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ABSTRACT We investigate the cooperation among energy prosumers (unified energy provider and
consumer) through the energy packet network (EPN) paradigm, which represents both the flow of work
that requires energy, and the flow of energy itself, in terms of discrete units. This paper details a stochastic
model of EPNs, which is inspired from a branch of queuing theory called G-networks. Themodel allows us to
compute the equilibrium state of a system that includes energy storage units, energy transmission networks,
and energy consumers, together with the intermittent energy sources. The model is then used to show how
the flow of work and energy in the system can be optimized for certain utility functions that consider both
the needs of the consumers, and the desire to maintain some reserve energy for potential future needs.

INDEX TERMS Renewable Energy, energy storage, energy packet networks, energy prosumers, queueing
theory, G-networks, system optimisation.

I. INTRODUCTION
In the future, billions of computer and communication
devices may work through the Internet of Things (IoT) to
manage and solve locally the major challenges of cities and
human communities [1]. Applications will include energy
provisioning and the smart grid [2], physical safety and
security [3], health [4] and the environment [5]. In particu-
lar, the smart grid will itself require innovative communica-
tion solutions [6]–[10], but distributed data sources require
synchronisation [11] while communication protocols create
additional overhead [12] and hence energy consumption.

However energy and workload monitoring and manage-
ment systems will also consume energy and add to societal
issues such as CO2 impact [13]. Thus in order to move
forward towards ubiquitous, self-sustainable and optimised
systems such as smart cities, sustainable agriculture, energy
microgrids, and local energy supply systems, with desirable
properties such as reduced emissions and energy transmission
losses, it will be necessary to power the IoT as much as possi-
ble through sources of renewable and clean energy and meet
the energy needs of the communication networks, servers and
data centres that are needed to support them [14].

In the meanwhile, the worldwide increase in electrical
energy consumption for ICT [15] worldwide in the order
of 5-7% per year, has also motivated research in energy
harvesting [16]–[19] for computer and communications sys-
tems. Furthermore power is being increasingly generated in a
distributed manner with consumers becoming ‘‘prosumers’’,

who may also be producers and/or ‘‘storers’’ of energy (e.g.
in home-based battery systems, or in individual vehicles).
Thus there is an increasingmotivation to dynamicallymanage
electrical energy consumption, in conjunction with its gener-
ation and distribution. Such dynamic management requires
the integration of consumers with communication networks
and data centres so that energy management software may
dynamically optimise the power grid.

These evolutions encourage us to study integrated models
for renewable energy systems in the presence of dynamic and
flexible energy consumption [20]. In this respect, a variety
of emerging technologies such as Intelligent Power Switches,
PowerComm Interfaces [21] andwireless energy transfer [22]
can assist in dynamically managing, storing and conveying
electrical energy. Furthermore, energy storage in conjunc-
tion with harvesting, energy sharing between prosumers, and
workload migration between certain energy consumers such
as data centres, can be used to improve the economic cost and
CO2 impact of the data centres and computer networks that
are required to support the energy systems of the future. Since
energy harvesting will in general be intermittent, it will useful
to store energy dispatch it dynamically to optimise overall
system behaviour [23], [24].

A. CONTRIBUTIONS OF THIS PAPER
Thus this paper addresses the use of the ‘‘Energy Packet
Network’’ (EPN) paradigm [25]–[27] to model and optimise
the dynamic generation, storage and consumption, as well
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as the dynamic workload, of highly dynamic and distributed
energy systems. Specifically, it addresses the use of the EPN,
to model and optimise the generation, storage and consump-
tion, as well as the dynamic workload, of highly dynamic and
distributed energy systems, and presents several new results:
• Anovel case of practical interest is first developed, when
we take a specific ‘‘high level’’ decision regarding the
distribution of energy. In this decision, all energy stores
should, on average, contain the same amount of energy,
so that if any of them fails the others can best support
the system, and the backlog of work at each of the
workstations should on average be the same.

• Then we introduce specific utility functions for the
general case, that take into account both the needs of
the consumers, and the desire to maintain some reserve
energy for future needs.

• The control variables considered are the rates at which
we can move energy packets from energy stores to
workstations, and also move energy between different
energy stores. The model also allows us to represent
the movement of jobs between workstations. The utility
functions contain contradictory terms, so that as we vary
the control variables, some of these terms increase while
others decrease, leading to clear optima.

• In order to optimise these utility functions, we develop
an algebraic formulation of the partial derivatives of
the quantities of interest with respect to the control
variables. This algebraic formulation is used to derive
the computational algorithms that obtain the optimum
operating points of the utility functions.

