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ABSTRACT Stroke is a worldwide healthcare problem, which often causes long-term motor impairment,
handicap, and disability. Optical motion analysis systems are commonly used for impairment assessment
due to high accuracy. However, the requirement of equipment-heavy and large laboratory space together
with operational expertise makes these systems impractical for local clinic and home use. We propose an
alternative, cost-effective and portable, decision support system for optical motion analysis, using a single
camera. The system relies on detecting and tracking markers attached to subject’s joints, data analytics for
calculating relevant rehabilitation parameters, visualization, and robust classification based on graph-based
signal processing. Experimental results show that the proposed decision support system has the potential
to offer stroke survivors and clinicians an alternative, affordable, accurate, and convenient impairment
assessment option suitable for home healthcare and telerehabilitation.

INDEX TERMS Rehabilitation, graph-based signal processing, video analytics.

I. INTRODUCTION
Emerging multimedia-based motion analysis systems with
optical equipment are being increasingly used for peri-
odical limb impairment assessments during rehabilitation
for patients who survived stroke, a world-wide healthcare
problemwhich can cause long-termmotor impairment, hand-
icap, and disability to survivors [3], [4]. Autonomous mecha-
nism of these systems with high-fidelity outcome measure is
welcomed by clinical practitioners, significantly improving
the objectivity and accuracy compared to classical visual
observation. For example, laboratory-based optical motion
analysis systems [5] with high accuracy and real-time track-
ing features are available so that interventions such as exer-
cise or ankle foot orthoses can be optimally prescribed. These
systems capture motion patterns, namely, joint angles [6], [7],
by tracking reflective markers fixed to the skin overlying
anatomical landmarks of the subject using multiple infrared
cameras, and provide visualization for diagnosis, however,
with the sacrifice of the cost, space, and portability, which
is thus impractical for local clinics and home use.

In our previous conference paper [8], we propose a cost-
effective and portable single-camera motion analysis system
for lower-limb (gait) analysis to track three bullseye markers
attached to the pelvis and legs. The proposed system shows a
significant improvement with respect to a joint color-texture
histogram (JCTH) approach [9] and a Tracking-Learning-
Detection (TLD) scheme [10]. The tracking result is then used
for manual impairment assessment of stroke survivors via
gait analysis.

Motivated by the fact that arm impairment is also a
common outcome of stroke [4], [11], building on [8], in
this paper, we propose a decision support system for upper
limb motion analysis that simultaneously tracks a number
of identical bullseye markers, and maps the trajectories of
the tracked markers into meaningful information used for
rehabilitation assessment. The system comprises a single
high-speed camera together with a visualisation module that
enables navigating through the captured frames, selecting
parameters to present, and comparison with the previous
results.
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The data analytics part of our solution can be
used independently of the capturing module to process
autonomously existing reach-to-grasp (RTG) video datasets
(see Section III), that contain recordings of RTG movements
in the sagittal plane withmultiple bullseyemarkers adhered to
the joints of a human body, which are a common alternative
to 3D datasets. Note that in 2D video-based clinical kine-
matic analysis [12], as in the RTG datasets, conventionally
black-and-white bullseye markers are used, attached to the
skin overlying anatomical landmarks of the subject’s pelvis,
cervical spine, shoulder, elbow, and wrist (see Fig. 1(a)).

FIGURE 1. Experimental setup. (a) Camera scene. (b) Angles of interest.

The motion of the subject’s upper limb kinematics is
captured by tracking the markers frame by frame and
autonomously computing joint angles (see Fig. 1(b)). Once
the joint angles have been extracted in each frame, they are
used as classification features to automatically estimate the
level of impairment [13]. Data classification using regulariza-
tion on graphs [14]–[16] is proposed in [17], where it is shown
that graph-based supervised binary classification shows com-
petitive performance to conventional classifiers, such as
Support Vector Machine (SVM) [18], [19] and neural
networks, and good robustness to noise in the training dataset.
The main idea is to first represent the dataset to be classi-
fied as a signal indexed by a graph, whose vertices corre-
spond to samples in the dataset and weighted edges reflecting
similarities or correlation between vertices, then minimize
total variation on a graph [20] based on a binary mapping
of this graph. In this paper (see Section II-C), we propose
two regularization on graph signals (RGS) based multi-class
classification methods, by first constructing graphs for the
motion patterns obtained as a result of object tracking, and
then designing binary mappings of these graphs using graph-
based tools following [17] for minimization of the total
variation on graphs [20]. We also propose a third RGS multi-
class classification method, by first constructing a graph
following [17], and then, designing a multi-class mapping
of this graph, unlike binary mappings in [17] and [20], and
minimize the total variation on graph.

