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ABSTRACT Stochastic computing has been recently proposed for the hardware implementation of both
low-density parity-check (LDPC) decoders and turbo decoders, which facilitate near-optimal error correction
capabilities in wireless communication applications. Previous contributions have demonstrated that stochas-
tic LDPC decoders offer an attractive tradeoff between their error correction capabilities, hardware perfor-
mance, and timing-error tolerance. Motivated by this, we propose a pair of stochastic turbo decoder (STD)
designs having significantly enhanced timing-error tolerance and significantly reduced processing latency.
Moreover, we characterize the tradeoffs between chip area, energy efficiency, latency, throughput, and
error correction capabilities of both the timing-error-tolerant STD and of the reduced-latency STD.
We demonstrate that our proposed timing-error-tolerant STD operated at 1.20 V, with a clock period of
2.2 ns and in the presence of a three-standard deviation power supply variation of 7%, exhibits an unimpaired
performance, compared with the state-of-the-art STD, operated at 1.20 V and 4 ns and with no power supply
variations. This corresponds processing throughput improvement by a factor of 2.42 and energy consumption
reduction by a factor of 4. Finally, we demonstrate that our proposed reduced-latency STD has a processing
latency that is an order of magnitude lower than that of the state-of-the-art STD. This is despite reducing
the chip area by a factor of 4, increasing the processing throughput by a factor of 65, while consuming only
0.005 times the energy of the state-of-the-art STD, when using binary phase-shift keying for communication
over an additive white Gaussian noise channel having Eb/N0 = 3 dB.

INDEX TERMS ASIC, fault tolerance, low-latency, power supply variation, stochastic computing, timing
errors, turbo decoder.

NOMENCLATURE
APP A Posteriori Probability
ASIC Application Specific Integrated Circuit
AWGN Additive White Gaussian Noise
BER Bit Error Ratio
BCJR Bahl-Cocke-Jelinek-Raviv
BPSK Binary Phase Shift Keying
BS Bernoulli Sequence
CG Clock Gating
CRC Cyclic Redundancy Check
DC Decoding Cycle
DFF D-type Flip Flop
EM Edge Memory
FPGA Field-Programmable Gate Array

JKFF JK-type Flip Flop
LDPC Low-Density Parity-Check
LSB Least Significant Bit
LLR Logarithmic Likelihood Ratio
LogBCJR Logarithmic BCJR
LTE Long-Term Evolution
MCMTC Mission-Critical Machine-Type

Communication
MSB Most Significant Bit
MUX Multiplexer
NDS Noise-Dependent Scaling
RCTFM Reduced-Complexity Tracking Forecast

Memory
RLSTD Reduced-Latency Stochastic Turbo Decoder
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SNR Signal-to-Noise Ratio
SR Shift Register
STD Stochastic Turbo Decoder
TFM Tracking Forecast Memory
VLSI Very-Large-Scale Integration.

I. INTRODUCTION
Both Low-Density Parity-Check (LDPC) [1] codes and turbo
codes [2] are widely used for error correction in wireless
communications standards such as WiMAX [3], WiFi [4],
DVB-S2 [5], CDMA2000 [6], UMTS [7] and LTE [8].
Traditional hardware implementations of LDPC decoders
and turbo decoders rely on fixed-point binary arithmetic for
representing and processing the probabilities of the received
bits having the value 0 or 1. However, practical fixed-point
LDPC and turbo decoder impose a high complexity owing
to the interconnection and routing problems of fully-parallel
designs [9], [10], or due to the large amount of memory of
both partially-parallel and of fully-serial designs [11], [12].
Stochastic computing [13] has been proposed as a
low-complexity design alternative to fixed-point binary arith-
metic, where the probabilities are represented by streams of
bits, known as Bernoulli Sequences (BSs) [13]. Only a single
bit of each BS is processed per clock cycle and the specific
fraction of bits having the logical value 1 determines the value
of the probability represented. As a benefit of this, arithmetic
operations in stochastic computing can be implemented using
low-complexity digital circuits.

Timing errors in synchronous systems occur when the
delay in a circuit path exceeds the clock period, owing to
variations in the operating conditions of the system, such
as the supply voltage or clock period. Furthermore, timing
errors are more likely to occur when the supply voltage is
reduced and the clock period is not adjusted accordingly,
owing to the quadratic dependency of propagation delays on
the supply voltage. As a result of this, the error correction
capabilities of fixed-point LDPCdecoders and turbo decoders
in the presence of timing errors can be severely affected,
unless sophisticated fault-tolerant design techniques are con-
sidered. More specifically, fixed-point implementations are
particularly vulnerable to timing errors affecting the Most
Significant Bit (MSB) of the fixed-point numbers, since this
radically alters the represented bit value probabilities.
By contrast, stochastic computing exhibits an inherent tol-
erance to processing errors. Since every bit of a BS has an
identical significance, a processing error causing a single
bit-flip will only result in a small change to the overall
value of the probability represented. This represents a key
advantage of the stochastic implementations of error
correction decoders, particularly as Very-Large-Scale
Integration (VLSI) technology scales reduce and the
prevalence of timing errors increases, owing to the effects
of IR-drop and L · di/dt , manufacturing imperfections and
external factors such as crosstalk, electrostatic discharges
and electromagnetic interference [14]–[18], among others.

However, stochastic decoders require a large number of clock
cycles in order to achieve the same near-optimal error
correction capability as their fixed-point implementa-
tion counterparts. Regretfully, this degrades their latency,
throughput and energy efficiency. Owing to these imped-
iments, stochastic decoders have been deemed unsuitable
for practical low-latency next-generation Mission-Critical
Machine-Type Communication (MCMTC) systems, such as
those required by vehicular traffic safety and control, as well
as industrial process automation and manufacturing [19].
In these applications, short emergency and control messages
constituted by a low number of bits must be reliably transmit-
ted with ultra-low latency, hence motivating the employment
of error correction decoders having ultra-low processing
latencies on the order of microseconds [19]. Motivated by
this background, this paper proposes a pair of stochastic turbo
decoder designs having significantly enhanced timing error
tolerance and significantly reduced processing latency, as
discussed in the following subsections.

A. RELATED WORK
The following literature review is based on the fields of
fault-tolerant design in iterative decoders and hardware
implementation of stochastic iterative decoders, where
Figure 1 summarizes some of the seminal contributions in
these fields.

Stochastic computing has been recently proposed for
the fully-parallel decoding of LDPC codes [20]–[32],
Bose-Chaudhuri-Hocquenghem codes [33], Reed-Solomon
codes [33], cortex codes [34], convolutional codes [35] and
turbo codes [36]–[39]. Most of these contributions have
focused on the employment of stochastic computing in
traditional iterative decoding algorithms, where the main
design objective has been to maximize the attainable error
correction capabilities. In parallel to this, fault-tolerance in
iterative decoders has mostly been explored from the algo-
rithmic point of view in [40]–[48], with only few contribu-
tions [49]–[53] having considered the practical implications
of fault-tolerant hardware design. Within these contributions,
different approaches have been explored in order to improve
the decoder’s fault-tolerance. For example, hardware redun-
dancy and voting units are employed in [49] for error detec-
tion and correction. Similarly, processing errors are corrected
on the basis of probabilistic analyses in [50] and [51]. By con-
trast, our previous contribution [52] was the first one in the
open literature to explore the inherent tolerance of stochastic
LDPC decoders to timing errors, both in the presence of
clock- and voltage-scaling.

Substantial research efforts have been invested in reducing
the number of clock cycles required by stochastic decoders
for achieving a near-optimal error correction performance.
In particular, the authors of [24], [25], [27], and [30] con-
sidered the employment of Noise-Dependent Scaling (NDS)
and Edge Memories (EMs) in stochastic LDPC decoders,
reducing the number of clock cycles required to achieve near-
optimal error correction performance from several thousands
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FIGURE 1. Selected previous contributions in the field of hardware implementation of stochastic iterative decoders and
fault-tolerant design for iterative decoders.

to as low as a few hundreds. By contrast, the fully-parallel
Stochastic Turbo Decoder (STD) of [36] requires several
thousands of processing cycles, despite the employment of
NDS and EMs. This problem is partially overcome
in [36] and [37] by further increasing the grade of pro-
cessing parallelism. However, this significantly increases the
hardware complexity of the STD, as it will be detailed is
Section VIII. The authors of [38] and [39] proposed modified
BS representations for the implementation of STDs. These
contributions significantly reduced the number of clock
cycles required without significantly increasing the hardware
complexity of the design. However, these designs may be
considered to represent partially-stochastic turbo decoders,
since their operation is based on fixed-point arithmetic cir-
cuits, which do not benefit from the inherent tolerance of
stochastic decoders to timing errors.

B. CONTRIBUTIONS AND PAPER STRUCTURE
The previous work mentioned in Section I-A has mainly
focused on enhancing the error correction capabilities of
stochastic decoders and separately of fault-tolerant iterative
decoders. However, fault-tolerance in stochastic decoders has
only been addressed in our previous work [52] for the case of
stochastic LDPC decoders. Moreover, the above-mentioned
contributions in the field of fault-tolerant iterative decoders

FIGURE 2. Relationship between different design trade-offs.

have failed to provide a comprehensive analysis of the various
design trade-offs involved in the hardware implementation
of error tolerant techniques, which is a common approach in
performance-oriented design methodologies [54]. To elabo-
rate further, themain design objective of these contributions is
to enhance both the robustness and reliability of the decoders
against processing errors. However, this is typically reported
without considering the impact of fault-tolerant techniques
on the associated hardware design trade-offs, such as the
chip area, energy efficiency, latency, throughput and error
correction capabilities, despite the strong dependence they
have upon each other, as depicted in Figure 2. In this context,
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a compelling Pareto-optimal design has a set of characteris-
tics, where none of them can be further improved without
degrading at least one of the others. In addition to this,
the techniques introduced in [36] and [37] for reducing the
number of processing cycles required by the STD impose
a potentially excessive hardware complexity increase. As a
result, the proposed STDs may not be suitable for practical
next-generation low-latency MCMTC systems.
Against this background, we propose enhancements of

the STD of [36] for improving its hardware characteristics.
We first improve its tolerance to timing errors in the pres-
ence of power supply variations. More specifically, the first
enhanced STD design proposes:
1.1) The employment of synchronizers for preventing the

catastrophic cascading of metastability owing to timing
errors.

1.2) The simultaneous decoding of two received frames for
improving the processing throughput.

1.3) The employment of Tracking Forecast Memories
(TFMs) [27] in STDs for the first time, in order to
enhance their hardware implementation and decoding
capabilities.

1.4) The inclusion of a pipelining stage for enhancing the
decoding capabilities of the STD in the presence of
power supply variations.

In parallel to this, we present a second improved STD
design, which reduces the number of clock cycles required
for achieving near-optimal error correction performance by
an order of magnitude, without increasing the chip area. This
is achieved by employing:
2.1) OR gates for performing approximate stochastic

additions.
2.2) A reduced-complexity TFM design for overcoming the

latching problem.
2.3) A single D-type Flip Flop (DFF) for estimating each

decoded bit.
Moreover, we analyze the different trade-offs presented in

Figure 2 for both of the improved STD designs.
The amalgam of those two STD designs yields significant

performance enhancements, which substantially improve the
appeal of STDs in practical next-generation timing-error-
tolerant and low-latency MCMTC systems.

The remainder of this paper is structured as depicted in
Figure 3. Section II reviews the operation of turbo decoders.
Section III reviews the concept of stochastic computing in
iterative decoding. Section IV details the hardware imple-
mentation of STDs. Note that experts of turbo decoders,
stochastic computing and stochastic turbo decodingmaywish
to skip the comprehensive tutorials of Sections II to IV,
respectively. Sections V to VII present the timing-error
tolerant STD design. More specifically, Section V describes
how to improve the STD’s tolerance to timing errors,
Section VI details its hardware implementation trade-offs,
while Section VII characterizes its error correction perfor-
mance in the presence of timing errors. Following this,
Sections VIII to X portray our reduced-latency STD design.

FIGURE 3. Summary of paper structure.

More specifically, Section VIII details how to reduce the
number of clock cycles required by the decoder, Section IX
quantifies its error correction performance and Section X
characterizes its hardware efficiency. Finally, Section XI
presents our concluding remarks and offers design guidelines
for STDs.

II. TURBO CODES
In this section, we review the concepts of turbo encoding
and turbo decoding [2] presented in Figure 4. A turbo code
comprises the parallel concatenation of two convolutional
codes. As a result of this, a message frame comprising N
bits bu1 = [bu1,k ]

N
k=1 can be turbo encoded with the aid of the

two parallel concatenated convolutional encoders, as shown
in Figure 4a. Each convolutional encoder operates in the same
manner, with the upper convolutional decoder having the
bits bu1 for its input. However, these bits are reordered by the
interleaver5 to provide bl1, which is then input into the lower
encoder. Here, the superscripts ‘u’ and ‘l’ indicate relevance
to the upper and lower convolutional encoders, respectively.
However, these superscripts will be omitted, when the discus-
sion applies equally to both convolutional encoders.

Each convolutional encoder operates on the basis of a
trellis such as the 8-state Long-Term Evolution (LTE) trellis
of Figure 4c. Here, each bit of b1 triggers one of 16 differ-
ent transitions among these states and the encoding of the
first bit b1,1 commences from a particular previous state s′.
If tailbiting [55] is employed, then this initial state is carefully
selected such that it is equal to the final state s reached after
encoding the final bit b1,N . The simplified turbo encoder of
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FIGURE 4. (a) Simplified turbo encoder. (b) Conventional structure of a turbo decoder. (c) State transition diagram of the LTE turbo code.