• A significant numerical example is also presented.
It concerns a remote sensing/processing centre operating
a (radio) telescope or radar system, together with a
sensing and life support system, which constiute three
‘‘workstations’’. Electrical energy is provided by a pho-
tovoltaic source and by wind. Within the context of
this system, the previously defined utility functions are
considered and detailed optimisation results are illus-
trated numerically in several tables and figures, regard-
ing the optimum flow of energy to each of the three
workstations.

The paper ends with conclusions including suggestion for
further work.

II. ENERGY PACKET NETWORKS
The EPNmodel for networks of energy prosumers combines:
• The intermittent flow of harvested of energy, repre-
sented by a random flow of arriving ‘‘energy pack-
ets (EPs)’’. An energy packet is a discrete unit of energy,
e.g. X Joules, which is represented as arriving in ‘‘one
chunk’’. It is simply a simplified version of the actual
flow of energy which is continuous.

• The storage of energy (say in batteries), again in discrete
units of EPs. An energy storage unit (ES) such as a bat-
tery is modelled as a queue of EPs that are waiting to be
used. The ES is replenished by a flow of EPs from some

external source including an energy harvesting unit, and
it can be depleted both when energy is forwarded to a
consumer, and through losses that represent leakage or
line losses.

• The sources of power, the ESs and the consumers are
interconnected by Power Switches (PSs) which dynam-
ically connects the sources of power to the ESs, and the
sources of power and ESs to the consumers.

• The consumers will request for EPs from either a PS or
ESs, and these requests will typically be intermittent,
since they are a function of the work that these con-
sumers accomplish with the energy.

A typical example of such consumers are ICT sys-
tems which intermittently receive computational work to
accomplish (for instance in terms of programs that need
to be executed, or in terms of data packets that need
to be transmitted), and which in turn require energy to
accomplish this work. Thus a consumer is also repre-
sented by:
• A queue of work that it has to accomplish which may
originate from some outside source or from some other
consumer of energy which accomplished a prior work
step, and

• One or more servers that have job execution times which
have a random duration which may depend on the nature
of the job and the speed of the work unit, and also on the
flow of power to the server.

An EPN will contain multiple work units with external
arrivals of jobs or data packets, the jobs or data packets may
move from one consumer queue to the other, and there will be
multiple queues of EPs, with external arrivals of renewable or
steadily flowing energy, and energy itself may flow between
ES, or it may leak from the energy stores, or move to con-
sumers where it is used to execute jobs or transmit packets.
Such EPNs can be analysed using a branch of queueing
network theory called G-Networks [28], [29]. Typically in
queueing theory, jobs move around a set of servers where
they queue up to receive service until they complete their
needs and leave the system. In G-Networks on the other hand,
some of the flows of ‘‘customers’’, in this case the EPs, can
queue up (as in an ES), but they can move to act as servers or
activators for other customers, in this case the jobs that need
to be executed or the data packets that need to be transmitted,
that queue up at the servers where work is accomplished.
Thus the G-Network can be used to represent job flows
that consume energy and energy flows that allow jobs to be
executed.

Electronic systems that capture a similar physical
behaviour have been recently built and experimentally
tested under the name of ‘‘power packet’’ systems.
They are designed for the smart dispatching of electrical
energy [30], [31], and in some approaches the forwarding of
an EP takes the form of a pulse of current with a fixed voltage
and duration, and each EP is equippedwith an encoded header
compromising the destination information for the EP [32] that
allows PSs to determine where the energy needs to be sent.
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In previous work [33] we have used the EPN model to
study the architectures that interconnect energy prosumer
systems so that energy losses and the response time to service
request are minimised.

In this paper we develop optimisation algorithms that opti-
mise utility functions that include a linear combination of
the throughput or useful, and the the probability that the
system does not run out of energy. Thus the type of utility
that we seek to maximise includes two sets of terms: the sum
of the job processing rates of the system, and the sum of
the probabilities that there is reserve energy in the system.
Clearly if we try to just maximise the work done we may run
out of energy, while if we try to just save energy then the
system may delay the job execution times.

III. THE MATHEMATICAL MODEL
We study an EPN consisting of a finite set of nodes. It con-
tains m energy storage (ES) nodes denoted El , 1 ≤ l ≤ m
store and dispatch EPs, while n workstation (WS) nodes Wi,
1 ≤ i ≤ n are ‘‘places of work’’ where jobs are executed.
The system diagram is described schematically in Figure 1.
Energy packets enter the energy store El at rate γl from
external renewable sources. Also, the energy stored in El may
be lost at a rate πl due to leakage and standby losses, and Ei
sends energy packets out of the store at rate rl either to other
energy stores or to workstations.