We validate the proposed system with a standardized,
multi-infrared-camera Vicon system using a Bland-Altman
plot [21], to evaluate the amount of agreement between the
two systems. Experimental results show that the proposed
system can capture upper limb motion patterns accurately,
explicitly classify participants into a healthy group and

different stroke groups with levels of impairment [13],
provide visual and written feedback, and thus has potential to
offer stroke survivors and clinicians an alternative, affordable,
accurate and convenient impairment assessment option.

In summary, the main contributions of the paper are:
• Novel multi-class and binary RGS classification
methods for rehabilitation diagnostics.

• Effective multimedia-based decision support tools for
processing autonomously large RTG video datasets.

• Overall plug-and-play cost-effective motion analy-
sis system suitable for home use, including data
capture, processing and visualisation blocks, tested
on the patients and designed with the feedback from
practitioners.

The remainder of this paper is organized as follows.
In the next section we discuss each component of the pro-
posed system. In Section III, we present the experimental
results — tracking performance comparison with [9], [10],
and [22], angle accuracy validation with state-of-the-art
motion analysis system Vicon, and subject classification
using RGS. We conclude this paper in Section IV.

II. PROPOSED SYSTEM
The aim of the proposed system is to autonomously assess
the upper limb motor condition of the subject by accurately
and simultaneously tracking the multiple bullseye markers
adhered to the joints and provide visual and written feedback
to stroke survivors and clinicians.

Impairment of the upper limb following a stroke can be
assessed in a number of ways [13], by measuring physical
attributes such as range of motion, strength and co-ordination
or more commonly by quantitatively assessing the ability to
carry out a functional task such as the RTG movement [23],
shown in Fig. 1(a), where the subject picks up a cup from
the desk, carries it towards the mouth and puts it back on the
desk. Three joint angles can be analysed during this activity,
namely, (i) elbow movement defined by a supplementary
angle to the shoulder-elbow-wrist angle denoted by α shown
in Fig. 1(b); (ii) trunk-tilt defined by the pelvis-cervical spine-
vertical angle β; and (iii) shoulder movement defined by
an angle γ at the intersection of pelvis-cervical spine and
shoulder-elbow lines.

To calculate the relevant joint angles, we track, through the
captured frames, five bullseye markers adhered to the skin
overlying anatomical landmarks of the pelvis, cervical spine,
shoulder, elbow, and wrist of the participant, highlighted by
yellow squares in Fig. 1(a). The tracked motion patterns are
then used to calculate the three angles in each frame, which
are subsequently used for classification.

The main components of the proposed human upper limb
motion analysis procedure to be described next are shown
in Fig. 2.

A. BULLSEYE MARKER TRACKING
Simultaneously tracking all bullseye markers is challeng-
ing due to the following marker features: 1) The markers
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FIGURE 2. Unit blocks of the proposed decision support system.

clinically used in 2-D video-based kinematic analysis are
identical and are in close proximity, which can easily cause
tracking confusion. 2) The size, orientation, and appear-
ance of each marker could change due to joints movement,
and thus the tracker should be capable of handling such
non-rigid objects. 3) These markers move along with the limb
motion of the subject, i.e., small-size target objects move with
a large moving object that can be assumed as the appearance-
changing background [24], which potentially distract marker
tracking which reduces the tracking accuracy, and thus
the tracker needs to address the object-on-object tracking
problem.