Figure 4a outputs a frame of systematic bits bu1 = [bu1,k ]
N
k=1

and two frames of parity bits bu2 = [bu2,k ]
N
k=1 and bl2 =

[bl2,k ]
N
k=1, which are provided by the upper and lower convo-

lutional encoder, respectively. After their transmission over
a wireless channel, the received frames b̃u,c1 = [b̃u,c1,k ]

N
k=1,

b̃u,c2 = [b̃u,c2,k ]
N
k=1 and b̃l,c2 = [b̃l,c2,k ]

N
k=1 are entered into

the turbo decoder, which is comprised of two convolutional
decoders, as shown in Figure 4b. The upper convolutional
decoder of Figure 4b employs the received frames b̃u,c1 , b̃u,c2
and the frame of a priori soft bits b̃u,a1 provided by the
lower convolutional decoder, in order to provide the frame
of extrinsic soft bits b̃u,e1 . Following this, the extrinsic soft
bits b̃u,e1 are interleaved and passed to the lower convolutional
decoder as the frame of a priori soft bits b̃l,a1 . The lower
convolutional decoder employs the received frame b̃l,c2 and
the interleaved received frame b̃l,c1 to provide the extrinsic
soft bits b̃l,e1 , which are de-interleaved in the block

∏
−1

and passed as the frame of a priori soft bits b̃u,a1 to the
upper convolutional decoder. These soft bits express not only
what the most likely value of the corresponding bits are, but
also how likely these bit values are. More specifically, each
soft bit b̃u,c1,k expresses the two probabilities Pc(bu,c1,k = 0)

and Pc(bu,c1,k = 1), where the subscripts and super-
scripts may be replaced for the case of the other soft bits
in Figure 4b.

The convolutional decoders are iteratively operated on
the basis of the Bahl-Cocke-Jelinek-Raviv (BCJR) algo-
rithm [56], which comprises Equations (1) to (6), as shown
at the top of the next page. The BCJR algorithm employs (1)
for calculating a branch metric γk (s′, s) for each transition of
Figure 4c from a previous state s′ into the next state s. Here,
Pa(b1,k = b1(s′, s)) is the probabilities that are expressed by
the a priori soft bit b̃a1,k provided by the other convolutional
decoder. Note that at the start of the iterative decoding pro-
cess, Pa(b1,k = b1(s′, s)) = 0.5 is assumed. The extrinsic
branch metrics γ e

k (s
′, s) of (2) correspond to the received

probability of the parity bit b2,k provided by the other convo-
lutional encoder. Following this, the state metrics αk (s) of (3)
and βk (s′) of (4) are calculated for quantifying the probabili-
ties associated with each of the 8 possible previous and next
states of Figure 4c. Note that αk−1(s′) = 1/8 and βk (s) = 1/8
is assumed for all s′ and s at the start of the iterative decoding
process. If tailbiting [55] is employed, then α0(s′) = αN (s′)
and βN (s) = β0(s) may be employed. Furthermore, (5) is
employed for determining the probabilities Pe(b1,k = 0)
and Pe(b1,k = 1), which are expressed by the extrinsic
soft bit b̃e1,k . Finally, (6) is employed for determining the a
posteriori hard decision b̂1,k , pertaining to the bit b1,k . This
iterative process is repeated until an accurate estimation of
the decoded frame b̂1 can be obtained or until the maximum
affordable number of iterations has been reached.
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γk (s′, s) = Pa(b1,k = b1(s′, s))Pc(b1,k = b1(s′, s))Pc(b2,k = b2(s′, s)) (1)

γ e
k (s
′, s) = Pc(b2,k = b2(s′, s)) (2)

αk (s) =

∑
all s′

γ (s′, s)αk−1(s′)∑
all (s′,s)

γ (s′, s)αk−1(s′)
(3)

βk−1(s′) =

∑
all s

γ (s′, s)βk (s)∑
all (s′,s)

γ (s′, s)βk (s)
(4)

Pe(b1,k = j) =

∑
all(s′,s)→(b1(s′,s)=j)

γ e
k (s
′, s)αk−1(s′)βk (s)∑

all (s′,s)
γ e
k (s
′, s)αk−1(s′)βk (s)

(5)

b̂1,k = argmax
j∈{0,1}

∑
all (s′,s)→b1(s′,s)=j

γk (s′, s)αk−1(s′)βk (s) (6)

III. STOCHASTIC COMPUTING IN ITERATIVE DECODING
In stochastic computing, probabilities are represented
by means of streams of bits known as Bernoulli
Sequences (BSs) [13], which are generated by statistically
independent processes andwith only one bit of each Bernoulli
Sequence (BS) being processed in each clock cycle that is
referred to as a Decoding Cycle (DC) of stochastic decoders.
The probability P represented by a BS is determined by the
fraction of its bits having the value of 1. Owing to this,
the same probability can be represented by different BSs
having the same fraction of bits with the value 1, but in
different positions. This is exemplified in Figure 5a, where
the probability P = 0.75 is represented by different BSs,
each having 12 out 16 bits with value 1. As an explicit benefit
of this, stochastic computing offers an inherent tolerance to
processing errors. To elaborate further, a single bit-flip caused
by a processing error will only change the overall value of
the represented probability by a fraction proportional to the
length of the BS. In this way, if the BS is sufficiently long,
the represented probability will not be significantly affected,
if some of the bits are corrupted. As an example of this,
if any of the 12 bits having the value of logical 1 of the BSs
of Figure 5a is flipped to logical 0, the resultant BSs will
represent the probability of P = 11/16 = 0.6875, which
corresponds to an absolute error of 1/16.

A. STOCHASTIC ARITHMETIC
In stochastic computing, arithmetic combinations of the prob-
abilities represented by two or more BSs can be implemented
using low-complexity digital circuits. In particular, the
binary complement P̄ = (1 − P) of a probability
P can be obtained using a NOT gate, as exemplified
in Figure 5b.

The multiplication Pmult = PA · PB of two probabilities
PA and PB can be performed using a bitwise logical AND

of the two corresponding BSs SA and SB, as exemplified in

Figure 5c. Similarly, the multiplication Pmult =
∏M

i=1 Pi of

the probabilities represented byM BSs can be performedwith
the aid of an M -input AND gate.

The weighted mean Padd = PA ·(1−Psel)+PB ·Psel of two
probabilities PA and PB can be obtained by using a two-input
Multiplexer (MUX) to randomly select bits from the corre-
sponding BSs SA and SB, with the aid of the BS Ssel , which
represents the probability Psel = 0.5 for the case of a non-
weighted mean, as exemplified in Figure 5d. The outgoing
bit of the MUX will have the value of 1 only if the bit of the
input selected by Ssel has the value of 1. More specifically,
we have Sadd = 1 only if SA = 1 and Ssel = 0 or SB = 1
and Ssel = 1. Similarly, the mean Padd = [

∑M
i=1 Pi]/M of

M probabilities can be obtained using an M -input MUX to
randomly select bits from the corresponding M BSs.

The division of the probabilityPJ by the probabilityPK can
be approximated by entering the corresponding BSs SJ and
SK into the J and K inputs of a JK-type Flip Flop (JKFF),
respectively, as exemplified in Figure 5e. Here, the output
Q of the JKFF adopts the value of the input J if J and K
disagree. By contrast, if J = 0 and K = 0, then Q retains the
same value that it had in the previous clock cycle. If J = 1
and K = 1, the output Q is toggled relative to its value in
the previous clock cycle. The bits in the BS SQ obtained at
the output Q of the JKFF will adopt the value 1 with the
probability PQ = PJ/[PJ +PK ], which approximates PJ/PK
if PJ � PK . In the example presented in Figure 5e, the
outgoing BS SQ represents the probability PQ = 0.2, whereas
the resulting normalization gives 0.2/(0.2+ 0.7) ≈ 0.22 and
the approximated division gives 0.2/0.7 ≈ 0.28. Accurate
stochastic computation realizations of division, integration,
square and square operations can be obtained by combining
the above-described basic stochastic arithmetic circuits, as
detailed in [13], [57], and [58].

B. LATCHING PROBLEM
In the stochastic decoding of Low-Density
Parity-Check (LDPC) codes, JKFFs are susceptible to the
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FIGURE 5. Stochastic circuits for arithmetic operations: (a) Different BSs
for P = 0.75. (b) Complement. (c) Multiplication. (d) Scaled addition.
(e) Approximate division and normalization.

latching problem, as detailed in [21]. This occurs when the
bits of the BSs become stuck at 0 or 1 for several DCs,
which severely affects the attainable error correction capa-
bility of the stochastic LDPC decoder [24]. This occurs
when there is a high correlation among the bits of the BSs,
owing to the short cycles in the factor graph of the LDPC
code [21], [59]. A number of approaches have been pro-
posed for overcoming the latching problem. For example, the
employment of Noise-Dependent Scaling (NDS) was firstly
proposed in [26]. This technique induces switching activity
in order to help stochastic LDPC decoders become unstuck
when they encounter the latching problem. This is particu-
larly useful at high channel Signal-to-Noise Ratios (SNRs),
where the probabilities represented by the soft bits received
from the channel are very close to 0 or 1, causing the BSs
to become stuck at 0 or 1, respectively. In this method, the
probabilities received from the channel are scaled depending
on the channel’s noise power spectral density N0. Assuming
a Binary Phase Shift Keying (BPSK) transmission over an
AdditiveWhite Gaussian Noise (AWGN) channel, a bit value
probability P(b = 0) is converted into a scaled bit value

probability P′(b = 0) according to

P′(b = 0) =
1

1+ exp
(
ηN0
ψ
· log 1−P(b=0)

P(b=0)

) , (7)

where η andψ are parameters than can be chosen to optimize
the Bit Error Ratio (BER) performance of the stochastic
LDPC decoder.

Another method of assisting stochastic LDPC decoders to
become unstuck, when encountering the latching problem is
replacing the JKFFs used for divisions by re-randomization
units known as Edge Memories (EMs), which were firstly
proposed in [24]. The EMs introduced in [24] consist ofm-bit
Shift Registers (SRs), which can be considered to behave as
anm-length JKFF having a selectable output, as shown in the
blue box printed using dashed lines in Figure 6.

FIGURE 6. EM employed for the re-randomization of BSs in stochastic
decoding.

Just like a JKFF, the values stored by an SR-based EM
are updated if the input bits J and K differ from each other
J 6= K , whereupon the regenerative bit J is stored in the
first D-type Flip Flop (DFF) of the SR and passed to the
output DFFQ of the EM in analogy to the behavior of a JKFF,
with the aid of the OutMUX. In this event, the signals U and
Update of Figure 6 are asserted and the contents of the SR
will be shifted by one position, with the oldest bit in the SR
being discarded in order to ensure that only them-most recent
regenerative bits are stored. By contrast, when the J and K
input bits are equal, one of the previous regenerative bits
is randomly chosen from the SR and passed to the output
DFFQ of the EM, in analogy to the behavior of a JKFF. This
is achieved with the aid of an m : 1 MUX with pseudo-
random selector bits that change in every DC, as shown in
the lower part of Figure 6. Additionally, when J = K = 1,
the outgoing bit of the SR is inverted with the aid of an
XOR gate, before being provided to the output DFFQ, in
analogy to the behavior of a JKFF. The SR-based EM of
Figure 6 can be initialized prior the beginning of the decoding
process by means of the Init signal. During the initialization
phase, the assertion of the signal Init causes the InitMUX to
feed the initialization bits InitBits into the SR. The values of
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FIGURE 7. Block diagram of the fully-parallel STD.

InitBit can be chosen to optimize the BER performance of the
decoder.

IV. STOCHASTIC IMPLEMENTATION
OF TURBO DECODERS
This section reviews the hardware implementation require-
ments of the Stochastic Turbo Decoder (STD), which is
briefly summarized in [36] and is detailed in [60], although
the latter is written in French. Therefore, this paper offers the
first detailed treatment of the STD in English. In the fully-
parallel stochastic decoding of turbo codes [36], [60], the
block diagram in the blue box of Figure 7 is replicated for
each bit decoded by each convolutional decoder of Figure 4b,
with the two convolutional decoders being separated by a
hard-wired interleaver, as shown in the left part of Figure 7.
The STD of [36] and [60] adopts tailbiting [55] as described
in Section II. This guarantees that the initial and final states
of the trellis of each convolutional decoder are identical.
Owing to this, the state metrics αN (s) output by the N th block
are provided as the inputs α0(s′) of the first block in each
convolutional decoder, as shown in Figure 7. Likewise, the
state metrics β0(s′) output by the first block are provided as
the inputs βN (s) of the N th block. The incoming edges αk−1,
βk , Pa(b1,k = 0) and Pa(b1,k = 1) of Figure 7 corresponds to
one bit of a BS from a neighboring block. In a similar manner,
the outgoing edges αk , βk−1, Pe(b1,k = 0) and Pe(b1,k = 1)
corresponds to an outgoing bit of a BS. By contrast, the
incoming edges Pc(b1,k = 1) and Pc(b2,k = 1) correspond
to q-bit fixed-point probabilities provided by the channel.
The block diagram of Figure 7 processes and exchanges

one bit of each BS in each DC. Furthermore, each block
of Figure 7 corresponds to the stochastic implementation of
Equations (1) to (6). Building on this, the following sections
present the stochastic hardware implementation requirements
of Equations (1) to (6).

