quency persisted from the spectrogram. Using the developed
regression model, we estimated the TEE per minute and TEE
relative to time. They are shown in Figs. 14(b) and 14(c) by
the red dotted graph. We can observe that a delay existed

between the measured and estimated TEE per minute. The
estimated TEE was 90.8 Kcal. The TEE estimation error
was 13.2%.

The second protocol emulated a dynamic exercise by
increasing, decreasing, and increasing the speed again.
Between the measurements of the two protocols, the par-
ticipant took a break for at least 10 min to ensure that a
normal heart rate returned. The speeds were varied five times
every 4 min, resulting in a total of 20 min. The speeds were
2, 6, 10, 4, and 8 km/h. The measured VO2 and VCO2
are shown in Fig. 15(a). The measured TEE per minute is
shown in Fig. 15(b), and the TEE relative to time is shown in
Fig. 15(c). The final TEE was 127.5 Kcal. We observe that
the TEE per minute also gradually changed with the same
pattern as that of the intensity of the activity. We extracted
themaximummicro-Doppler frequency and the time duration
when the frequency persisted from the spectrogram shown
in Fig. 15(d). Using the interpolation model, we estimated
the TEE per minute and the TEE relative to time, which are
shown in Figs. 15(b) and 15(c), respectively. The estimated
TEE was 111.8 Kcal. The TEE estimation error was 12.3%.

FIGURE 15. (a) Measured VO2 and VCO2 after low-pass filtering.
(b) Measured TEE per minute and the averaged value for five steps.
(c) Measured VO2 and VCO2 after low pass filtering. (d) Measured
TEE per minute and the averaged value for five steps.

VII. DISCUSSION
The purpose of this study was to investigate the feasibility
of estimating TEE using a radar system. Rather than using
sensors to attach to a human body, the authors proposed an
alternate method for remote estimation of human TEE based
on micro-Doppler analysis. The results of the present study
shows that similar performance in the estimation of energy
expenditure was obtained compared with the accelerometer-
based method reported by Lester et al. [22].
However, few points need to be addressed. This study

suffers from limitations that come from the small sample
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size used to build a regression model. If the treadmill speed
increases with more steps, the estimation could become more
accurate by avoiding extrapolation. In addition, to construct
a general regression model and not for a specific subject,
a number of human subjects with diverse sex, age, weight,
and height groups should be investigated. The other limita-
tions of this study include the radar setup used. It did not
capture vertical motions that are a significant part of energy
expenditure, especially for the running activity. Further,
multiple-sensor topology would be necessary to measure the
three-dimensional movement. As far as the micro-Doppler
measurement is concerned, occasionally, it was not clear in
identifying the maximum value of the micro-Doppler signa-
tures for the running activity due to their spread, whereas it
was clearly detected in the walking activity. Higher carrier
frequency radar with a higher analog-to-digital sampling rate
is desired for robust measurement.

VIII. CONCLUSION
We proposed to estimate the TEE by performing remote
measurement of the Doppler response of a human perform-
ing walking or running activities using radar. From several
measurements, we found that the micro-Doppler area played
a significant role in estimating the TEE because a strong
correlation exists between them. Based on the obtained data
of when a human subject walks/runs on a treadmill at dif-
ferent speeds, a regression model was constructed so that
the TEE could be estimated when the micro-Doppler area
is given. The area was approximately calculated using the
maximum Doppler frequency and the period of the micro-
Doppler signatures. For the two verification protocols, the
TEE estimation errors were 13.2% and 12.3%.
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