There is a substantial amount of work on object tracking,
and good surveys can be found in [24]–[27]. Next, we review
the work most relevant to ours. Broida and Chellappa [28]
represent each object with object-correspondence-points for
point tracking. However, this approach cannot handle non-
rigid objects. For silhouette tracking, [29] handles non-rigid
objects well by building online shape priors and implement-
ing object contour evolvement using energy minimization in
gradient descent direction for target objects. However, [29] is
only capable of tracking objects that are very different.
Ning et al. [9] embark from kernel tracking, jointly applies
local binary pattern texture with color histogram which effec-
tively extracts the features of the edges and corners within
the target region, and adopts mean-shift with the above
JCTH approach and acquires robust performance for track-
ing objects that have similar color appearance to the back-
ground. However, the object-on-object problem significantly
affects the tracking accuracy and can cause tracking failure.
Kalal et al. [10] also exploit kernel tracking by online learning
and binary classification within a TLD scheme to update
the object template adaptively. i.e., [10] is robust for track-
ing non-rigid objects. However, online learning in [10] is
achieved by searching a global frame, which means [10]
cannot be directly used for simultaneously tracking multi-
ple objects. ‘‘Struck’’ (STR) [22] is the best tracker among
19 state-of-the-art trackers tested in [27] and a highly compet-
itive online tracker gauged in [25], [30], and [31]. The track-
ing scheme in [22] is based on structured output prediction
with kernels. Still, [22] cannot handle out-of-plane rotation
well, and there is no object-dynamic model incorporated
into this adaptive tracking-by-detection framework. Further-
more, [32] proposes a particle swarm optimization method,
and [33] a particle filter-mean shift joint tracking algorithm,

both ofwhich achieve simultaneousmultiple objects tracking.
However, these two methods cannot address the object-on-
object problem.
In the following, we describe the proposed method that

addresses some of the shortcomings of the above approaches
for the RTG dataset. First, as in [8], the centre coordinates of
all bullseye marker templates are selected via mouse-click on
our developed user interface in Frame 1 (see Fig. 3) (the only
manual effort during the entire process). All markers are then
tracked simultaneously using a Discrete Kalman FIlter (DKF)
[34], [35]. First the position and size of a rectangular Search
Area (SA) for each marker is set in each frame based on the
output of DKF. Then, for each marker, block matching is per-
formed within the SA using structural-similarity (SSIM) [36]
to identify a block most similar to the marker template.

FIGURE 3. System user interface.
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ẑji = [cji, r

j
i ], where c

j
i and r

j
i denote the column and row of

the centre of Marker j in Frame i, respectively.
We use DKF to determine the position and size of SA for

all markers in each frame, where ŝi = [ŝ1i , ŝ
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and observation model of the DKF, respectively. In partic-
ular, the prediction phase is given by: ŝ−i = Tŝi−1,P−i =
TPi−1TT

+ O, where ŝ−i is the a priori estimate
of ŝi in Frame i, ŝi−1 is the a posteriori estimate,
T = diag(T1,T2,T3,T4,T5) is the state transition matrix
with Tj = [1, 0, t, 0; 0, 1, 0, t; 0, 0, 1, 0; 0, 0, 0, 1], where
t is the duration of one frame,P−i is the a posteriori covariance
matrix, and O is the process noise covariance matrix pre-
computed by running the filter off-line based on the assump-
tion that O is time invariant [34].

The correction phase is given by: Ki = P−i Z
T/(ZP−i

ZT
+ E), ŝi = ŝ−i +Ki(ẑi − Zŝ−i ),Pi = (I−KiZ)P−i , where

Ki is the Kalman gain, Z = diag(Z1,Z2,Z3,Z4,Z5) is
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the observation matrix which translates ŝi to ẑi, with
Zj = [1, 0, 0, 0; 0, 1, 0, 0], and E is the measurement error
covariance matrix pre-computed by running the filter off-line
based on the assumption that E is constant across all
frames [34].

We initialize the DKF by ŝ−1 = [ŝ10, ŝ
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The size of each SA is initialized to b1.4qc × b1.4qc
pixels, given Marker j’s size is q × q pixels, and is dynam-
ically updated, for each marker, in each frame according to
u
SAj
i and v

SAj
i firstly by adjusting the width (horizontally) and

then updating the height (vertically). If u
SAj
i t ≥ 0 the width
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horizontally towards the right, that is, the right edge of the
SA is shifted to the right; otherwise, the width of the SA is

increased to b1.4qc + u
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the height of the SA is increased to b1.4qc + v
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down, that is, the bottom edge is shifted down; otherwise, it is
increased by the same amount vertically upwards by shifting
the top edge by v

SAj
i t .