A. BRANCH METRICS
Themodule γ of Figure 7 performs the conversion of the q-bit
fixed-point representations of the received channel probabil-
ities Pc(b1,k = 1) and Pc(b2,k = 1) into BSs. In addition
to this, this module generates BSs representing the branch
metrics γk (s′, s) and the extrinsic branch metrics γ ek (s

′, s)
of (1) and (2), respectively. The conversion of the received
channel probabilities into BSs is achieved with the aid of two
q-bit fixed-point comparators and two q-bit pseudo-random
numbers, as shown in the blue box of Figure 8. Here, q rep-
resents the number of quantization bits employed for repre-
senting the received channel probabilities and its value can
be chosen based on the best trade-off between the advisable
BER performance and the hardware requirements imposed,
where q = 7 in the STD of [36] and [60], for example.
In this structure, Pc(b1,k = 1) and Pc(b2,k = 1) remain
constant throughout the decoding process and the pseudo-
random numbers change in every DC. The outgoing bit of
each comparator is set to 1, if the corresponding probability
is greater than the pseudo-random number and 0 otherwise.
Following their conversion to BSs, the received channel
probabilities are employed for obtaining the branch metrics
γk (s′, s) of (1). This is achieved with the aid of four 3-input
AND gates, as shown in the green box of Figure 8,
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FIGURE 8. Stochastic realization of γk (s′, s) and γ e
k [60, Fig. 2.5].

corresponding to the four possible combinations of the
systematic and parity bits b1(s′, s) and b2(s′, s) shown in
Figure 4c. In addition to this, the extrinsic branch metrics
γ ek (s

′, s) of (2) express the probabilities Pc(b2,k = 0) and
Pc(b2,k = 1), pertaining to the parity bit b2,k . As a result of
this, the stochastic realization of γ ek (s

′, s) can be implemented
with two BSs for representing Pc(b2,k = 0) and Pc(b2,k = 1),
as shown in the red box of Figure 8. The BSs representing
the a priori probabilities Pa(b1,k = 0) and Pa(b1,k = 1) are
provided by the other convolutional decoder, but this will not
yet have generated any output during the first DC. Therefore,
the first bits of the BSs can be initialized with random binary
values during the first DC.

B. STATE METRICS
The modules α and β of Figure 7 compute the forward
recursion of (3) and the backward recursion of (4), respec-
tively. This is achieved with the aid of AND gates, MUXs
and EMs for the multiplication, addition and normalization
of BSs, respectively, as shown in Figure 9. In the following
discussion, the stochastic implementation of the state metrics
is described for the forward recursion state metrics αk (s)
of (3), for the case where s = 0. The implementation of (3)
for all other states s ∈ [1, 7] and of the backward recursion
of (4) can be performed following the same principles. In the
Long-Term Evolution (LTE) turbo decoder of [36] and [60],
(3) can be modified as

αk (s) =

∑
all s′

γ (s′, s)αk−1(s′)∑
all (s′,s)

γ (s′, s)αk−1(s′)
=

α̂k (s)
7∑
s=0

α̂k (s)

, (8)

FIGURE 9. Stochastic realization of αk (0) [60, Fig. 2.9].

where α̂k (s) = [
∑7

s′=0 γ (s
′, s)αk−1(s′)]/2 represents the non-

normalized forward recursion. According to the state transi-
tion diagram of Figure 4c, the state s = 0 can only be reached
from the previous states s′ = 0 and s′ = 1. Owing to this,
the term α̂k (0) of (8), is simply α̂k (0) = [γ (0, 0)αk−1(0) +
γ (1, 0)αk−1(1)]/2. Therefore, the stochastic implementa-
tion of α̂k (0) can be performed by the circuit presented
in the blue box of Figure 9, using a pair of 2-input
AND gates and a 2-input MUX, as described in Section III-A.
JKFFs may be employed for performing the division
required for normalizing probabilities, although they
are susceptible to the latching problem, as described
in Section III-B. Owing to this, the STD of [36] and [60]
employs the 32-bit SR-based EMs of Figure 6, as shown in
Figure 9. Hence, Equation (8) can be expressed as

αk (s) =
α̂k (s)

α̂k (s)+
∑

s̄∈[0,7]\s̄=s
α̂k (s̄)

=
J (s)

J (s)+ K (s)
, (9)

where J (s) = [α̂k (s)]/8, K (s) = [
∑

s̄∈[0,7]\s̄=s α̂k (s̄)]/8 and
s̄ ∈ [0, 7]\ s̄ = s denotes the exclusion of the state s̄ = s from
the set of states s̄ ∈ [0, 7]. Here, K (s) can be implemented
with the aid of stochastic computing using an 8-input MUX
with 3 pseudo-random selector bits representing a probability
of Psel = 1/8 and with one of the MUX inputs connected to
logic 0, as shown in the green box of Figure 9. In addition
to this, the factor of 8 division in the computation of J (s)
can be performed using an AND gate to multiply α̂(s) with
a BS representing the probability of 1/8. In the first DC, the
inputs pertaining the BSs of αk−1(s′) can be initialized based
on the best trade-off between BER performance and latency.
To elaborate further, our simulations of Section VII suggest
that the decoding latency can be reduced when the bits of
the BSs of the state metrics αk−1(s′) and βk (s) are initialized
with random bit values. Moreover, the contents of the EM
can be initialized as described in Section III-B during the
first 32 DCs with a BS representing the probability P = 0.5.
The resulting stochastic implementation of (3), for the case
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of s = 0 is shown in Figure 9. Here, the inputs of the 8-input
MUX are provided by structures similar to that shown in the
blue box but corresponding to the other states, s ∈ [1, 7].

C. EXTRINSIC PROBABILITIES
The calculation of the extrinsic probabilities of (5)
is performed by the module Ext of Figure 7. The stochastic
implementation of (5) can be implemented using the circuit
of Figure 10.

FIGURE 10. Stochastic realization of the calculation of the extrinsic
probabilities in (5) [60, Fig. 2.11].

In the following discussion, the stochastic implementation
of the extrinsic probabilities of (5) is described for the specific
case where b1,k (s′, s) = 0, as represented by the blue box
in Figure 10. The implementation of (5) for the case where
b1,k (s′, s) = 1 is represented by the green box in Figure 10
and can be performed following the same principles. In anal-
ogy to the discussion presented in Section IV-B, (5) can be
modified for the case where b1,k (s′, s) = 0 as

Pe(b1,k = 0) =
J (b1,k = 0)

J (b1,k = 0)+ J (b1,k = 1)
, (10)

where

J (b1,k = 0) =

∑
all(s′,s)→(b1(s′,s)=0)

γ e
k (s
′, s)αk−1(s′)βk (s)

8

and J (b1,k = 1) = K (b1,k = 0) correspond to the set
of state transitions engendered by the input bits b1,k = 0
and b1,k = 1, respectively. According to the state transi-
tion diagram of Figure 4c, the input bit b1,k = 0 triggers
the set of transitions (s′, s) = {(0, 0), (1, 4), (2, 5), (3, 1),
(4, 2), (5, 6), (6, 7), (7, 3)}. As a result of this, J (b1,k = 0)
can be expressed as

J (b1,k = 0) = [γ e
k (0, 0)αk−1(0)βk (0)

+ γ e
k (1, 4)αk−1(1)βk (4)

+ γ e
k (2, 5)αk−1(2)βk (5)

+ γ e
k (3, 1)αk−1(3)βk (1)

+ γ e
k (4, 2)αk−1(4)βk (2)

+ γ e
k (5, 6)αk−1(5)βk (6)

+ γ e
k (6, 7)αk−1(6)βk (7)

+ γ e
k (7, 3)αk−1(7)βk (3)]/8. (11)

Here, J (b1,k = 0) can be implemented with the aid of
stochastic computing using a set of 8 3-input AND gates, one
for each of the 8 multiplications of (11), and one 8-input
MUX for the averaging of the 8 product terms of (11), as
shown in the red and the blue box of Figure 10, respectively.
In addition to this, the normalization of (11) can be performed
using the EM structure of Figure 6 with the input bits J =
J (b1,k = 0) and K = J (b1,k = 1). Similarly to the
initialization of the EMs of the state metrics, the contents
of the EM in this module can be initialized during the first
32 DCs with a BS representing the probability P = 0.5.

D. A POSTERIORI PROBABILITY
The estimation of the decoded bit b̂1,k of (6) is performed
by the module δ of Figure 7. This is achieved in stochastic
computing with the aid of AND gates and 8-input MUXs, as
shown in Figure 11. The circuit of Figure 11 calculates the
term P̂(b1,k = 0), which is proportional to the probability
of the bit having the value 0, as shown in the blue box of
Figure 11. This can be obtained by analyzing (6) for the
case where b1,k (s′, s) = 0 and with the aid of the state
transition diagram of Figure 4c. In this way, P̂(b1,k = 0) can
be expressed as

P̂(b1,k = 0) = [γk (0, 0)αk−1(0)βk (0)

+ γk (1, 4)αk−1(1)βk (4)

+ γk (2, 5)αk−1(2)βk (5)

+ γk (3, 1)αk−1(3)βk (1)

+ γk (4, 2)αk−1(4)βk (2)

+ γk (5, 6)αk−1(5)βk (6)

+ γk (6, 7)αk−1(6)βk (7)

+ γk (7, 3)αk−1(7)βk (3)]/8, (12)

The stochastic implementation of (12) can be performed
with the aid of 8 3-input AND gates, one for each of the
8 multiplications of (12), and one 8-input MUX for the addi-
tion of the 8 product terms of (12), as shown in the red and the
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FIGURE 11. Stochastic realization of the calculation of
the APP [60, Fig. 2.12].

blue box of Figure 11, respectively. The same principle can
be applied for the stochastic implementation of P̂(b1,k = 1),
which is proportional to the probability of the decoded bit
being 1, as shown in the green box of Figure 11. Additionally,
the estimation of the decoded bit b̂1,k can be performed with a
signed up/down saturated counter, as shown in Figure 11. The
up/down counter increments its value if the BS representing
P̂(b1,k = 0) takes the value of 1 and decreases its value if the
BS representing P̂(b1,k = 1) takes the value of 1. The counter
will not change its value if P̂(b1,k = 0) = P̂(b1,k = 1).
Lastly, the counter saturates its value if either the maximum
or the minimum count value has been reached. In the STD
of [36] and [60], a 4-bit up/down counter with a maximum
value of +7 and a minimum value of −8 is employed. The
estimation of the decoded bit b̂1,k is performed in each DC
by considering the sign bit of the saturated counter. In this
way, if the value of the counter is ≥ 0, the estimated decoded
bit is b̂1,k = 0 and 1 otherwise.

V. TIMING-ERROR TOLERANT STOCHASTIC
TURBO DECODER
Timing errors in synchronous systems occur when the clock
period is not sufficiently long for all the signals to propagate
from the output of DFFs, through the combinational logic and

to the input of other DFFs. This occurs when techniques such
as voltage-scaling or clock-scaling are employed for reducing
the energy consumption or increasing the throughput of the
system. Furthermore, a reduction in the power supply, owing
to voltage scaling or to power supply noise, increases the
likelihood of occurrence of processing errors, as a result of
the quadratic dependency of propagation delays on the power
supply. Whenever a timing error occurs, there is a chance
that the affected DFF might enter into a metastable state, in
which the digital signals have an indeterminate value that
does not correspond to either a logic 0 or 1. However, given
sufficient time, the metastable state will randomly evolve to a
stable but unpredictable logic value of 0 or 1 [61]. This effec-
tively imposes an additional propagation delay on the affected
signal, hence increasing the likelihood of timing errors and
metastability occurring at the next DFF. In this way, a sin-
gle metastable event can trigger subsequent metastability
occurrences in successive DFFs, causing catastrophic prop-
agation of metastability that destroys the operation of the
entire circuit. Moreover, metastability might cause undesired
glitches, logic inconsistency and late transitions [61], which
may result in the corruption of the bits stored in the EMs in
the context of stochastic decoders, hence severely degrading
the error correction capability of the decoder, as our previous
work on stochastic LDPC decoders demonstrated [52]. This
motivates modifications to the STD of [36] and [60] in order
to enhance its tolerance to timing errors by preventing the
catastrophic propagation of metastabiliy. In the following
sections, we present several novel enhancements to the STD
of [36] and [60], which not only improve its tolerance to
timing errors, but also significantly improves its latency,
throughput, energy efficiency and error correction capabili-
ties in the presence of timing errors caused by power supply
variations. In addition to this, we describe how each of these
enhancements affects each of the design trade-offs presented
in Figure 2. Each of these enhancements is detailed in the
following subsections, which will show that they may be
implemented by replacing Figure 6 with Figure 12 and
Figure 11 with Figure 14.

A. OUTPUT SYNCHRONIZERS FOR MITIGATING THE
CATASTROPHIC PROPAGATION OF METASTABILITY
As mentioned above, variations in the power supply increase
the likelihood of timing errors and metastabiliy, which may
catastrophically propagate through the system and destroy the
entire operation of the STD. In order to reduce the probability
of metastability cascading through the STD of [36] and [60]
owing to timing errors caused by power supply variations,
we propose the replacement of the single output DFFs of the
STD’s α, β and Ext blocks shown in Figures 7, 9 and 10,
so that they employ the synchronizer circuits of Figure 12,
which are comprised of two DFFs, labeled DFF1 and
DFF2. Wherever combinational logic is present between
two DFFs, the occurrence of metastability in the first DFF
increases the likelihood of metastability occurring at the
second DFF, potentially causing the catastrophic propagation
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FIGURE 12. Modified TFM-based EM with output synchronizers, relying on two TFMs for concurrently
decoding two frames and clock gating.

of metastability, as described above. However, since there is
no combinational logic in the path between DFF1 and DFF2
of the synchronizers of Figure 12, the propagation delay
associated with this path is negligible, when compared to
the clock period. As a benefit of this, if DFF1 enters into a
metastable state due to a timing error, the time available for
its metastability to be resolved is maximized and the prob-
ability of metastability cascading to DFF2 is significantly
reduced [62].