The external arrival rate of jobs to the work stationWi is λi,
while the workstation may also receive jobs from another
workstation Wj with probability Pji after workstation Wj fin-
ishes processing that job. Moreover, uncompleted jobs stored
at the work stationWi might also be lost at a time-out rate βi.
However processing at Wi can only occur if an energy

packet arrives at the workstation from some ES El . This can
happen in two ways:
• With probability s(l, i), El sends an energy packet toWi,
and it may send EPs to Ek with probability S(l, k), with∑n

l=1 s(l, i)+
∑m

k=1 S(l, k) = 1 for any l. We will write
w(l, i) = rls(l, i) and W (l, k) = rlS(l, k) so that rl =∑n

l=1 w(l, i)+
∑m

k=1W (l, k).
• With probabilityPij the workstationWi sends the job that
has just completed to node Wj for more processing, or

with probability di = 1 −
∑n

j=1 Pij the workstation Wi
will simply remove the job that terminates atWi from the
system without forwarding it to another workstation.

In fact a more complex model in which a single job can
consume more than one energy packet at a time can also be
used, and will be considered in future work.

As a consequence of the above assumptions, using
G-Network theory [28], [34] the probabilities Qi that Wi has
at least one job in its queue, and ql that El has at least one EP
in its ES, will satisfy:

Qi =
λi +

∑n
j=1

∑m
l=1 qlw(l, j)QjPji∑m

l=1 qlw(l, i)+ βi
, (1)

where the rate of service at Wi is determined by the rate at
which it receives energy, and ql is the probability that energy

FIGURE 1. Schematic representation of an EPN with two types of nodes
and ‘‘queues’’: the ‘‘positive’’ nodes contain the work to be done while
the ‘‘negative’’ nodes are the ESs which store energy and are replenished
by harvesting. ESs provide power in the form of EPs to the ‘‘positive’’
nodes. Work can move from one positive node to another where they are
processed when energy becomes available, and finally the work leaves
the network after completing a certain number of work steps. EPs can
leak from the ESs (negative nodes), or be transferred to another ES or
they can be transferred to a positive node to accomplish work.

storage station El has at least one EP in store:

ql =
γl +

∑m
k=1 qkW (k, l)
rl + πl

. (2)

The above equations also allow us to state the following
result [34]:
Theorem 1: Assume that the external arrivals of jobs,

and the arrivals of EPs from renewable energy sources, are
independent Poisson processes with rates λi, and γl . Suppose
that the rl , πl and βi are the parameters of mutually inde-
pendent exponentially distributed random variables. Then
if (K1, . . . ,Kn) ≥ (0, . . . , 0) and (k1, . . . , km) ≥
(0, . . . , 0) represent the backlogs of jobs to be executed at
the workstations, and the number of energy packets stored at
the ESs, respectively. Then

lim
t→∞

P[K1(t) = K1, . . . ,Kn(t) = Kn;

k1(t) = k1, . . . , km(t) = km]

=

n∏
i=1

QKii (1− Qi)
m∏
i=1

qkll (1− ql).

Corollary 1: Because in steady-state the joint probability
distribution of the number of jobs waiting, and energy packets
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stored, at each of the WS and ES, is the product of the
marginal distributions, we have:

lim
t→∞

P[Ki(t) ≥ Ki] = QKii , lim
t→∞

P[kl(t) ≥ kl] = qkll .

A. VECTOR REPRESENTATION
Denote by Q and q, respectively, the row vectors whose
elements are (1) and (2). We can then write:

Q = 3+ QwqP; q = 0 + qW , (3)

where

• wq is the n×n diagonal matrix whose diagonal elements
are

∑m
l=1 qlw(l, j),

• P is the n× n matrix

P = [
Pij∑m

l=1 qlw(l, j)+ βj
]n×n,

• W is the m× m matrix

W = [
W (k, l)
rl + πl

]m×m,

• and the3, 0 are, respectively, the n and m dimensional
vectors of elements

3i =
λi∑m

l=1 qlw(l, i)+ βi
, 0l =

γl

rl + πl
,

The expression (3) can then be readily written as:

q = 0[1−W ]−1, Q = 3[1− wqP]−1. (4)

IV. AN INTERESTING SPECIAL CASE
A case of practical interest arises when we take a specific
‘‘high level’’ optimisation decision, namely:

• All energy stores should, on average, contain the same
amount of energy, so that if any of them fails the others
can best support the system, so that:

q∗ ≡
γl +

∑m
k=1 q∗W (k, l)
rl + πl

, ∀l,

• The backlog of work at each of the workstations should
on average be the same, i.e.

Q∗ ≡
λi +

∑n
j=1

∑m
l=1 q∗w(l, j)Q∗Pji∑m

l=1 q∗w(l, i)+ βi
, ∀i.