Once SA is set, we use SSIM [36], an image quality
assessment algorithm based on image formation, to detect the
marker within each SA. In particular, SSIM [36] combines
the luminance, contrast, and structure comparisons between
a candidate block (always of the same size as the marker tem-
plate block) and the marker template, and outputs a similarity
value between 0 and 1. Using full motion search, we search
for the candidate block within SA which has the maximum
similarity value with the marker template. The centre coor-
dinate of the found marker is the new marker position and is
used to update the observation model of the DKF, ẑi, which is
in turn used to update the dynamic model, ŝi.
In summary, the advantage of the proposed approach

comes from the proposed dynamic SA position and size
update and marker detection via block matching using
SSIM [36].
We note that only the waist marker can sometimes (rarely)

be occluded, in which case we perform the same procedure
as in [8]. For the upper limb motion analysis, the centre
coordinates of pelvis, cervical spine, shoulder, elbow, and
wrist markers obtained by marker tracking are next used for
visualization and autonomous joint angle calculation.

B. AUTONOMOUS JOINT ANGLE CALCULATION
AND VISUALIZATION
During the tracking process, three joint angles - elbow move-
ment α, trunk-tilt β, and shoulder movement γ , are, auto-
matically and in real time, calculated on a frame-by-frame
basis according to the centre coordinates of the detected
markers. We record the marker trajectories by mapping the
centre coordinates of all detected markers into a single frame.

By working with practitioners and taking their feedback, we
design a user interface in order to visualize all marker trajec-
tories, and joint angles and check accuracy w.r.t benchmarks,
as shown in Fig. 3. Via the interface, one can choose the
video to be processed, and select (reselect if needed) the
marker templates by mouse-click on the video frame shown
in the ‘‘Current frame’’ panel. The ‘‘Template’’ panel then
displays the appearance and centre coordinates of the marker
templates. The marker tracking process begins by clicking
‘‘Start tracking’’, followed by showing appearance of the
detected marker blocks in the ‘‘Tracking’’ panel and marker
trajectories and joint angles, where Vicon 3D is the original
tracking result from the Vicon system and Vicon 2D projects
the 3D result to one of the three orthogonal Vicon system
planes that is closely parallel to the plane of camera scene [8]
in the ‘‘Result’’ panel.

Fig. 4 shows the marker trajectories of one trial from a
healthy subject and one from a stroke survivor. The corre-
sponding joint angles for these examples shown in Fig. 5
indicate that the joint angle plots of the proposed method
closely follow those of the benchmarks Vicon 2D and 3D.

FIGURE 4. Marker trajectories. (a) Healthy subject. (b) Stroke survivor.

FIGURE 5. Automatically calculated joint angles (in degrees) on the upper
limb motion. Top row: elbow movement α; middle row: trunk-tilt β;
bottom row: shoulder movement γ . (a) Healthy subject. (b) Stroke
survivor.

C. SUBJECT CLASSIFICATION
The aim of subject classification is to explicitly classify all
participants into a healthy group and a patient group (binary
classification) or a healthy group and several stroke groups
with different levels of impairment [13] using the variations
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of the three tracked joint angles. Building on the principles of
RGS [17], [20], we attempt to solve these binary and multi-
class classification problems. Since binary classification is a
special case of the multi-class classification, in the follow-
ing we describe only the proposed multi-class classification
schemes.

As classification features we use the standard deviation that
is able to quantify the variation of a joint angle over one trial.
RGS is achieved by constructing a graph signal — using

vertices to represent data elements with weighted edges con-
necting these vertices, and then applying regularization on the
constructed graph signal to find an updated signal with mini-
mum variation [17], [20]. We propose three RGS multi-class
classification methods: ‘‘one-against-one’’ (OAO-RGS) —
classify two classes at a time and next use the voting strategy,
suggested in [37], to designate the final class for each sample,
‘‘one-against-all’’ (OAA-RGS)— consider one class at a time
and group the other classes into a single class, and ‘‘once-for-
all’’ (OFA-RGS) — classify all classes at once.
For OAO-RGS, we first design l(l − 1)/2 binary clas-

sifiers, where l > 2 is the number of classes. Each
classifier is trained using data from two of the l classes.
In particular, given a set of data from Classes a and b:
{xabi , yi}, yi ∈ {+1, 0,−1}, x

ab
i ∈ RV , i = 1, . . . ,D, where

all data elements with known labels construct the set of
two-class training data: {xabi , yi}, yi ∈ {+1,−1}, x

ab
i ∈ RV ,

i = 1, . . . ,N ,N < D, where D and N are the total
number of samples and the number of training samples,
respectively. For the classifier on data from Classes a and b,
we define a connected, undirected, and weighted graph
Gab = (X ab, ζ ab, Jab), where X ab