The employment of synchronizer circuits is a commonly
used technique for preventing the propagation of metasta-
bility during the transfer of data between different clock
domains in asynchronous systems [62]. However, in our tim-
ing analysis presented in Section VII-A, we demonstrate that
timing errors will frequently occur if the nominal operating
conditions of the STD are reduced below the recommended
safetymargins for the sake of improving either the throughput
or the energy consumption. Timing errors may also occur
due to power supply variations. In addition to this, in the
stochastic decoding of turbo codes presented in [36] and [60],

up to 250×103 DCs are needed before a reliable final decision
can be obtained. More specifically, our analysis suggests that
thousands of metastability events occur during the decoding
of each frame, when the STD of [36] and [60] is operated
continuously in the presence of power supply variations. This
results in a high likelihood of timing errors and metastability
occurring and cascading through the circuit, destroying the
decoding process and severely affecting the error correction
capabilities of the STD, unless synchronizers circuits are
employed.

The introduction of the synchronizer circuits enhances the
decoding capabilities of the STD in the presence of timing
errors caused by power supply variations, as we will demon-
strate in Section VII. However, this modification increases
the chip area, latency and energy consumption of the STD
and reduces its throughput, owing to the increased number
of clock cycles required for exchanging each bit of the BSs,
as we will show in Section VI. In order to mitigate this
throughput reduction, Section V-B describes how the STD
can be modified to decode two frames concurrently.
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B. DECODING OF TWO FRAMES CONCURRENTLY
The employment of the synchronizers described
in Section V-A mitigates the probability of a single metasta-
bility event destroying the entire operation of the STD.
However, this modification increases the chip area and
increases the number of clock cycles required for exchanging
each bit of the BSs, hence increasing both the latency as well
as the energy consumption and reducing the throughput of
the STD. Nonetheless, these additional clock cycles can be
exploited for the concurrent decoding of a second received
frame, in order to eliminate the throughput reduction. With
this objective in mind, the STD can be modified to process
information pertaining to alternate received frames in alter-
nate clock cycles. This is achieved by modifying the EMs
in the α, β and Ext blocks shown in Figures 7, 9 and 10
for simultaneously storing information pertaining to each
of the two received frames. Note that while this eliminates
the above-mentioned throughput reduction that is intro-
duced by the synchronizers, this does not eliminate the
above-mentioned latency, chip area and energy consumption
increases, as we will show in Section VI. Instead, these dis-
advantages of introducing synchronizers will be eliminated
using the techniques described in the following subsections.

The green box of Figure 12 shows how the EM structures
of Figures 6, 9 and 10 can be modified for the simultaneous
decoding of two frames, by including two independent sets
of memories, labeled Mem1 and Mem2, as shown in the red
boxes. In this configuration, each set of memories will store
information related to a particular decoded frame. Along with
the additional memory, we introduce a FrameSelect signal
and the logic required for controlling which specific set of
DFFs to use in each clock cycle. The FrameSelect signal
alternately adopts values of 0 and 1 in alternate clock cycles,
alternating the activation ofMem1 andMem2 for their update
and read operations, according to their control signals. More
specifically, the contents of Mem1 andMem2 can be updated
or read according to the value of the control signals U1 and
Update1, for the case of Mem1, and U2 and Update2 for the
case ofMem2.When the FrameSelect signal has a logic value
of 0 and J 6= K , the signals U1 and Update1 adopt the value
of 1, whereupon the contents of Mem1 are updated according
to the regenerative bit J . In this scenario, the Update signal
adopts the value of Update1=1, owing to the UpdateMUX,
whereupon the regenerative bit J is passed to the first DFF
of the synchronizers through OutMUX. By contrast, when
the FrameSelect signal has a logic value of 0 and J = K ,
the U1 and Update1 signals adopt the value of 0. In this
case, the Update signal adopts the value of 0 and a randomly
selected bit fromMem1 is xored with J and passed to the first
DFF of the synchronizers through MemMUX and OutMUX.
The operation of Mem2, for the case when FrameSelect=1,
follows the same principle described above. Note that the
initialization of each memory can be performed indepen-
dently from each other and from the value adopted by Frame-
Select. This is achieved using the signals Init1 and Init2,
which directly dictate the value of Update1 and Update2 and

control the initialization multiplexers Init1MUX and
Init2MUX, corresponding to Mem1 and Mem2, respec-
tively. Moreover, a memory can be initialized whilst the
other memory is being employed during a decoding process.
This allows one of the memories to be reset so that it can
begin decoding a new frame, even if the other memory is
still being used to decode a different frame. As described
in Sections IV-B and IV-C, each memory is initialized before
the beginning of each decoding process with a BS corre-
sponding to a probability of 0.5.

FIGURE 13. External set of systematic and probability probabilities for
concurrently decoding two frames.

Along with the inclusion of the additional memories and
control logic presented in Figure 12, the STD alternates
between providing the corresponding systematic and the par-
ity probabilities related to each of the two received frames.
For the purpose of our investigation, we consider these sets of
probabilities to be stored in a memory external to the decoder,
which are selected according to the value of the FrameSelect
signal, as shown in Figure 13. In this configuration, the set of
MUXs labeled SysMUX in Figure 13 selects the between the
systematic probabilities Pc(b1,k = 1) of the received frames
Frame1 and Frame2, when FrameSelect adopts the value
of 0 and 1, respectively. Similarly, the received frame of parity
probabilities Pc(b2,k = 1) of Frame1 and Frame2 is selected
with the aid of the ParMUX, when FrameSelect adopts the
value of 0 and 1, respectively. In each clock cycle, the selected
probabilities Pc(b1,k = 1) and Pc(b2,k = 1) are provided to
the γ module of the corresponding section of the STD.

As described above, the synchronizers and additional
EMs increase not only the chip area, but also the energy
consumption of the STD. To overcome these problems, we
recommend the employment of low-power design techniques.
In our investigation, we employ Clock Gating (CG) for
reducing the dynamic energy consumption of the Application
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Specific Integrated Circuit (ASIC) implementation of the
STD, as wewill demonstrate in SectionVI.More specifically,
the dynamic energy consumption of the STDmay be reduced
by only enabling the clock signal of those specific DFFs,
whose contents have to be updated in a particular clock
cycle, as shown in Figure 12. More specifically, the clock
signal is AND gated with the output of an active-low latch,
which is driven by the Update signal, as shown in Figure 12.
Moreover, the area used by the clock-gated SR-based EMs
will be significantly reduced, as we will show in Section VI,
since the feedback MUX used for each DFF in the SR of
Figure 6 will no longer be required. Instead, the DFFs will
update their contents only when their clock signal is enabled,
maintaining their current value otherwise. Furthermore, the
associated propagation delays of the EMs are reduced, owing
to the reduced fanout load of the Update signals [52]. More
specifically, the Update signal in the EM of Figure 6 has a
fanout load of 32 Multiplexers, compared to a fanout load of
a single latch in the clock-gated EMs of Figure 12.

Note however that CG does not mitigate the additional
static energy consumption that is associated with the addi-
tional set of EMs. In order to overcome this static energy
increase, the STD may employ other low-power design tech-
niques, such as power gating or multiple- and variable-
threshold transistor design, although this is achieved at the
cost of increasing the complexity of the design. As an exam-
ple of this, power gating may be employed for switching off
specific blocks of the STD, when they are not being
operated. However, state retention registers are required for
restoring the state of the blocks upon power-up. Owing to
this overhead, power gating is only effective, when specific
blocks may be switched off for a significant amount of time.
Motivated by this, our future work will conceive techniques
for applying early-stopping to different blocks at different
stages in the iterative decoding process. However, in the
meantime, the low-power design techniques presented in this
paper focus only on the reduction of the STD’s dynamic
energy consumption.

When decoding two frames concurrently, the STD is
required to estimate two sets of decoded bits b1,k . Owing
to this, an additional up/down counter is introduced in the
δ module of Figures 7 and 11 for providing two indepen-
dent decoded bits pertaining the two independent decoding
process of Frame1 and Frame2, as shown in the blue boxes
of Figure 14. In this configuration, two clock-gating latches
are employed for updating the counters labeled Counter1
and Counter2. More specifically, the contents of Counter1
determines the decoded bit b1,k of the decoded frame Frame1
and is only updated when FrameSelect=1. By contrast, the
decoded bit b1,k for the case of the decoded frame Frame2
is determined when FrameSelect=0. As part of the trade-
off analysis of the hardware implementation of the STD pre-
sented in Section VI, we will demonstrate that the chip area,
latency, throughput and energy consumption of the STD is
not significantly affected by the introduction of the additional
counter.

FIGURE 14. Modified stochastic realization of the calculation of the
APP for concurrently decoding two frames.

C. TRACKING FORECAST MEMORY-BASED EDGE
MEMORIES IN STOCHASTIC TURBO DECODERS
As described in Section V-B, the introduction of the
additional EMs for the concurrent decoding of two received
frames increases the chip area, latency and energy con-
sumption of the STD. These problems can be overcome
by the employment of Tracking Forecast Memory (TFM)-
based EMs, whilst enhancing the error correction capability
of the STD in the presence of timing errors, as we will
demonstrate in Sections VI and VII. The employment of
SR-based [24], [26] and TFM-based [27], [30] EMs has
been proposed in order to overcome the latching prob-
lem in stochastic LDPC decoders. However, in the STD
of [36] and [60], only SR-based EMs have been previously
employed. In this work, we demonstrate for the first time
that the employment of TFM-based EMs, as shown in the
lower part of Figure 12, is also beneficial in stochastic turbo
decoding.

The TFM-based EM of Figure 15 was proposed in [27].
Here, the m-bit SR of Figure 6 is replaced by an n-bit TFM,
which stores a fixed-point binary number to quantify a mov-
ing average probability of the regenerative bit J assuming the
value 1. This is achieved by considering the previous bits of
BSs, but placing special emphasis on the most recent bits, as
detailed in [27]. More specifically, TFMs employ a decaying
mechanism to ensure that only the most recent regenerative
bits are considered for the calculation of the stored probability
P(t + 1), which is calculated with the aid of the relaxation
parameter φ for determining the significance given to the
most recent regenerative bit J .
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FIGURE 15. Architecture of TFM-based EMs, as proposed in [27].

As in the SR-based EM, when J 6= K in Figure 15, the
fixed-point probability P(t + 1) ∈ [0, 1] of the TFM in time
t + 1 is updated according to:

P(t + 1) = (1− φ)P(t)+ φJ (t), (13)

where φ ∈ (0, 1) is the relaxation parameter, which can be
chosen to optimize the BER performance of the stochastic
LDPC decoder, and J (t) ∈ {0, 1} is the regenerative bit.
By contrast, when J = K , the output of the TFM-based EM is
determined by comparing the n-bit probability P(t) to an n-bit
pseudo-random number. If the probability stored by the TFM
is larger than or equal to the random number, the outgoing bit
is set to 1, otherwise it is set to 0.

Considering that J can only take the value of 0 or 1 at any
given time, (13) can be modified as follows:

P(t + 1) = (1− φ)P(t)+ φJ (t)

= P(t)− φP(t)+ φJ (t)

= P(t)+ φ[J (t)− P(t)],

which can be further simplified as

P(t + 1) =

{
P(t)− φP(t) J (t) = 0
P(t)+ φP̄(t) J (t) = 1,

(14)

where P̄(t) = 1 − P(t) is the complementary probability
of P(t). As a benefit of this, the two adders of the TFM
of Figure 15 are substituted by a single adder/subtractor,
where the complementary probability P̄(t) can be obtained
using XOR gates, if P(t) is stored as an unsigned fixed-point
number. Meanwhile, the multiplication φ ·P(t) can be readily
implemented using a hard-wired logical shift, if the relaxation
parameter φ is chosen as a negative power of 2, as shown
in the lower red box of Figure 12. According to (14), the
complementary probability P̄(t) is only necessary if J (t) = 1.

This functionality can be implemented with the aid MUXs
and NOT gates, with the selector bits of the MUXs adopting
the value of J , as described in [30]. Alternatively, the same
functionality can be obtained with 2-input XOR gates, with
one of the inputs adopting the value of J and the other input
connected to the individual bits of P(t), as shown in the lower
part of Figure 12. Additionally, the add/sub signal determines,
whether an addition or a subtraction will be performed by the
ADD/SUB block, when J = 1 and J = 0, respectively.
The n-bit fixed-point comparator is employed for determining
the outgoing bit when J 6= K , with TFMOut adopting the
value of 1 if the probability stored in the TFM is larger
than or equal to the n-bit pseudo-random number. Finally, at
the start of the STD decoding process, each TFM is initial-
ized to store the probability P = 0.5, which can be
achieved in a single clock cycle by setting the Most Signifi-
cant Bit (MSB) of each TFM to logic 1 and the rest of the bits
to logic 0. This single clock cycle compares favorably to the
32 clock cycles required to initialize the SR Figure 6 with
a given BS. The employment of TFMs in EMs effectively
reduces the chip area requirements and energy consumption
of the STDs, when compared to the employment of SRs in
EMs in the STD of [36] and [60]. More specifically, for the
proposed modifications, we recommend the employment of
9-bit TFMs, with a relaxation parameter φ = 2−4. As a
result of this, the proposed TFM-based EMs can be realized
by using only 9 DFFs, compared to the 32 DFFs required
in the SR-based EMs of [36] and [60]. Moreover, the SR’s
32 to 1 MUX of Figure 6 can be replaced with 9-bit fixed-
point comparators.