Let us denote W+(l) =
∑m

k=1W (l, k), and w+(i) =∑m
l=1 w(l, i). Then we have:

q∗ =
γl

rl + πl −W+(l)
, (5)

Q∗ =
λi

βi + q∗[w+(i)−
∑n

j=1 w
+(j)Pji]

,

=
λi

βi +
γl

rl+πl−W+(l)
[w+(i)−

∑n
j=1 w

+(j)Pji]
, (6)

and we know that w+(i)−
∑n

j=1 w
+(j)Pji ≥ 0, and we recall

that Q∗, q∗ must satisfy 0 < Q∗ < 1 and 0 < q∗ < 1.
If q∗ and Q∗ are fixed, we obtain:

w+(i)−
n∑
j=1

w+(j)Pji =
1
q∗

[
λiβ1

λ1
− βi]

+
λi

q∗λ1
[
λ1

Q∗
− β1] =

1
q∗

[
λi

Q∗
− βi], (7)

so that we must have:

Q∗ <
λi

βi
, ∀ i, or Q∗ < min

1≤i≤n
[
λi

βi
]. (8)

Then writing the m-vector c with elements:

ci =
1
q∗

[
λi

Q∗
− βi], (9)

we have:

w+ = w+P+ c, (10)

= c[1− P]−1,

which has a unique solution because the Markov chain P is
transient. Since all the qk = q∗ are identical, we set

w(k, i) =
w+(i)
m

, (11)

so that all the w(k, i) are now determined.
As a consequence, for each 1 ≤ k ≤ m we have:

n∑
i=1

w(k, i) =

∑n
i=1 w

+(i)
m

≤ rk . (12)

Turning now to the set of weights W (k, l) we have:

W+(l) = rl + πl −
γl

q∗
, 1 ≤ l ≤ m, (13)

where:

q∗ ≥ min
1≤l≤m

[
γl

rl + πl
], (14)

and for 1 ≤ k ≤ m we have:

W (l, k) =
1
m
[rl + πl −

γl

q∗
]. (15)

V. UTILITY FUNCTIONS AND OPTIMISATION
Simpler EPN optimisation problems, than the ones studied
here were considered earlier in [35]. The optimisation would
be conducted on the assumption that:
• The rl are variable, but they have an upper bound that
represents the maximum amount of power that can be
delivered by the energy stores.

• The Pij are fixed and represent the sequence of job steps
that the jobs have to go through.

• The S(l, j) and s(l, k) are the ‘‘control variables’’: they
are modified or selected so as to maximise U .

• Cases can be considered where the S(l, k) are also fixed.
Obviously, we wish to limit the backlog of work at the

workstations, while we also want to have some reserve of
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energy since there may be unpredictable needs. Thus a sensi-
ble cost or utility function would have the form:

U1 =

n∑
i=1

aiQ
Ki
i +

m∑
l=1

bl(1− q
kl
l ), (16)

which is the weighted probability that the backlogs of
work exceed the values Ki at each workstation i, and the
weighted probabilities that there are not at least kl energy
packets at ES l, where the ai and bl are non-negative
real numbers (the weights). A simpler utility that may be
minimised is the weighted probabilities that there is some
backlog at the workstations, plus that there is no energy
in reserve, which is U1 when Ki = 1 and kl = 1 for
all i, l:

U0
1 =

n∑
i=1

aiQi +
m∑
l=1

bl(1− ql). (17)

A cost function other than U1 defined above that we may
wish to minimise is:

U2 =

n∑
i=1

ai
[
∑m

l=1 qlw(l, i)+ βi]
−1

1− Qi
+

m∑
l=1

bl(1− q
kl
l ),

(18)

which differs from U1 only in the first sum which is simply
theweighted sum of the average response time of jobs waiting
to be served at each of the workstations.

On the other hand, the following utility function U3 needs
to be maximised since it establishes a balance between the
throughput of the system (the first term) and the probability
that some energy is kept in reserve:

U3 =

m∑
l=1

[
n∑
i=1

aiqlw(l, i)Qi + blq
kl
l ]. (19)

VI. COMPUTING PARTIAL DERIVATIVES
OF THE UTILITIES
The optimisation of the such utilities, where the utilities are
continuous and differentialble functions of the control vari-
ables, will require the computation of the derivatives of the
utility functions with respect to the control variables. In this
case, the control variables are the routing probabilities s(l, k)
and S(l, i) for the EPs. In fact because it is easier to work with
non-negative real numbers of arbitrary size rather than with
probabilities, we will consider that the control variables are
the quantities w(l, k) and W (l, i).
Thus, for some real valued function V of the w(l, i) and

W (k, l), l, k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, let us use
the notation:

Vw(l,i)
≡

∂V
∂w(l, i)

, VW (k,l)
≡

∂V
∂W (k, l)

. (20)

A. THE CASE WHERE THE rl ARE CONSTANT
In a certain number of circumstances, we can consider that
the rl are constant, for instance when each of the ESs has a

fixed and constant rate at which each of them can be emptied
of its EPs. Here we will first focus on this case.
Remark 1: Since rw(a,b)l = rW (a,b)

l = 0 for any l, a, b, it
is easy to see that:

w(l, j)z(k,i) = 1, if 1[z = w, l = k, i = j] = 1,

− 1, if 1[z = w, l = k, i 6= j] = 1,

− 1, if 1[z = W , l = k, i 6= j] = 1,

0, if 1[z = w or W , l¬k] = 1,

and

W (l, j)z(k,i) = 1, if 1[z = W , l = k, i = j],

− 1, if 1[z = W , l = k, i 6= j] = 1,

− 1, if 1[z = w, l = k] = 1,

0, if 1[z = w or W , l 6= k] = 1.