= {X ab
1 , . . . ,X

ab
D } is a

set of vertices corresponding to dataset xab = {xabi , . . . , x
ab
D },

ζ ab denotes a set of edges, and Jab denotes a weighted
adjacency matrix. In particular, the weight Jabi,j on edge ζ abi,j
indicates the graph similarity of vertices X ab

i and X ab
j , and is

commonly defined by a Gaussian weighting function as:

Jabi,j =

exp(−
∥∥∥xabi −xabj ∥∥∥22

2θ2
) if

∥∥∥xabi − xabj
∥∥∥2
2
≤ τ,

0 otherwise,
(1)

where θ denotes the Gaussian standard deviation, and τ is a
threshold on the squared Euclidean distance of two vertices
X ab
i and X ab

j . Furthermore, we define a mapping of the
graph Gab as follows: hab: X ab

→ R, X ab
n 7→ habn , or

hab = (hab1 , . . . , h
ab
D )T ∈ RD, where habi corresponds to

vertex X ab
i and data element xabi , and is given by: habi = 1

if X ab
i belongs to Class a, −1 if X ab

i belongs to Class b, and
0 if class is unknown.

Next, as in [17], we use the total variation on a graph (TVG)
to measure the total variation of Gab:

TVGab (h
ab) =

1∥∥hab∥∥22
∥∥∥∥∥hab − 1∣∣ηabmax ∣∣Jabhab

∥∥∥∥∥
2

2

(2)

where the product h̃ab = Jabhab is the output of the
graphshift [17], a nontrivial graph filter; ηabmax is an eigen-
value of Jab that has the largest amplitude with constraint
|ηabmax | ≥ |η

ab
i |, 1 ≤ i ≤ D. The objective of the classification

on TVGab is to update all unknown labels within hab to get
the lowest total variation on a graph [20], that is, a minimum
TVGab (h

ab): hab
′

= arg min
hab∈RD

TVGab (h
ab).

We apply the above OAO-RGS classification procedure
using all l(l − 1)/2 binary RGS-based classifiers and use the
voting strategy of [37] to designate classes.

For OAA-RGS, we design l binary classifiers. Each clas-
sifier is for data from one of the l classes and the group of
remaining l−1 classes. In particular, we follow the procedure
on graph construction as above, and define a graph Gall

for data from all l classes. We then defined l different h’s,
i.e., l different mappings of the same graph Gall , for data
from each of the l classes, and minimize each corresponding
TVGall (h) to designate the class labels for each set of testing
samples.

For OFA-RGS, we adopt the same graph Gall as used
in OAA-RGS. Instead of using the binary mapping hab,
we define a multi-class graph mapping hall for Gall

(see Section III-C). We then minimize the total variation
on Gall , that is, to get a minimum TVGall (h

all) and designate
the class labels.

We discuss the multi-class classification process on the
targeted upper limb motion analysis, and evaluate the perfor-
mance of above three RGS methods, in Section III-C.

III. EXPERIMENTAL RESULTS
In this section, we report the following experimental results:

• Comparison of bullseye marker tracking performance of
the proposed DKF-SSIM tracking with four benchmark
tracking methods JCTH [9], TLD [10], STR [22], and
DKF-SSIM without the SA update (DKF-SSIMWSA).

• Separate validation of the proposed system with Vicon
2D and Vicon 3D (see Section II-B) for the group of
healthy subjects and the group of stroke survivors since
the stochastic movements of the stroke survivors make
tracking more challenging.

• Evaluation of binary and OAO-, OAA- and OFA-RGS
multi-class classification methods (Section II-C) for
classifying all subjects into healthy and stroke groups.

Each video is captured using a digital camera EX-FH20
EXILIM (Casio Computer Co., Ltd., Tokyo, Japan) with
360×480 resolution.We adapt the camera calibrationmethod
from [38], where the coefficients of the radial distortion
are obtained by solving a nonlinear minimization problem
with the Levenberg-Marquardt Algorithm [39], to correct
lens distortion of the acquired video frames before marker
tracking. For benchmarking and validation, we simultane-
ously capture video with the 12-camera Vicon MX Giganet
6×T40 and 6×T160 (Vicon Motion Systems Ltd., Oxford,
UK) optical motion analysis system (100fps), that is recog-
nised as the state of the art [5] and commonly used in clinical

654 VOLUME 4, 2016



C. Yang et al.: Human Upper Limb Motion Analysis for Post-Stroke Impairment Assessment

rehabilitation practice. Fig. 1(a) shows a sample frame, where
one out of the 12 Vicon infrared cameras is highlighted by a
red square.