In addition to the advantages described above, TFMs are
capable of tracking changes in the regenerative bit’s prob-
ability more accurately than SRs, as detailed in [30]. This
effectively reduces the number of DCs required for success-
fully decoding a frame when TFMs are employed, hence
eliminating the potential latency increase resulting from the
employment of the synchronizers of Section V-A Similarly,
TFM-based EMs facilitate the use of lower clock periods
than SR-based EMs, as Section VII will show. This may
be attributed to the relatively low complexity of the TFMs,
as well as to the relatively low fanout loads imposed on
their Update signal. Owing to this, the proposed TFMs-based
EMs offer a desirable trade-off between chip area, energy
efficiency, latency, throughput and decoding performance,
as Sections VI and VII will show. Figure 12 illustrates the
resultant TFM-based EM circuit, relying on synchronizers,
two sets of EMs and CG.

D. PIPELINING
The role of the δ module of Figure 7 is to compute the
APP and to make the final decision for the decoded bit b̂k
output by the STD. Owing to this, the occurrence of a timing
error within this module, caused by power supply variations,
might lead to an incorrect decision for a decoded bit, hence
severely affecting the error correction capability of the STD.
Furthermore, our timing analysis presented in Section VII-A
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revealed that timing errors are more likely to occur in the
Ext and δ modules of Figure 7, owing to their long critical
paths. In order to overcome this problem, we propose the
employment of a pipelining stage consisting of two DFFs
placed in parallel, as shown in the green box of Figure 14.
The additional DFFs break the combinational path that ends
at the saturated counter. This reduces the time required for
signals to propagate, hence reducing the occurrence of timing
errors within the computation of the APP and improving
the STD’s error correction capability, as we will show in
Section VII-B. Moreover, the employment of a pipeline stage
does not impose a significant hardware overhead, as we will
show in Section VI, since only two DFFs per decoded bit are
employed. Similarly, the throughput and energy consumption
of the STD are only slightly degraded, since the decision for
the decoded bit b̂1,k is only delayed by one DC.

FIGURE 16. Data scheduling of the modified STD.

The data flow of the modified STD is illustrated
in Figure 16, where each set of light-shaded and dark-shaded
blocks and DFFs store information pertaining the decoding
frames Frame1 and Frame2, respectively. In the upper part
of Figure 16, the first set of memories Mem1 can represent
either SR-based or TFM-based EMs. These EMs and the
first DFF of the synchronizers will update their contents
according to the bit of the BS resulting from the decoding
process of Frame1 at time t . In time t + 1, the contents of the
second DFFs of the synchronizers will contain the stochastic
bit generated at time t and pertaining Frame1, owing to the
synchronizers shifting their contents to the following DFF, as
shown in the dark-shaded DFF of the lower part of Figure 16.
In this same manner, the contents of Mem2 and the first
DFFs of the synchronizers will update their value according
to the decoding process of Frame2 in time t + 1, as shown

in the light-shaded DFFs of the lower part of Figure 16.
Note that Counter1 is enabled one time instant after Mem1
is enabled, owing to the introduction of the pipelining stage.
This is represented with a green solid line in the lower part
of Figure 16. Alternatively, a red dashed line in Figure 16
represents either Counter1 or Counter2 in idle mode, in which
their contents are not updated and no new estimation of b̂1,k
is made for that particular frame.

FIGURE 17. Hardware implementation results of the modified STD
schemes. The presented results are normalized relative to SR-1,
when VDD = 1.2 V and Eb/N0 = 3.0 dB.

VI. TRADE-OFF ANALYSIS OF THE HARDWARE
IMPLEMENTATIONS OF THE TIMING-ERROR
TOLERANT STOCHASIC TURBO DECODER
This section presents the different hardware trade-offs of
various STD implementations. Table 1 characterizes the STD
improvements of Section V in terms of diverse character-
istics, including: the chip area per decoded bit, number of
equivalent NAND gates, average number of DCs required
for successfully decoding a frame, when employing early
stopping, minimum clock period, latency, throughput and
processing energy consumption per decoded bit, when using
TSMC 90 nm technology. These results are obtained for
the implementation of an 8-state, 50-bit, rate 1/3, tailbiting
STD using an S-Random interleaver and the state-transition
diagram of Figure 4c, as presented in [36]. Additionally,
we employ NDS with η = 1 and ψ = 2, as described
in Section III-B. Each scheme presented in Table 1 and in
Figure 17 corresponds to the successive inclusion of each of
the improvements described in Section V, with SR-1 being
the state-of-the-art STD of [36]. More specifically,
SR-2 corresponds to the introduction of output synchronizers
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TABLE 1. Hardware implementation results of the STD when operated at Eb/N0 = 3.0 dB.

into SR-1; SR-3 refers to the introduction of the additional
set of EMs into SR-2 to enable the concurrent decoding of
two frames; SR-4 corresponds to the introduction of CG into
SR-3 and finally, SR-5 refers to the introduction of the
pipelining stage into SR-4. The schemes TFM-1 to TFM-5
present the TFM-based STDs counterparts of SR-1 to SR-5,
with TFM-5 being the modified STD employing all enhance-
ments proposed in Section V.

The results of Table 1 were obtained from the physical
layout generated by the automatic place and route of the
above mentioned STDs using Cadence SoC Encounter. The
results of chip area per decoded bit were obtained from
the layout of the γ , α, β, Ext and δmodules of Figure 7, where
the γ module includes q=7-bit fixed point comparators for
converting the probabilities provided by the channel into BSs.
Additionally, the results of Table 1 were obtained for the
cases, where the supply voltage of the STDs is set to either
1.20 V or 0.84 V, in the absence of power supply variations.
Both the critical clock period and the energy consumption of
the STDs are obtained from Synopsys PrimeTime. The aver-
age number of DCs, latency, throughput and energy efficiency
results were obtained from post-layout gate-level simulations,
with extracted parasitics and annotated delays without timing
errors, when allowing a maximum of 105 DCs and using
early stopping, as described in Section II. We assume that
a fully-parallel Cyclic Redundancy Check (CRC) [63] is
employed in each DC for determining whether the frame of
estimated decoded bits provided by the STDs contains any
errors. Although the corresponding hardware characteristics

are not considered in Table 1, they may be considered to
have only a negligible effect, as detailed in [64]. We also
assume that the different STDs operate at their critical clock
period, for the case of BPSK communication over an AWGN
channel and an SNR per bit of Eb/N0 = 3.0 dB. The notation
(Scheme, VDD, TCLK) will be used in the following sections
in order to simplify the discussion of the results. In addition
to Table 1, Figure 17 presents the hardware implementation
trade-offs associated with each scheme of Table 1, relative
to the benchmark scheme SR-1, when the various different
STDs operate at VDD = 1.2 V. Note that similar trends were
found for the case when VDD = 0.84 V.
We begin our discussion by analyzing the impact of each

enhancement in the hardware implementation of the STD.
This is followed by a comparison of the different hard-
ware implementation trade-offs of SR-based and TFM-based
STDs.

As discussed in SectionV-A aswell as confirmed in Table 1
and Figure 17, the employment of synchronizers increases
the average number of DCs, latency and energy consump-
tion and reduces the throughput of the STDs. This can be
observed when comparing the SR-2 and TFM-2 schemes to
the SR-1 and TFM-1 arrangements of Table 1 and Figure 17,
respectively. More specifically, observe in the fourth column
of Table 1 that SR-2 requires an average of 17× 103 DCs for
successfully decoding a frame, compared to the 14 × 103

required in SR-1, when these schemes are operated at
Eb/N0 = 3.0 dB and achieve a BER of 4.6×10−4, as we will
show in Section VII-B. Likewise, TFM-2 requires an average
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of 13 × 103 DCs, compared to 10 × 103 DCs required by
TFM-1 to achieve a BER of 2.8× 10−4 at Eb/N0 = 3.0 dB,
which is the same BER that is achieved by the ideal floating-
point Logarithmic BCJR (LogBCJR) implementation
employing 8 iterations. These differences are explicitly visu-
alized in Figure 17.

The inclusion of the additional EMs for concurrently
decoding two frames increases the chip area, extends the
latency of the STDs, increases the energy consumption,
but facilitates an increased throughput, as observed for the
schemes SR-3 and TFM-3 of Table 1 and Figure 17, when
compared to SR-2 and TFM-2, respectively. As seen in
Table 1, the average numbers of DCs required by schemes
SR-3 and TFM-3 are identical to those of SR-1 and
TFM-1, respectively. However, the latency of SR-3 and
TFM-3 is increased, when compared to SR-2 and TFM-2,
respectively. This may be attributed to the decoding process
of SR-3 and TFM-3 is completed in alternate clock cycles.
Despite the increased latency, SR-3 and TFM-3 exhibit an
increased throughput, when compared to SR-2 and TFM-2,
respectively, owing to the simultaneous decoding of two
frames, as detailed in Section V-B. Similarly, SR-3 and
TFM-3 exhibit an increased energy consumption owing to
the additional EMs, when compared to SR-2 and TFM-2,
respectively.

As detailed in Section V-B as well as observed in Table 1
and Figure 17, the employment of clock gating in SR-4 and
TFM-4, reduces the chip area, the latency and the energy
consumption and increases the throughput of the STDs, when
compared to SR-3 and TFM-3, respectively. Particularly, the
chip area reduction of SR-4 may be attributed to the elim-
ination of the 32 MUXs needed in the SRs, as described
in Section V-B. By contrast, only the equivalent number of
NAND gates of TFM-4 is slightly reduced, when compared to
TFM-3. Additionally, as explained in Section V-D, the inclu-
sion of the pipelining stage does not significantly increase
the area requirements of the STDs and does not extend the
latency. As a result of this, the employment of clock gat-
ing and the pipelining stage facilitates lower clock periods,
which is reflected in the improved latency, throughput and
energy consumption of SR-4 and SR-5, when compared to
SR-3, as well as of TFM-4 and TFM-5, when compared
to TFM-3.

Let us now compare the hardware implementation trade-
offs of SR-based and TFM-based STDs.When comparing the
chip area requirements of SR-based and TFM-based STDs,
Table 1 and Figure 17 show that TFM-based schemes exhibit
lower area requirements than their SR-based counterparts.
More specifically, TFM-1, TFM-2 and TFM-3 present area
requirements that are about 0.50× the area of SR-1, SR-2
and SR-3, respectively. Additionally, the implementation
of TFM-4 and TFM-5 requires 0.62× the chip area of
SR-4 and SR-5, respectively. Furthermore, TFM-5, which
presents all the proposed enhancements, requires
0.96× the area of the benchmark SR-1. This lower area
requirement of TFM-based schemes may be attributed to the

TFM’s employment of only 9 DFFs, instead of the 32 DFFs
needed in a SR, as explained in Section V-B. As explained
in Section V-C, TFM-based STDs require fewer DCs for
achieving iterative decoding convergence, when compared
to SR-based STDs. This, in addition to the reduced clock
periods offered by TFM-based STDs, facilitate reduced laten-
cies, reduced energy consumptions and increased through-
puts, when compared to their SR-based STDs counterparts.
As an example of this, the latency, throughput an energy
consumption of (TFM-5, 1.20 V, 2.2 ns) are 0.78×,
2.55× and 0.23× those of (SR-1, 1.20 V, 4.0 ns), respec-
tively. Furthermore, when the STDs operate at a supply
voltage of 0.84 V, (TFM-5, 0.84 V, 4.1 ns) presents a
latency of 82 µs, an energy consumption of 37 nJ/bit and
a throughput of 1219 Kbps. These results suggest that
(TFM-5, 0.84 V, 4.1 ns) may increase the throughput by a
factor of 1.36, while consuming only 0.11× the energy of
that of (SR-1, 1.20 V, 4.0 ns), without increasing the chip
area, albeit at the cost of increasing the latency by a factor
of 1.46.
The significantly improved dynamic energy efficiency of

TFM-5 relative to SR-1 may be mainly attributed to the
use of TFM-based EMs, instead of SR-based EMs. More
specifically, the energy consumption per TFM per DC in
active- and standby-mode is only 6 nJ and 0.2 nJ, respectively,
compared to 88 nJ and 4.37 nJ for an SR, when the supply
voltage is set to 1.20 V. As detailed in Section V-B, the static
energy consumption may be expected to be higher in the
SR-3 to SR-5 and TFM-3 to TFM-5 schemes than in the
SR-1 to SR-2 and TFM-1 to TFM-2 arrangements, respec-
tively. However, the static energy consumption of TFM-5
may be expected to be similar to that of SR-1, since these
designs have similar chip areas AND gate counts.

FIGURE 18. Clock skew of the different STD implementations.

Figure 18 quantifies the effect of each proposed enhance-
ment of Section V on the clock network of the STD. Each
successive enhancement increases the clock skew of the STD,
since each enhancement is achieved at the cost of increasing
the number of DFFs in the STD, with the main source of
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clock skew in the proposed designs being the insertion of
clock gating for the sake of reducing the dynamic energy
consumption of the STDs. The increased clock skew of the
proposed designs increases the likelihood of timing errors
occurring owing to power supply variations. As part of our
design methodology, these clock skew results are considered,
when performing the timing analysis of the different STDs
implementations in Section VII-A for determining the critical
clock period of each design.