As a direct application of Remark 1, we construct the
following lemmas that will be used later in the optimising
algorithms.
Lemma 1: The derivative of ql with respect to any w(a, b)

for l, a ∈ {1, . . . ,m}, b ∈ {1, . . . , n} is given by:

qw(a,b)l =

∑m
k=1 q

w(a,b)
k W (k, l) − qa
rl + πl

,

or in vector form:

qw(a,b) = qw(a,b)W − qaδ = qaδ[1−W ]−1, (21)

where

• qw(a,b) is the m-vector each whose elements are the
derivatives of the ql ,

• W is the m × m matrix of elements W (l, k)/(rk + πk )
and

• δ is the m-vector δ = [ 1
r1+π1

, . . . , 1
rm+πm

].

Lemma 2: The derivative of ql with respect to anyW (a, b)
for l, a, b ∈ {1, . . . ,m} is given by:

qW (a,b)
l =

∑m
k=1 q

W (a,b)
k W (k, l) + qa(1[l = b]− 1[l 6= b])

rl + πl
,

qW (a,b)
= qa.[2δb − δ][1−W ]−1,

where δb = [0, . . . , 0, 1
rb+πb

, 0, . . . , 0] is the m-vector
with 0 elements everywhere except in the b-th position which
has the value (rb + πb)−1.
Lemma 3: The derivative of Qi with respect to any w(a, b)

for a, b ∈ {1, . . . ,m}, i, b ∈ {1, . . . , n} is given by:

Qw(a,b)i =

∑n
j=1

∑m
l=1[Q

w(a,b)
j ql + Qjq

w(a,b)
l ]Pjiw(l, j)∑m

l=1 qlw(l, i)+ βi

+
qa[QbPbi −

∑n
j 6=b,j=1 QjPji]∑m

l=1 qlw(l, i)+ βi

−Qi

∑m
l=1 q

w(a,b)
l w(l, i)+qa(1[b = i]− 1[b 6= i])∑m

l=1 qlw(l, i)+ βi
.
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Lemma 4: The derivative of the Qi with respect to any
W (a, b) for a, b ∈ {1, . . . ,m} is given by:

QW (a,b)
i =

∑n
j=1

∑m
l=1[Q

W (a,b)
j ql + Qjq

W (a,b)
l ]Pjiw(l, j)∑m

l=1 qlw(l, i)+ βi

−

∑n
j=1 qaQjPji∑m

l=1 qlw(l, i)+ βi

−Qi

∑m
l=1 q

W (a,b)
l w(l, i)− qa∑m

l=1 qlw(l, i)+ βi
.

B. THE CASE WHERE THE rl ARE NOT CONSTANT
In other circumstances the rl will not be constant, so that
when we modify any of the w(l, i) orW (l, k) we also change
the rl without affecting the other parameters.

This may occur for instance when the ESs are organised as
a stack of batteries in parallel so that their output power flow
can be varied as a function of the number of storage units that
are switched to the power output bus.

However in practical circumstances there will be a maxi-
muml value of rMl ≥ rl which cannot be exceeded because of
the physical limitations of the devices that are used to store
energy and of the power circuits that carry the power flows.
Remark 2: Since rw(a,b)l = rW (a,b)

l = 0 for any l, a, b, it
is easy to see that:

w(l, j)z(k,i) = 1, if 1[z = w, l = k, i = j],

− 1, if z = w, l = k, i 6= j; rl = rMl ,

− 1, if z = W , l = k, i 6= j; rl = rMl ,

0, if z = w, l = k, i 6= j; rl <M
l

0, if z = W , l = k, i 6= j; rl < rMl ,

0, if z = w or W , l¬k,

and

W (l, j)z(k,i) = 1, if z = W , l = k, i = j,

− 1, if z = W , l = k, i 6= j; rl = rMl ,

− 1, if z = w, l = k, rl = rMl ,

0, if z = W , l = k, i 6= j; rl < rMl ,

0, if z = w, l = k, rl =<M
l ,

0, if z = w or W , l 6= k.