The proposed system is validated on 10 participants,
including 5 healthy subjects and 5 stroke survivors. Each of
the 10 participants performed 5 RTG trials, i.e., a total of
50 video clips are used, with a frame rate of 100fps for fair
comparison with Vicon. The size of each marker template
is always q × q = 11 × 11 pixels, which was heuristically
found for optimal appearance representation of each marker
that results in best tracking accuracywithout sacrificingmuch
computation cost.

A. BULLSEYE MARKER TRACKING
PERFORMANCE COMPARISON
We randomly choose 1 of 5 trials for each participant, and
select bullseye marker templates from the first frame of the
corresponding video clip. Next, for eachmarker, wemanually
label the marker blocks in all frames of the video clip, with
the same size as the marker template, as the ground truth (GT)
to assess the bullseye marker tracking performance of all five
methods. In the DKF-SSIMWSA approach, for each marker,
we fix the size of SA at b1.4qc × b1.4qc and let the centre
coordinate of the SA in the current frame be equal to the
coordinate of the centre of the same marker detected in the
previous frame.

We assess the performance by assigning True
Positive (TP) if the detected marker block overlaps no less
than 40% of the corresponding GT, and assigning False
Positive (FP) otherwise. Furthermore, we define that a
Perfectly Detected Marker (PDM) is assigned if the detected
marker block overlaps no less than 90% of the correspond-
ing GT. Let F be the total number of frames. Then, we define
Precision=TP/(TP+FP), Recall=TP/F, and Perfect Marker
Rate (PMR)={total number of PDMs}/F, where Precision and
Recall indicate time proportion a tracking algorithm tracks
the targeted marker; PMR indicates the accuracy of detecting
the centre coordinate of the marker block.

TABLE 1. Bullseye marker tracking on healthy subjects.

TABLE 2. Bullseye marker tracking on stroke survivors.

Tables 1 and 2 show the performance of the five tracking
algorithms for bullseye marker tracking on healthy subjects
and stroke survivors, respectively. JCTH [9] cannot recover

from tracking failure caused by the object-on-object problem
(see Section I). TLD [10] updates the marker model to help
recover from the tracking failure, resulting in much higher
scores than JCTH [9]. STR [22] outperforms TLD [10], but
still cannot get marker centre accurately during out-of-plane
rotation which commonly occurs when performing the RTG
movement (see Fig. 6 for an illustration of the hand-labelled
groundtruth shoulder and wrist markers over one trial).

FIGURE 6. Hand-labelled groundtruth shoulder and wrist markers.
(a) Shoulder marker. (b) Wrist marker.

The results also show that the SA update in each frame
brings a 15-20% improvement in PMR, at the cost of a
higher tracking complexity. Indeed, the average tracking and
processing time per frame was 35msec and 43msec, for
DKF-SSIM WSA and the proposed DKF-SSIM, respec-
tively, measured in Matlab R2013b on a laptop running
Windows 8.1, with Core i7 2820QM 2.3GHz processor
and 16GB RAM.

FIGURE 7. Illustration of the tracking performance of the proposed
DKF-SSIM and STR [22]. CC=column-coordinate. CCG=column-coordinate
groundtruth. AG=angle groundtruth. (a) Wrist marker CC. (b) Elbow
movement (degree).

The proposed DKF-SSIM tracking-by-detection scheme
is best suited for bullseye marker tracking due to its ability
to incorporate dynamic and measurement models during
tracking and combining the luminance, contrast, and structure
features of the marker for detection. Since the position of the
centre coordinate of the detected marker block has significant
influence on the accuracy of the joint angle calculation,
none of the four benchmark tracking methods are suited
for autonomous joint angle calculation due to their resulting
low PMR. To further demonstrate this, we show the tracking
performance of the proposed DKF-SSIM and STR [22], the
best benchmarking scheme among JCTH [9], TLD [10] and
STR [22] according to Tables 1 and 2, on one trial of a
healthy subject in Fig. 7, where Fig. 7(a) shows the column-
coordinate of the wrist marker given the benchmarking hand-
labelled column-coordinate groundtruth, and Fig. 7(b) shows
the corresponding elbow movement angle (degree) given
the benchmarking angle groundtruth calculated from the
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hand-labelled groundtruth shoulder, elbow, and wrist
markers. The corresponding error is shown in Table 3.