VII. ERROR CORRECTION CAPABILITIES OF THE
TIMING-ERROR TOLERANT STOCHASTIC
TURBO DECODERS
In this section, we characterize the decoding performance of
the STD in the presence of timing errors, when BPSK modu-
lation is used for communication over an AWGN channel.

A. TIMING ERROR MODEL
Supply voltage variations in an ASIC may be caused by
effects such as IR-drop, L·di/dt noise, crosstalk, electrostatic
discharges, particle strikes, switching noise and fabrication
process variations [14]–[18], among other causes. In accor-
dance with [65], we model these effects by representing the
supply voltage of the ASIC with a Gaussian distribution hav-
ing amean ofµ, which represents the nominal supply voltage,
and a standard deviation of σ , which represents the power
supply variations. In our analysis, the clock period TCLK,
the nominal supply voltage µ and the degree of power sup-
ply variations σ are fixed for the whole operation of the
decoder [65]. However, a different random value of VDD is
selected from the Gaussian distribution for each clock cycle,
which is then used for all gates in the STD during the current
clock cycle. The selected values of µ are 1.20 and 0.84,
corresponding to the nominal supply voltage of TSMC 90 nm
technology and this value scaled down 30%, respectively. The
value of σ is selected to obtain particular values of 3σ/µ,
namely 0.03, 0.05 and 0.07 which correspond to the three
standard deviation variation fraction of the selected supply
voltage, as detailed in [66]. Similarly, the selected values of
TCLK correspond to the critical clock periods of each scheme
presented in Section VI. More specifically, we considered the
clock skews of Section VI and a short-path timing analysis
for creating feasible timing budgets and for determining the
corresponding critical clock period of each design.

In order to characterize the presence of timing errors in
the STD, we performed a post-layout timing analysis with
extracted parasitics and annotated delays of the different
TSMC 90 nm implementations of the STDs for a range of
supply voltages. Figure 19 presents only the largest propa-
gation delays of the various STDs under different values of
the supply voltage. However, for the purpose of our timing
error model, we consider the critical path delay of every
DFF in each of the different STDs separately. In each clock
cycle, the chosen value of VDD, TCLK and Figure 19 are
used for determining the delay encountered by each signal
propagating to each DFF.

FIGURE 19. Delays of critical paths of different implementations of
the STD.

FIGURE 20. SPICE simulation of a critical path under different supply
voltages of VDD ∈ {0.99,1.00,1.01,1.02,1.03,1.04,1.05} V.

Since the STDs operate at their critical clock period,
timing errors will be encountered if the selected value VDD
is smaller than the nominal supply voltage µ. Similarly, we
assume that timing errors occur, whenever the delays are
larger than the fixed TCLK. As a result of this, some paths
will experience timing errors in some clock cycles, but not
in others. Similarly, a large overall number of timing errors
will occur in some clock cycles and only a small number
of timing errors will be encountered in others. If a timing
error is indeed encountered, our error model assumes that
a random bit value will be clocked into the affected DFFs
and the same value will be propagated through the circuit in
the subsequent clock cycles. This random value responds to
unpredictable glitches and late transitions caused by timing
errors, as shown in Figure 20, as well as resolved metastable
states owing to the use of synchronizers [61]. For illustrative
purposes, Figure 19 includes a Gaussian distribution associ-
ated with µ = 1.0, 3σ/µ = 0.05 (nominal VDD of 1.0 V and
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FIGURE 21. BER and hardware and performance of the modified STDs in the presence of timing errors and power supply variations when VDD = 1.20 V:
(a) BER performance of the modified STDs operated at VDD = 1.20 V. (b) Hardware performance of the modified STD operated at VDD = 1.20 V and
Eb/N0 = 3.0 dB.

three-sigma standard deviation power supply variation of 5%)
and a clock period of TCLK = 5.2 ns. In this particular
example, SR-3 will be subject to timing errors if the selected
value of VDD drops below 1.05 V, since the critical path delay
exceeds the critical clock period in this condition, as shown
in Figure 20. More specifically, the waveforms of Figure 20
were obtained using SPICE simulations of the critical path in
the SR-3 scheme, when using ST90 nm technology operated
at different supply voltages and at a fixed critical clock period
of TCLK = 5.2 ns. Owing to this, the signal output by the
critical path arrives at the D input of the first DFF in the
SR-based EM at the same time, as the first clock edge shown
in Figure 20. Here, power supply voltages of 1.00 V ≤
VDD ≤ 1.05 V are sufficiently high to avoid generating a
timing error in the DFF. However, if the supply voltage is
reduced to VDD = 0.99 V, a timing error is observed. In this
scenario, a bit value of 0 is erroneously stored in the SR DFF
and presented at its Q output after the first clock edge of
Figure 20. In addition to this, Figure 20 demonstrates that
the propagation delay tCLK−Q of the DFF is increased, when
the supply voltage is reduced, increasing the likelihood of
timing errors and metastability occurring in the subsequent
DFFs, as detailed in Section V. By contrast, the TFM-based
STDs will not experience any timing errors in this config-
uration, since their critical paths have lower critical clock
periods.

B. DECODING PERFORMANCE IN THE
PRESENCE OF TIMING ERRORS
The notation (Scheme, VDD, TCLK, %) will be used in this
section to refer to a specific STD implementation operated
at the given supply voltage, clock period and three standard

deviation percentage of power supply noise 3σ/µ, respec-
tively. Figure 21 presents the BER and hardware perfor-
mance of the SR- and TFM-based STD, when operated
at VDD = 1.20 V. Figure 21a presents the BER perfor-
mance for a floating point implementation of the conven-
tional LogBCJR turbo decoder using 8 decoding iterations
as a benchmark. We also present BER plots of the SR- and
TFM-based STD, when allowing a maximum of 105 DCs in
the absence of timing errors, which confirm that STDs are
capable of achieving similar BER performances as the ideal
floating point turbo decoder. Note that SR-1 to SR-5 offer
identical BER performance in the absence of timing errors,
since the proposed modifications only impact the BER in
the presence of timing errors. Likewise, TFM-1 to TFM-5
offer identical BER performance in the absence of timing
errors. As mentioned in Section V-A, our timing analysis of
Section VII-A suggests that thousands of metastability events
occur when the different STDs are operated continuously
in the presence of power supply variations. Since SR-1 and
TFM-1 do not consider the employment of synchronizers
for preventing the catastrophic propagation of metastability,
we do not plot their BER in the presence of timing errors,
since it would be very poor. Figure 21a presents the BER
of the modified schemes SR-4, SR-5, TFM-4, TFM-5 when
operated at VDD = 1.20 V. Note that the BER performances
of SR-2, SR-3, TFM-2 and TFM-3 are not included in
Figure 21a, since SR-2 and SR-3 offer similar BER per-
formance to that of SR-4. Similarly, TFM-2 and TFM-3
offer similar BER performance to that of TFM-4. However,
schemes SR-2 and SR-3 and schemes TFM-2 and TFM-3
offer different chip area, latency, throughput and energy con-
sumption, when compared to SR-4 and TFM-4, respectively,
as described above in Section VI.
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FIGURE 22. BER and hardware and performance of the modified STDs in the presence of timing errors and power supply variations when VDD = 0.84 V:
(a) BER performance of the modified STDs operated at VDD = 0.84 V. (b) Hardware performance of the modified STDs operated at VDD = 0.84 V and
Eb/N0 = 3.0 dB.

Figure 21a demonstrates that the proposed STDs offer an
enhanced tolerance to timing errors. As an example of this,
Figure 21a shows that (SR-4, 1.20 V, 4.0 ns, 3%) exhibits an
Eb/N0 degradation of about 0.14 dB respect to the ideal BER
performance of SR-1. Similarly, (TFM-4, 1.20 V, 4.0 ns, 5%)
offers similar BER performance of that of the TFM-based
STD in the absence of timing errors. However, schemes SR-4
and TFM-4 exhibit an Eb/N0 degradation of about 0.75 dB
and 0.5 dB, when the three standard deviation percentage of
power supply noise is increased to 5% and to 7%, as shown
in Figure 21a in (SR-4, 1.20 V, 4.0 ns, 5%) and (TFM-4,
1.20 V, 4.0 ns, 7%), respectively,. Moreover, Figure 21a
demonstrates that the inclusion of the pipeline stage described
in Section V-D improves the BER performance of the STDs
by preventing the occurrence of timing errors during the
estimation of the decoded bit b1,k . This is shown in the BER
performance of (SR-5, 1.20 V, 4.0 ns, 5%), which exhibits
similar BER performance of SR-1. Likewise (TFM-5, 1.20 V,
4.0 ns, 7%) presents similar error correction capabilities to
that of (SR-1, 1.20 V, 4.0 ns, 0%), which corresponds to
the state-of-the-art STD of [36] with no timing errors. This
corresponds to an Eb/N0 degradation of about 0.1 dB, when
compared to TFM-1 in the absence of timing errors.

In addition to the BER performance, Figure 21b shows
the chip area, average number of DCs, latency, throughput
and energy consumption per decoded bit of the proposed
STDs, normalized relative to the benchmark SR-1 in the
absence of timing errors, when the different STDs operate at
VDD = 1.20 V and Eb/N0 = 3.0 dB. We also present the
hardware performance of TFM-1 in the absence of timing
errors as a benchmark. Figure 21b shows that the average

number of DCs required by (SR-4, 1.20 V, 4.0 ns, 3%),
(SR-4, 1.20 V, 4.0 ns, 5%) and (SR-5, 1.20 V, 3.6 ns, 5%)
is 1.23×, 1.29× and 1.10× that of SR-1 in the absence of
timing errors, respectively. This, in addition to the decod-
ing of two frames in alternate clock cycles, is reflected in
increased latencies and energy consumptions. However,
(SR-5, 1.20V, 3.6 ns, 5%) exhibits a similar throughput to that
of SR-1 in the absence of timing errors, albeit at the cost of an
increased BER. Figure 21b shows that TFM-based decoders
in the presence of timing errors offer a reduced number of
DCs and latencies, which facilitate increased throughputs and
reduced energy consumptions, when compared to the bench-
mark SR-1 in the absence of timing errors. More specifically,
the latency, throughput and energy consumption of (TFM-5,
1.20 V, 2.2 ns, 7%) are 0.83×, 2.42× and 0.25× those of
SR-1 in the absence of timing errors, respectively.

Figure 22a demonstrates that the BER performance of the
different STDs is severely affected when they are operated
at VDD = 0.84 V and in the presence of power supply
variations, owing to the quadratic dependency of delays on
the power supply. More specifically, Figure 22a shows that
(SR-4, 0.84 V, 8.0 ns, 3%) exhibits an Eb/N0 degradation
of about 1.1 dB, compared to the ideal BER performance
of the SR-1. The introduction of the pipeline stage into
SR-4 reduces the Eb/N0 degradation to 0.3 dB, which
can be observed in the BER performance of (SR-5,
0.84 V, 6.7 ns, 3%). A similar trend is encountered in the
TFM-based STDs, where (TFM-4, 0.84 V, 4.1 ns, 3%)
exhibits a Eb/N0 degradation of about 0.5 dB respect to the
ideal BER performance of TFM-1. The introduction of the
pipeline stage into TFM-5 enhances the BER performance,
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as shown in the BER plot of (TFM-5, 0.84 V, 4.1 ns, 3%),
which exhibits an Eb/N0 degradation of only about 0.1 dB.
However, when the percentage of power supply variation is
increased to 5% (TFM-5, 0.84V, 4.1 ns, 5%) exhibits a Eb/N0
degradation of about 1.0 dB. Figure 22b presents the hard-
ware performance of the modified STDs when they operate
at VDD = 0.84 V and Eb/N0 = 3.0 dB. Here, we present
hardware performance results for SR-1 operated at
VDD = 1.20 V and in the absence of timing errors as
benchmark. Note that schemes (SR-4, 0.84 V, 8.0 ns, 3%)
and (TFM-5, 0.84 V, 4.1 ns, 5%) are not considered in
Figure 22b, owing to their increased BER. Figure 22b shows
that (SR-5, 0.84 V, 6.7 ns, 3%) increases the number of DCs,
latency, energy consumption and BERs performance, when
compared to (SR-5, 1.20 V, 4.0 ns, 0%). Scheme (TFM-4,
0.84 V, 4.1 ns, 3%) exhibits a throughput similar to that of
SR-1 in the absence of timing errors. However, this modified
scheme presents an increased latency and BER. By contrast,
the average number of DCs, latency, throughput and energy
consumption of (TFM-5, 0.84 V, 4.1 ns, 3%) are 0.75×,
1.55×, 1.28× and 0.12× those of (SR-1, 1.20 V, 4.0 ns, 0%),
respectively.

Owing to the hardware implementation results of Table 1,
and Figures 21b and 22b and to the BER performance of
Figures 21a and 22a, we recommend the employment of
TFM-5 in the presence of timing errors.