As a consequence, when the rl < rMl , l = 1, . . . ,m we
have the following lemmas.
Lemma 5: The derivative of ql with respect to any w(a, b)

for l, a ∈ {1, . . . ,m}, b ∈ {1, . . . , n} is given by:

qw(a,b)l =

∑m
k=1 q

w(a,b)
k W (k, l)

rl + πl

−
ql

rl + πl
,

or in vector form:

qw(a,b) = qw(a,b)W − q1l = −q1l[1−W ]−1, (22)

where as before W is the m × m matrix of elements
W (l, k)/(rk + πk ), and 1l is the m × m matrix which is

zero everywhere except in the diagonal terms which have the
value 1

rl+πl
.

Lemma 6: The derivative of ql with respect to anyW (a, b)
for l, a, b ∈ {1, . . . ,m} is given by:

qW (a,b)
l =

∑m
k=1 q

W (a,b)
k W (k, l)+ qa(1[l = b]− ql)

rl + πl
,

qW (a,b)
= −[qaδb − ql1l][1−W ]−1,

where δb = [0, . . . , 0, 1
rb+πb

, 0, . . . , 0] is the m-vector
with 0 elements everywhere except in the b-th position which
has the value (rb + πb)−1.
Lemma 7: The derivative of Qi with respect to any w(a, b)

for a, b ∈ {1, . . . ,m}, i, b ∈ {1, . . . , n} is
given by:

Qw(a,b)i =

∑n
j=1

∑m
l=1[Q

w(a,b)
j ql + Qjq

w(a,b)
l ]Pjiw(l, j)∑m

l=1 qlw(l, i)+ βi

+
qaQbPbi∑m

l=1 qlw(l, i)+ βi

−Qi

∑m
l=1 q

w(a,b)
l w(l, i)+ qa1[i = b]∑m
l=1 qlw(l, i)+ βi

Lemma 8: The derivative of the Qi with respect to any
W (a, b) for a, b ∈ {1, . . . ,m} is given by:

QW (a,b)
i =

∑n
j=1

∑m
l=1[Q

W (a,b)
j ql + Qjq

W (a,b)
l ]Pjiw(l, j)∑m

l=1 qlw(l, i)+ βi

−Qi

∑m
l=1 q

W (a,b)
l w(l, i)∑m

l=1 qlw(l, i)+ βi
.

VII. OPTIMAL SOLUTION WITH GRADIENT DESCENT
Since the optimisation of the EPN optimisation can be
expressed as the minimization or maximisation of utility
functions such as those defined in Section V, it can be
achieved by selecting the appropriate EP flow rates w(a, b)
and W (a, b) when other system parameters are fixed. Since
we are delaing with continuous and differentiable utility
functions, the gradient descent algorithm is a useful tool in
this case.

At a given operating point of the EPN X =

[λ, γ, r,P, π, β], the gradient descent algorithm at its t th

computational step is:

wt+1(a, b) = wt (a, b)+ η Uw(a,b)
|w(a,b)=wt (a,b), (23)

Wt+1(a, b) = Wt (a, b)+ η UW (a,b)
|W (a,b)=Wt (a,b), (24)

where |η| is the rate of the gradient descent, we set
η < 0 fo rthe minimisation of utility functions
U1,U0

1 ,U2, while η > 0 forthe maximisation of utility
function U3.

In practice, we will be interested in a gradual optimisation
of the system, where we modify parameters progressively, in
a system that should operate normally and adapt the ongoing
work work and energy flows.
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Thus we compute the partial derivative of the utility func-
tions as:

Uw(a,b)
1 =

n∑
i=1

aiKiQ
Ki−1
i Qw(a,b)i −

m∑
l=1

blkl(1−q
kl−1
l )qw(a,b)l ,

(25)

similarly,

U0
1
w(a,b)

=

n∑
i=1

aiQ
w(a,b)
i −

m∑
l=1

blq
w(a,b)
l , (26)

another cost function which we would like to minimise is:

Uw(a,b)
2 =

n∑
i=1

aig(i)[
1

1− Qi
Qw(a,b)i

−

∑m
l=1(w(l, i)q

w(a,b)
l + qlw(l, i)w(a,b))

[
∑m

l=1 qlw(l, i)+ βi]
]

−

m∑
l=1

blkl(1− q
kl−1
l )qw(a,b)l , (27)

where

g(i) =
[
∑m

l=1 qlw(l, i)+ βi]
−1

1− Qi
. (28)

Moreover, the partial derivative of the utility function
which needs to be maximised is computed:

Uw(a,b)
3 =

m∑
l=1

[
n∑
i=1

ai[q
w(a,b)
l w(l, i)Qi + qlw(l, i)w(a,b)Qi

+ qlw(l, i)Q
w(a,b)
i ]+ blklq

kl−1
l qw(a,b)l ]. (29)

The partial derivative with respect to the W (a, b) can
be computed similarly. The w(l, i)w(a,b), W (k, l)w(a,b) ,
Qw(a,b), qw(a,b), w(l, i)W (a,b), W (k, l)W (a,b), QW (a,b), qW (a,b)

are detailed, for both constant and variable rl , in the previous
section. Thus, the steps of the gradient algorithm are:
• First initialize all the values w0(a, b), W0(a, b) and
choose η,

• Solve the system of non-linear equations given
in (1) and (2) to obtain the steady state probabilities,

• Calculate the partial derivatives as given in Section VI
using the steady state probabilities computed in the pre-
vious step.