TABLE 3. Tracking error in Fig. 7. CC=column-coordinate.

B. ANGLE ACCURACY VALIDATION
We validate the proposed DKF-SSIM tracking with Vicon 2D
and 3D using Bland-Altman plot [21] for evaluation of the
limits of agreement. Bland-Altman plot is a typical clinical
measurement scheme to evaluate a new measurement system
based on an established one. In particular, let vectors Q1
and Q2 contain all measurements from Methods 1 and 2,
respectively. For each value Q1(i) ∈ Q1 and corresponding
Q2(i) ∈ Q2, Bland-Altman plot is constructed by assigning
[Q1(i)+Q2(i)]/2 as the abscissa value, andQ1(i)−Q2(i) as the
ordinate value. Next, we calculate the mean difference (MD)
and the standard deviation of Q1 and Q2, followed by lower
and upper 95% confidence interval (LCI, UCI) and a linear
fit, all of which are based on the constructed Bland-Altman
plot, for complete limits of agreement evaluation.

The dataset used contains 25 trials from healthy sub-
jects and another 25 trials from stroke survivors. We group
all 25-trial results of healthy subjects (stroke survivors)
together forming three vectors QαX, QβX, and QγX, where
X = {P,V2,V3}, denotes (P)roposed, Vicon 2D (V2)
or 3D (V3).

FIGURE 8. Bland-Altman plots (in degrees) of all healthy subjects.
Left column: P vs. V2. Right column: P vs V3. Top row: elbow movement α;
middle row: trunk-tilt β; bottom row: shoulder movement γ .

Figs 8 and 9 show the Bland-Altman plots based on above
construction process for the healthy subjects and stroke sur-
vivors, respectively. Table 4 shows the corresponding limits
of agreement (LOA). Note that good LOA is indicated by
small MD, narrow 95% CI, and a linear fit that is close to
zero [21]. Since the deviation between the elbow movement
α plane and camera scene plane (CSP) is more notable than
that between the trunk-tilt β plane and CSP and that between
the shoulder movement γ plane and CSP, validation of P and
V3 on α shows a relatively large MD and wide 95% CI.

FIGURE 9. Bland-Altman plots (in degrees) of all stroke survivors.

TABLE 4. Limits of agreement (in degrees) between P and V2, and
between P and V3 for all participants.

Otherwise, P and V3 show good LOA on β and γ ; P and V2
show good LOA for all motion patterns. In general, 3D infor-
mation is needed in diagnostic systems. However, the above
validation incorporates loss of 3D information, indicating that
2D suffices for the targeted RTG sagittal movement analysis.
This is in accordance to the prior literature [40].

C. SUBJECT CLASSIFICATION
As classification features we use the standard deviation of all
three joint angles over one trial. That is, each data sample
(σαi , σβi , σγi ) is a 3-dimensional feature vector that contains
standard deviations of the joint angles α, β, and γ , where
σαi , σβi , and σγi are the standard deviations during one trial
of angles α, β, and γ , respectively. We evaluate the perfor-
mance of the classification algorithms under different sizes
of the training and testing data by using following metric:
Classification Accuracy = {Number of correctly classified
samples}/{Number of testing samples}.

First, we perform binary classification, whose task is
to group all subjects into two groups: healthy and stroke
patients. We compare the proposed RGS binary classifier to
that of linear and non-linear (we use a Gaussian Radial Basis
Function (rbf) kernel with scaling factor ρ = 1) SVM
binary classifiers, denoted as l-SVM and rbf-SVM, respec-
tively. The results are given in Fig. 10 expressed as Clas-
sification Accuracy. In particular, we assume that between
4% and 80% of randomly selected labels are known for train-
ing, perform 10,000 tests, and then get the averaged result.
It can be seen that RGS shows competitive performance with
l-SVM when the percentage of known labels is above 40%
at lower complexity.

Next, we turn to the multi-class classification, whose task
is to classify further patients into different recovery levels.
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FIGURE 10. Binary classification accuracy of testing data.

Table 5 shows the levels of upper limb impairment for 5 stroke
participants, reported from a recruited rater, a biomechanics
researcher with over ten years of experience in biomechanics
data analysis, by observational assessment [13], [41]. Thus,
we define l = 5 classes for all experimental data: Healthy,
Stroke with ordinal scale 1 (OS 1), OS 2, OS 4, and OS 5,
denoted as Class q, q = 1, . . . , 5, respectively.