VIII. REDUCED-LATENCY STOCHASTIC TURBO DECODER
The different STD implementations presented in Section IV
require a large number of DCs for successfully decoding a
frame, hence resulting in relatively poor processing laten-
cies, throughputs and energy efficiencies. As mentioned
in Section I, this drawback may prevent the employment
of STDs in practical low-latency next-generation Mission-
Critical Machine-Type Communication (MCMTC) systems,
such as those required by vehicular traffic safety and con-
trol [19]. To overcome this problem, the authors of [36]
proposed exponential transformations [67] for the implemen-
tation of STDs. This technique uses stochastic computing to
perform the Taylor’s expansion of the exponential function
of BSs. In this way, the additions of BSs are transformed
into multiplications of exponentially transformed BSs, which
can be performed with the aid of AND gates, as detailed in
Section III-A. However, the result of the multiplication of the
exponentially transformed BSs must be converted back into
the conventional BS representation, by employing a
logarithmic transformation. The order of the Taylor’s
series determines not only the accuracy of the exponential
transformation, but also the hardware complexity of its
implementation, as detailed in [60]. As an example of this,
a NOT gate may be employed for the first order approximation
of both exponential and logarithmic functions. By contrast,
the second order approximation requires one DFF and two
NAND gates for the exponential function, as well as one DFF,
two AND gates and a 2-input MUX for the logarithmic func-
tion. The error correction capability of the STD is improved

by using higher order approximations, but the hardware
complexity grows rapidly. Motivated by this, the authors
of [36] applied the second order exponential transformation to
a 200-bit STD. This technique reduced the maximum number
of DCs from 250 × 103 to 32 × 103, without degrading
the error correction performance of the STD, albeit at the
cost of increasing the hardware complexity of the design.
In order to further reduce the number of DCs, the STD
of [37] employed the multiple-stream decoding technique,
which was originally introduced for the stochastic decoding
of cortex codes in [34]. This technique increases the degree of
parallelism for the STD by representing each probability with
ρ ≥ 2 BSs. The exponential transform-basedmultiple-stream
decoding of the 200-bit STDs in conjunction with ρ = 32
allowed the reduction of the number of DCs from 32 × 103

to 1 × 103,∗ albeit at the cost of increasing the hardware
complexity by a factor of ρ = 32. Hence, this technique may
be deemed unsuitable for practical STD implementations.

The authors of [38] and [39] proposed modified BS repre-
sentations for the implementation of fully-parallel LogBCJR
decoders. More specifically, these contributions proposed
sign-magnitude BSs for representing Logarithmic Likelihood
Ratios (LLRs). Here, each LLR is represented using one BS
for determining its sign and one or more BSs for determining
its magnitude. As an example of this, [38] employs 2-bit
BS-based LLRs in the range of [−1,+1]. In [39], the authors
proposed a sliding-window method for converting BSs into
bit-serial sign-magnitude LLRs. In each DC, the three most-
recent bits of a BS are combined to provide an LLR com-
prising one sign bit and two magnitude bits. Therefore, each
LLR is represented in the range of [−3,+3]. Additionally,
this implementation relies on 3-bit fixed-point adders and
4-bit fixed-point comparators for the addition and max oper-
ations of the sign-magnitude BSs, respectively. These tech-
niques significantly reduce the number of DCs required for
successfully decoding a frame and hence yield substantial
throughput gains. However, these designs may be considered
to be half-stochastic STDs or low-precision serially-operated
fixed-point LogBCJR decoders, rather than true-stochastic
decoders. Owing to its reliance on fixed-point numbers, the
half-stochastic STD of [39] does not benefit from the inherent
tolerance of true STDs to timing errors.

Motivated by this, in this section we propose a Reduced-
Latency Stochastic Turbo Decoder (RLSTD), which achieves
an ultra-low latency without relying on fixed-point numbers.
More specifically, the following sections detail the proposed
improvements of the STD of [36], which first of all signif-
icantly reduce the number of DCs required for successfully
decoding a frame, whilst improving the characteristics of
its hardware implementation. Each of these enhancements is
detailed in the following subsections.

∗The number of DCs is reported as 1 × 103 in [37]. However, in the
more detailed description of the multiple-stream STD given in the PhD thesis
of [60], the same architecture and implementation is reported to
employ 8× 103 DCs.

VOLUME 4, 2016 1029



I. Perez-Andrade et al.: Stochastic Computing Improves the Timing-Error Tolerance and Latency of Turbo Decoders

A. APPROXIMATE STOCHASTIC ADDERS
As described in Section II, the turbo decoding algorithm
requires the addition of probabilities, as shown in
Equations (3) and (6). In stochastic computing, BSs can only
represent probabilities in the range of [0,1]. However, the
addition ofM probabilities may not give a result falling in the
closed interval [0,1]. To overcome this problem, the addition
ofM probabilities may be performed by scaling the operands
by a factor ofM , so that we have Padd =

∑M
i=1[Pi/M ], which

represents the mean of the M probabilities. In stochastic
computing, this may be performed using an M -input MUX,
as described in Section III-A. In this configuration, the MUX
outputs the value of one of the M input BSs, which is
randomly selected in each DC. However, this means that the
other (M − 1) BSs do not directly contribute to the output
BS of the MUX. As a result of this, the length of the outgoing
BS Padd is required to be M times longer than that of the
input BSs, in order for Padd to achieve the same precision as
the input BSs [37].

As an alternative to the employment ofMUXs as stochastic
adders, OR gates may be employed for performing approx-
imate additions, as detailed in [13]. This has the advantage
of granting all M input BSs influence over the output BS,
hence reducing the length required for the output to achieve
the same precision as the inputs. However, the probability Por
represented by the BS output by a two-input OR gate is given
by Por = PA + PB − PA · PB, where PA and PB correspond
to the probabilities represented by the two input BSs SA and
SB, respectively. Therefore, the addition Por exhibits an error
that is proportional to the product PA · PB, although this will
become negligible, if either PA or PB has a very small value.

FIGURE 23. Stochastic realization of αk (0) employing OR gates as
approximate adders.

Figure 23 shows how OR gates may be employed to per-
form approximate additions in an STD. More specifically,
Figure 9 exemplifies the stochastic implementation of the
forward recursion αk (s) of (3) for the case where s = 0,
as it was previously shown in Figure 9. The blue box of
Figure 23 at the top left corner shows the employment of a
2-inputOR gate to approximate the two-term addition α̌k (0) =
[αk−1(0)γk (0, 0)+αk−1(1)γk (1, 0)]. Similarly, the green box

at the bottom right corner of Figure 23 shows the employment
of OR gates for the approximate addition of 8 BSs. Note
that an M -input OR gate outputs the value of 1 if any of its
M inputs adopts this value. As a result of this, the employ-
ment of an 8-input OR gate required for providing K (0) in
Figure 23 may result in this BS becoming stuck at 1. Owing
to this, the green box of Figure 23 implements the addition
K (0) = [

∑7
i=1[α̌k (i)] + 0]/4 using four 2-input OR gates

and a single 4:1 MUX. The division by 4 in K (0) requires
the corresponding division by 4 to be employed in J (0) =
α̌k (0)/4, in order to preserve αk (0) = J (0)/[J (0) + K (0)].
Thismay be achieved using anAND gate formultiplying α̌k (0)
with a BS representing the probability of 1/4, as shown in
Figure 23. Similar structures to that of Figure 23 may be
employed for the implementation of the forward recursion
αk (s) for all other states s ∈ [1, 7], as well as for the backward
recursion βk−1(s′) of (4). Note that the OR gate labeled as or4
in Figure 23 is drawn with dotted lines for indicating that
this gate may be eliminated, since one of its inputs has the
constant logical value of 0. However, this OR gate is indeed
required for the approximate additions that may be used for
the calculation of the extrinsic probabilities of (5) and for the
calculation of the APP of (6), as shown in Figures 24 and 25,
respectively.

FIGURE 24. Estimation of the extrinsic probabilities in the RLSTD.

As we will demonstrate in Section IX, the employment
of the approximate adders imposes only an imperceptible
BER performance degradation on the RLSTD. By contrast,
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FIGURE 25. Estimation of the hard-decision bit b̂1,k in the RLSTD.

the approximate stochastic adders reduce the chip area,
the average number of DCs required, the latency and the
energy consumption, while increasing the throughput of
the RLSTD.

B. REDUCED-COMPLEXITY TRACKING-FORECAST
MEMORY
As detailed in Section VI, TFM-based EMs offer significant
improvements in both the BER and the hardware implemen-
tation performance of STDs. This may be attributed to the
TFM’s enhanced capability for tracking changes in the regen-
erative bit’s probability and to the relatively low hardware
complexity of TFMs. As described in Section V-C, TFMs
employ (14) for quantifying the moving average probability
P(t + 1) of the regenerative bit J (t) having the value of 1
according to

P(t + 1) =

{
P(t)− φP(t) J (t) = 0
P(t)+ φP̄(t) J (t) = 1.

The relaxation parameter φ determines the significance given
to the regenerative bit and its value can be chosen by obtain-
ing a compelling trade-off between the BER and hardware
efficiency, where we use φ = 2−4 in the TFM-based STDs
presented in Section IV. However, in this section, we pro-
pose the use of φ = 2−1, since this facilitates a significant
further reduction in the hardware implementation complexity
of TFMs. In this case, the probability of the TFM can be

expressed as

P(t + 1)=


P(t)−

P(t)
2
=
P(t)
2

J (t) = 0

P(t)+
P̄(t)
2
= P(t)+

1− P(t)
2

=
P(t)
2
+

1
2

J (t) = 1.

(15)

We refer to the resultant scheme as Reduced-Complexity
Tracking Forecast Memory (RCTFM), which may be imple-
mented using the arrangement shown in the green box of
Figure 26. Here, the fixed-point TFM represents P(t) using
a 9-bit unsigned fixed-point number, where the MSB has
a significance of 2−1 and the Least Significant Bit (LSB)
has a significance of 2−9. The multiplication P(t)/2 can be
realized by shifting the contents of the fixed-point TFM one
position to the right. Moreover, the conditional addition of
the constant 1/2 can be realized by updating its MSB with
the incoming regenerative bit J (t). Figure 26 compares the
hardware complexity of the proposed RCTFM to those of the
TFMs employed in schemes TFM-1 to TFM-5 of Section IV.
In particular, the hardware implementation complexity of the
RCTFM is reduced by avoiding the employment of the fixed-
point adder/subtractor and the set of XOR gates employed by
the TFM shown in the blue box of Figure 26.

The operation of the RCTFM-based EM follows the same
principles as the SR-based and TFM-based EMs described in
Sections III-B and V-C, respectively. Moreover, the RCTFM
operates as a combination of an SR and a TFM. To elaborate
further, the RCTFM adopts the functionality of an SR, when
J 6= K . In this situation, the DFFs of the RCTFM will shift
their contents one position and the incoming regenerative
bit J (t) will be stored in the first DFF, in analogy to the
behavior of an SR-based EM. Here, the clock-gating latch
and the AND gate are employed to enable the clock signal
of the DFFs only when the signal Update is asserted, owing
to J 6= K . By contrast, if J = K , the unsigned fixed-
point probability P(t) stored in the RCTFM is compared
to a pseudo-random number, in order to determine the out-
going bit of the RCTFM, in analogy to the operation of a
TFM-based EM. Here, the outgoing bit assumes the value
of 1 if the probability stored in the RCTFM is larger than or
equal to the 9-bit pseudo-random number. The contents of the
RCTFM-based EM can be initialized prior the beginning of
the decoding process, in order to improve the attainable BER
performance of the STD. In our investigations detailed in the
following sections, the RCTFMs are initialized to store the
probability P = 0.5, which can be achieved in a single clock
cycle by setting the MSB of each RCTFM to logic 1 and the
rest of the bits to logic 0.

C. OUTPUT DECISION
The STD presented in Section IV employs a 4-bit saturated
up/down counter for the estimation of the decoded bit b̂1,k .
The saturated counter stores a binary value that behaves sim-
ilarly to a fixed-point representation of an LLR [26], with its
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FIGURE 26. Reduced complexity TFM associated with φ = 2−1, compared to the TFM structure employed in TFM-based STDs of Section IV.

MSB determining the hard-decision bit b̂1,k , as described in
Section IV-D. The width of the saturated counter determines
both its capability to track changes in the represented LLR
and the precision of its representation of this LLR. In this
way, a wider counter provides a higher precision for the repre-
sented LLR, as well as amore robust mechanism against rapid
variations in the value of this LLR. This is particularly useful
at low channel SNR values, where the LLR represented may
be expected to fluctuate between consecutive DCs, owing to
the low reliability of the decoding process in this SNR region.
By contrast, smaller counter widths offer a lower precision
for the represented LLR and are more susceptible to changes
within the BSs. Despite this, low-precision counters may be
employed at high SNR values, owing to the high reliability
of the decoding process, as detailed in [26]. In spite of these
trade-offs, we propose the employment of only a single DFF
for determining the hard-decision bit b̂1,k of the RLSTD,
as shown in Figure 25. Here, the output DFF takes the value
of 0 if P̂(b1,k = 0) = 1 and P̂(b1,k = 1) = 0. Similarly,
the output DFF takes the value of 1 if P̂(b1,k = 0) = 0 and
P̂(b1,k = 1) = 1. This is achieved by updating the output
of the DFF with the bit of the BS representing P̂(b1,k = 1),
when P̂(b1,k = 0) 6= P̂(b1,k = 1), as shown in the blue box of
Figure 25. By contrast, the DFF will not update its contents,
if P̂(b1,k = 0) = P̂(b1,k = 1).
Section IX will demonstrate that the error correction capa-

bility of the RLSTD is not degraded by having only a
single output DFF. Moreover, Section X will demonstrate
that the single output DFF reduces the hardware complexity
of the STD.