• Using these partial derivatives and the chain rule, com-
pute the value of the relevant utility function from (25),
(26), (27) or (29), and

• Finally update the values wt+1(a, b),Wt+1(a, b) accord-
ing to (24).

VIII. A SET OF NUMERICAL EXAMPLES
To illustrate the proposed approach, we have constructed a
numerical example for a facility, such as a remote sensing and
monitoring facility such as an astronomical observatory on a
mountain peak, or a border control station in a remote part
of the world, that is powered by energy harvesting devices

such as solar panels and wind turbines. The arrival rate to the
workstations is in units, each of which can be executed or
carried out with exactly one EP. Thus the relative workload
for the different workstations is expressed by the arrival rate
of work to each workstations. In the example wewill consider
there are three distinct workstations carrying out distinct work
so that they can transfer work from oneworkstation to another
and the W (a, b) = 0 for all a 6= b.
The work that uses energy is carried out in the three

workstations:
• W1 is meant to model a radio (or optical) telescope or
radar station that is operating continuously and requires
substantial processing, represented by a flow of work
arriving at rate λ1. We assign to it a priority a1 ≥ 0.

• W2 represents the infrastructure energy needs such
as lighting, air-conditioning etc., that receives work
requests at rate λ2, with a2 > 0. Since this is a life-
support system we would expect it to have high priority.

• W3 is mean to model the perimeter security and surveil-
lance, and the monitoring of weather conditions, with
workload arriving at rate λ3. Since this represents the
life-support with a priority a3 > 0, which may be
comparable to that of a2, while the priority a1 may be
lower.

Radars or telescopes provide a substantial amount of imag-
ing data per unit time to be processed and transmitted, thus λ1
can be considerably larger than λ2 and λ3. Moreover, secu-
rity and atmospheric monitoring devices typically forward
limited motion sensing, video camera, temperature and wind
data, thus λ1 > λ2 > λ3. Likewise, the priorities of these dif-
ferent work stations are chosento be a3 ≥ a2 > a1. To reflect
different forms of energy harvesting, such as photovoltaic
and wind, we have two ESs, E1 and E2 which store energy
from two different renewable sources at a rate γ1 and γ2
EPs per unit time. The system model for this example is
summarised in Figure 2. To obtain significant results and to
remain within the stability region for the model, we must
operate with parameters that represent a balance between the
energy flow and the flow of workload. Also, the impatience
of jobs, represented by the parameters βi, can help avoid
instability that occurs when the job queues increase in size
and the waiting time of jobs at the execution queues become
very large. Similarly, the energy leakage will also reduce the
amount of energy that is stored when there is no work to
perform. Note, however, that we will typically have πi � rMi
to represent the fact that leakage rates are only a small fraction
of the maximum power (energy/time) that the ESs can offer.

A plausible scenario is constructed with a set of numerical
parameters shown in Table 1 in order to represent a plausible
scenario. We first consider the case where the rl values are
not constant, and the case where they are constant.

A. WHEN r1, r2 ARE NOT CONSTANT
Consider the case where the rl values are not constant, but a
maximum practical value rMl is chosen as in Table 1. We set
P(a, b) = 0 for a, b ∈ {1, 2, 3} so that jobs are not moved
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FIGURE 2. We use the EPN to model the energy and work flows in a
remotely located sensing facility, such as an astronomical observatory
or radar station, with two energy storage units, two renewable energy
sources (e.g. one photovoltaic and one wind) and three main energy
consuming workstations: the major instrument (e.g. a radar), the life
support systems (e.g. air conditioning, lighting), and the atmospheric
sensing and perimeter security sensors.

TABLE 1. Parameters used in the numerical examples.

between the different workstations. Also in the numerical
examples we set s(l, i) ≥ 0.05 , i = {1, . . . , 3}, l = {1, 2}
and

∑3
i=1 s(l, i) ≤ 1, l = {1, . . . , 2} to make sure that

each WS receives some minimum amount of energy to avoid
‘‘starvation’’ that would lead to an infinite backlog of work at
some workstations, and

∑n
i=1 w(l, i) ≤ r

M
l , l = {1, . . . ,m}.