IX. ERROR CORRECTION CAPABILITIES OF THE
REDUCED-LATENCY STOCHASTIC TURBO DECODER
In this section, we characterize the error correction
capability of the proposed RLSTD of Section VIII and

compare it to that of various benchmarkers. In order to
allow direct comparison with the results of [36] and [39],
Figure 27 presents the BER performance achieved for dif-
ferent STDs employing 50-bit and 200-bit frames, a coding
rate of 1/3, 8 states, tailbiting, S-Random interleavers, the
state-transition diagram of Figure 4c and an NDS associated
with η = 1 and ψ = 2, as described in Section III-B.
All results assume BPSK transmission over an AWGN chan-
nel. Figure 27 presents BER plots for the RLSTD described in
Section VIII, when allowing a maximum of 10×103 DCs and
when employing early stopping of the decoder’s iterations
upon achieving convergence. We also present BER plots for
four benchmarkers, namely the floating-point LogBCJR and
maxLogBCJR turbo decoders, when allowing a maximum
of 8 iterations, as well as for the schemes SR-1 and TFM-1
described in Sections IV and V, respectively, when allowing
a maximum of 100 × 103 DCs. Figure 27 demonstrates
that the RLSTD exhibits a similar BER performance to that

FIGURE 27. BER performance of the RLSTD, as well as of various
benchmarkers.
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TABLE 2. Hardware complexity comparison of the SR-1, TFM-1 and RLSTD schemes.

of the TFM-1 scheme, which confirms that the proposed
modifications do not degrade the attainable error correction
performance of the RLSTD. More specifically, the 50-bit
RLSTD exhibits near-optimal decoding performance, when
compared to the floating-point LogBCJR decoder. However,
the 200-bit RLSTD exhibits an Eb/N0 degradation of up
to 0.2 dB and 0.5 dB, when compared to the sub-optimal
maxLogBCJR and to the LogBCJR turbo decoders, respec-
tively. Note however that similar trends may be observed for
the 200-bit TFM-1 STD described in Section V.

FIGURE 28. Average number of DCs for successfully decoding a frame for
the RLSTD.

Figure 28 presents the average number of DCs required
by the 50-bit and the 200-bit STDs for successfully decoding
a frame, when operated at different Eb/N0 values and when
compared to the benchmarkers of SR-1 and TFM-1 presented
in Sections IV and V, respectively. Figure 28 demonstrates
that the proposed RLSTD reduces the average number of
DCs by an order of magnitude, when compared to both the
SR-1 and to the TFM-1 schemes. This may be attributed to
the increased switching activity owing to the employment
of OR gates as approximate adders and to the employment

of a single DFF for providing the decision of the decoded
bit. Figures 27 and 28 demonstrate that the proposed RLSTD
significantly reduces the number of DCs required for success-
fully decoding a frame, without degrading its error correction
capability. As a benefit of this, the latency, the throughput and
the energy efficiency of the STD are significantly enhanced,
as we will demonstrate in Section X.

X. HARDWARE IMPLEMENTATION OF THE
REDUCED-LATENCY STOCHASTIC TURBO DECODER
Table 2 presents the hardware complexity of the RLSTD in
terms of the number of basic logic gates and DFFs employed
per decoded bit, when compared to the hardware complexity
of the SR-1 and TFM-1 schemes of Table 1 used as bench-
markers. Table 2 demonstrates that the number of 2-input
MUX gates employed in the TFM-1 and RLSTD schemes
is significantly reduced, when compared to those of SR-1
described in Section IV. This may be attributed to SR-1
employing 32 MUXs for the update operation of each of
the 18 SR-based EMs and to the employment of 2-input
MUXs for the addition of BSs. Similarly, the number of DFFs
employed in the TFM-1 scheme detailed in Section V and in
the RLSTD scheme described in Section VIII is significantly
reduced, owing to the employment of 9-bit TFMs. By con-
trast, the RLSTD scheme employs a higher number of 2-input
OR gates, when compared to both SR-1 and TFM-1, owing
to the employment of these logic gates for the approximate
addition of BSs. However, Table 3 demonstrates that the
increased number of OR gates does not increase the chip area
or the overall gate count of the RLSTD.

Table 3 compares the hardware efficiency of different
STDs, when using TSMC 90 nm technology. We present
results for the rate 1/3, 8-state, tailbiting RLSTD, TFM-1 and
SR-1 schemes, using S-Random interleavers and the
state-transition diagram of Figure 4c, in order to allow
direct comparison with the results of Table 1 in Section VI.
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TABLE 3. Hardware efficiency of different STDs.

Table 3 characterizes the various STDs in terms of their
diverse characteristics, including the chip area per decoded
bit, clock period, number of equivalent NAND gates, number
of DCs, latency, throughput, as well as area and energy
efficiency, when using TSMC 90 nm technology. Addition-
ally, we employ NDS associated with η = 1 and ψ = 2
for the proposed RLSTD as well as for the SR-1 and
TFM-1 schemes, as described in Section III-B. As described
in Section VI, the results of Table 3 were obtained from the
physical layout generated by the automatic place and route
of the RLSTD, TFM-1 and SR-1 STDs using Cadence SoC
Encounter. These results were obtained for the cases, where
the supply voltage of the STDs is set to 1.20 V in the absence
of power supply variations. Both the critical clock period
and the energy consumption are obtained from Synopsys
PrimeTime. The average number of DCs, latency, throughput
and energy efficiency were obtained from post-layout gate-
level simulations, with the extracted parasitics and annotated
delays without timing errors, when using early stopping and
allowing a maximum of 100 × 103 DCs for both SR-1 and
TFM-1, as described in Section VI, as well as a maximum
of 10 × 103 DCs for the proposed RLSTD described in
Section VIII. We assume that the different STDs operate at
their critical clock period, for BPSK transmission over an
AWGN channel having an SNR, where a BER of 10−5 is
achieved. We also present the hardware efficiency of the half-
stochastic STD, as reported in [39]. Note that the hardware
results of [39] correspond to the synthesis of a 2048-bit
fully-parallel decoder using TSMC 90 nm technology. How-
ever, the authors of [39] did not quantify the area or energy
consumption of this half-stochastic STD implementation,
hence the corresponding characteristics cannot be shown
in Table 3.

Table 3 demonstrates that the reduced number of DCs
offered by the RLSTDs facilitate reduced latencies, increased

FIGURE 29. Hardware implementation results for different STDs,
normalized relative to SR-1, when operated at VDD = 1.20 V and
when Eb/N0 = 3.0 dB. (a) 50-bit STDs. (b) 200-bit STDs.

throughputs as well as improved area and energy efficien-
cies, when compared to the benchmarkers SR-1 and TFM-1.
As shown in Table 3, the proposed RLSTD has the lowest
gate count and area per bit among all schemes considered.
The proposed RLSTD enables the highest clock frequency
and the lowest average number of DCs, when the frame length
is 50 bits, resulting in the lowest latency among all schemes
considered. This is particularly attractive inMCMTCs, where
emergency or control messages comprising as low as tens of
bits must be reliably communicated with ultra-low latency.
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FIGURE 30. Design flow of error-tolerant iterative decoders.

Our simulations suggest that the number of DCs required
by the proposed RLSTD scales approximately linearly with
the frame length. We performed BER simulations of the
RLSTD having a frame length of 2048 and an SNR of
Eb/N0 = 1.25 dB, which we found to result in the desired
BER of 10−5. Here, the average number of DCs required
by the RLSTD is 6 × 103. Owing to this, the throughput
and area efficiency of the RLSTD having a frame length
of 2048 bits are significantly lower than those of the half-
stochastic decoder of [39], as shown in Table 3. However, the
half-stochastic decoder employs a fixed number of 280 DCs.
Therefore, the latency of this design remains constant regard-
less of the frame length, as opposed to the RLSTD implemen-
tation. As a result, for a frame length of 50 bits, the latency of
the half-stochastic decoder is 1.8 ns × 280 = 0.504 µs and
its throughput is 50/0.504 µs = 99 Mbps, which are inferior
to those of the proposed RLSTD. Based on these results,
we recommend the employment of the proposed RLSTD
for short-frame-length, ultra-low-latency applications, such
as MCMTCs.

The hardware efficiency of the RLSTD is further detailed
in Figure 29, which compares the hardware implementation
trade-offs associated with the 50-bit and 200-bit versions
of the TFM-1 and RLSTD schemes, relative to the bench-
mark scheme SR-1, for the case where Eb/N0 = 3.0 dB.
Figure 29a shows that the average number of DCs required
by the proposed RLSTD scheme is as low as 0.035 times
the corresponding number required by SR-1. As a result of
this, the latency, throughput and energy consumption of the
modified RLSTD are 0.015×, 65× and 0.005× those of the
benchmark scheme SR-1, respectively. Similar trends may
be observed for the hardware implementation results of the
200-bit STDs, as shown in Figure 29b. Here, the proposed
RLSTD exhibits a latency that is just 0.013× the latency
of SR-1, which increases the throughput by 78× and reduces
the energy consumption by a factor of 0.005×.

XI. DESIGN GUIDELINES AND CONCLUSIONS
In this paper, we have presented two different sets of
modifications to the state-of-the-art STD of [36], which sig-
nificantly improve its timing error tolerance and processing
latency. This has been achieved by considering the close
relationship between the different trade-offs involved in the
hardware implementation of the STD, as listed in Figure 2.
To elaborate further, the implementation of iterative decoders
is typically oriented towards the optimization of a particular
design objective. For example, a particular design may focus
on achieving a low chip area, to the detriment of all other
design objectives. More specifically, only the design con-
straints and parameters that affect the overall chip area of the
design may be considered and optimized during the design
process. However, this approach fails to consider other char-
acteristics of the hardware implementation, such as its energy
efficiency, latency, throughput, error correction capability
or timing error tolerance. Hence, the resultant implementa-
tion may not achieve the desired hardware specifications or
BER performance. Motivated by this trend, we conceived the
design approach of Figure 30 for improving the tolerance of
STDs to timing errors. In this case, the design guidelines of
Figure 30 may be interpreted as follows.
1) As described in Section V and observed in Figure 20,

power supply variations was identified as the most detri-
mental cause of both timing errors and metastability
in the STD. Hence we have to conceive measures to
mitigate the catastrophic propagation of metastabiliy
through the decoder.

2) The employment of synchronizers is recommended as
the error-tolerant design technique for mitigating the
catastrophic propagation of metastability, as detailed in
Section V-A.

3a) However, as portrayed in Table 1 and Figure 17, the
employment of synchronizers increased the chip area,
the latency as well as the energy consumption and
reduced the throughput.

4a) Therefore, an additional set of EMs may be advocated
for enabling the simultaneous decoding of two received
frames for the sake of improving the throughput of the
STD, as described in Section V-B.

3b) However, observe in Table 1 and Figure 17 in Section VI
that the additional set of EMs increased the chip area, the
latency and the energy consumption of the design.

4b) Therefore clock gating is proposed in Section V-B for
reducing the chip area, latency and energy consumption
of the STD.

4c) Additionally, in SectionV-C, TFM-based EMswere pro-
posed for reducing the chip area, the latency as well as
the energy consumption of the design and for improving
both the throughput as well as the BER performance, as
portrayed in Table 1 and Figure 17.

4d) Finally, in Section V-D, pipelining was recommended
for further improving the BER performance of the
STD in the presence of timing errors, as observed
in Figures 21 and 22.
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Building on this, we have characterized the trade-offs
among the chip area, energy efficiency, latency, through-
put and error correction capabilities of different timing-error
tolerant STDs, when they operate at two different nominal
supply voltages. Our simulations in Figures 21 and 22 that
the proposed STD (TFM-5, 1.20 V, 2.2 ns, 7%) offers the
same BER performance as the state-of-the-art STD (SR-1,
1.20 V, 4.0 ns, 0%) design of [36], despite suffering from
power supply variations, while increasing the throughput
by a factor of 2.42, reducing the latency by a factor
of 0.83 and consuming only 0.25× the energy of that
of (SR-1, 1.20 V, 4.0 ns), without increasing the chip area.
Furthermore, this trade-off analysis technique may be applied
to the design of other timing-error-tolerant iterative decoder
implementations in order to determine the most desirable
configuration.

We have also proposed modifications to the state-of-the-
art STD that significantly reduce the average number of
DCs required for successfully decoding a frame. This has
been achieved with the aid of OR gates for the approximate
stochastic addition of BSs, as well as a reduced-complexity
TFM and a single output DFF involved for the estimation
of the decoded bit, as described in Section VIII. As a result
of these modifications, the proposed RLSTD improves the
latency, throughput and energy efficiency of the state-of-the-
art STD by an order of magnitude, without imposing an
area extension and without degrading the error correction
capabilities of the STD, as shown in Figures 27 and 28.
Our simulations in Figure 29 show that the proposed 50-bit
RLSTD exhibits an improved BER, reduces the number of
DCs by a factor of 0.035×, the latency by a factor of 0.015×
and the energy consumption by a factor of 0.005×, while
increasing the throughput 65× and employing only 0.23×
the chip area of the state-of-the-art SR-1 [36]. Similar trends
were found for the proposed 200-bit RLSTD, which offers a
throughput that is 78× the throughput of SR-1. Based on the
results presented in Section X, we conclude that the proposed
RLSTD is particularly suited for short-frame-length, low-
latency communication systems, such as those required in
next-generation MCMTCs.

Finally, our future work will combine the proposed tech-
niques for improving both the timing-error tolerance and
the processing latency of the STD. More specifically, we
will employ the design flow of Figure 30 for enhancing
the robustness of the proposed RLSTD, by determining the
causes and effects of timing errors and by applying as well as
critically appraising the corresponding error-tolerant design
techniques.
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