The unconstrained optimisation problem is solved numer-
ically for the four utilities U1,U0

1 ,U2,U3 of Section V, and
the resulting values for the optimum power flows are given in
Tables 2, 3, 4, 5 for different b1, b2 values.
Table 5 shows that in order to maximise U3 and minimise

U1,U0
1 ,U2, the ESs should be providing energy at their

maximum total rate, i.e.
∑

i w(l, i)
∗
= rMl , when b1, b2

TABLE 2. Optimised EP flow rates for the different utility functions when
b1, b2 = 100, the r1, r2 are not constant and the parameters are given
in Table 1.

TABLE 3. Optimised EP flow rates for the different utility functions when
b1, b2 = 10, the r1, r2 are not constant and the other numerical
parameters are in Table 1.

TABLE 4. Optimised EP flow rates for the different utility functions when
b1, b2 = 1, the r1, r2 are not constant and the other numerical
parameters are given in Table 1.

TABLE 5. Optimised EP flow rates for the different utility functions when
b1, b2 = 0.1, the r1, r2 are not constant and the other numerical
parameters are given in Table 1.

are considerably smaller than a1, a2, a3. However when the
b1, b2 are larger, we observe that the optima occur when the
sum

∑
i w(l, i)

∗ lies between 0.15 ∗ rMl and rMl depending
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TABLE 6. Optimised EP flow rates for the different utility functions when
b1, b2 = 100, r1, r2 are constant and the other numerical parameters are
given in Table 1.

TABLE 7. Optimised EP flow rates for the different utility functions when
b1, b2 = 10, r1, r2 are constant and the other numerical parameters are
given in Table 1.

TABLE 8. Optimised EP flow rates for the different utility functions when
b1, b2 = 1, r1, r2 are constant and the other numerical parameters are
given in Table 1.

on the values of b1, b2. Note that the second terms in the
utility functions concern the reserve energy contained in
the ESs.

B. WHEN r1, r2 ARE CONSTANT
When the r1 and r2 are constant, energy leaves each of the ESs
at a constant rate. However not to waste energy, we will allow
some of it to be sent to another ES rather than to the WS, if
the optimisation requires it, i,e, the P(a, b), a, b ∈ {1, 2} are
now unconstrained and can be positive.

TABLE 9. Optimised EP flow rates for the different utility functions when
b1, b2 = 0.1, rl are constant and the other numerical parameters are
given in Table 1.

This is illustrated in Tables 6, 7, 8, 9 where we see that
depending on the requirements of optimisation, a fraction
of the energy sent out by the ESs can be forwarded for
storage to the other ES. Note however than in this example,
the energy loss during transfer, i.e. the ohmic loss, is not
taken into account. Clearly, if energy transfer losses become
significant then an optimised system will shy away from
making additional energy transfers which do not lead to direct
consumption.

IX. CONCLUSIONS
In this paper, we have discussed the main properties of the
Energy Packet Network model as a framework for a sys-
temwhere intermittent distributed workloads and intermittent
sources of energy operate jointly with multiple energy con-
suming workstations, and with interconnected energy stor-
age units, where both work and energy circulate. We obtain
the equilibrium probability distribution for both the backlog
of work and the backlog of energy throughout the system.
An interesting special case is also considered where the work
and energy flows have been designed so that all energy stores
and work backlogs are the same. Other stochastic models that
are more adapted to the study of wireless sensors with small
scale energy harvesting [6], [16], [17], [36] are considered
elsewhere [37].

Here we have studied several utility functions that describe
the overall system performance, and an algorithmic method
based on gradient descent (or ascent) of these utility functions
is developed to seek energy and work distribution mecha-
nisms that optimise the utility functions. Also, the gradient
descent approach we have described requires matrix inver-
sions to compute Qw(a,b) and qw(a,b) which are of compu-
tational complexity O(n3) and O(m3), respectively. Simpler
numerical schemes, such as power expansions of the matri-
ces, can result in useful approximations, especially when the
energy and work flow rates vary frequently with time, or are
imprecisely known and will be studied in future work.

Another direction that will be considered includes more
complex models in which a single job can consume more
than one energy packet at a time, or where an energy packet

VOLUME 4, 2016 1329



E. Gelenbe, E. T. Ceran: EPNs With Energy Harvesting

may service several jobs at a time. The approach studied
in this paper can also be extended to multiple classes of
EPs, with power colouring which can be used to represent
the origin of the EPs, for instance different types of har-
vested energy from wind or photovoltaic, as well as from
non-renewable or fossil sources, or with different economic
cost.

Multiple classes of workloads depending on their energy
needs, or their priorities, or their importance with regard to
the income they produce, can also be considered. We will
also examine ‘‘good’’ but suboptimal solutions which can
be obtained at a lower computational cost. Finally, we will
also study the dynamic behaviour of such systems when the
flow of work and of energy is regulated in real-time, using
techniques such as reinforcement learning.
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