TABLE 5. Levels of impairment of stroke survivors.

For OAO-RGS, we design l(l−1)/2 binary classifiers. For
each classifier, we first define a graph for data from two of
the l classes: a connected, undirected, and weighted graph
G = (X , ζ, J), with vertices X = {X1, . . . ,XD} correspond
to the dataset x = {x1, . . . , xD}, edges ζ , and a weighted
adjacencymatrix J defined using (1), with θ = 1 and τ = 100
which balances the number of non-zero entries in J and com-
putation time, where xi = (σαi , σβi , σγi ). Next, we define h,
i.e., the mapping of the graph G, and minimized TVG of G
as defined in (2). Finally, we use the voting strategy [37] to
designate groups for all testing data.

For OAA-RGS, we design l binary classifiers. For each
classifier, we first define a graph Gall for data from all
l classes with the same parameter setting θ = 1 and τ = 100,
for J, then defined h for Gall , followed by minimization of
each corresponding TVGall (h) and the voting strategy [37] to
designate the class labels for each set of testing samples.

For OFA-RGS, we apply the same graph Gall as used in
OAA-RGS, and defined a multi-class graph mapping hall of
Gall as follows: halli = −7 + 2q if Xi belongs to Class
q, q = 1, . . . , 5, and 0 if class is unknown.

We then perform hall
′

= arg min
hall∈RD

TVGall (h
all) for class

labels of all testing samples.
For benchmarking, we adopt ‘‘one-against-one’’ multi-

class SVM classification [37], [42], [43], a competitive
approach among five multi-class SVM classification methods
compared in [44]. We first train l(l−1)/2 binary linear / non-
linear (we use rbf kernels with scaling factor ρ = 1 which
gives best classification results without overfitting) SVM clas-
sifiers, and then classify all testing data by using voting strat-
egy in [37], denoted as OAO-l-SVM and OAO-rbf-SVM,
respectively.

We evaluate the above 5 multi-class classification methods
using k-fold cross-validation adapted from [45]. In particular,

we set k = 5, i.e., 4 folds are used for training and the last
fold is used for evaluation. We repeat this process k times,
leaving one different fold for evaluation each time. The
ith process outputs a confusion matrix of data counts, denoted
as Ci

c = [ci11, . . . , c
i
1l; . . . ; c

i
l1, . . . , c

i
ll], whose columns

represent the classifier prediction, and rows represent the
true classes, e.g., the value of index ciij in Ci

c increases by 1

if a data sample that belongs to Class i is classified as
Class j. k-fold cross-validation finally combines all Ci

c’s into
a single confusion matrix of data counts Cc with indices
cij =

∑k
i=1 c

i
ij, and outputs the corresponding accuracy

(acc) given by: acc =
∑k

i=1 cii/
∑k

i=1
∑k

j=1 cij. Note
that Cc can be alternatively represented as a confusion
matrix of recognition rates, denoted as Cr = [Cc(1, :)/∑

Cc(1, :); . . . ;Cc(k, :)/
∑

Cc(k, :)].

FIGURE 11. Multi-class classification accuracy of testing data.

TABLE 6. k-fold cross-validation result.

Next, we show the evaluation result of the above 5 multi-
class classification methods using Accuracy in Fig. 11 (aver-
aged over 10,000 runs based on the assumption that between
20% and 80% of randomly selected labels are known for
training) and k-fold cross-validation in Table 6, where tr and
te denote the average execution time for training and testing
during the ith process of k-fold cross-validation, respectively.
OFA-RGS is not competitive with any of above 4 methods.
The performance of OAO-RGS is between SVM methods
and OAA-RGS when the percentage of known labels is
above 40%. SVM methods and OAO-RGS achieve the high-
est acc, where OAO-RGS performs faster than both SVM
methods. Indeed, OAO-RGS performs over 100% and 15%
faster, for training and testing, respectively, than the SVM
methods. The overall performance of OAO-RGS indicate that
our decision support system has the potential to accurately
classify participants into a healthy group and different stroke
groups with the aid of levels of impairment [13].

We note that the above multi-class analysis is provided
to demonstrate the potential of the proposed methods,
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since the amount of data is insufficient to make firm
conclusions.
IV. CONCLUSION
Currently available optical motion analysis systems are
expensive and require multiple infrared cameras, large
laboratory space, and operational expertise to assess motor
impairment of a stroke survivor. In this paper we propose and
evaluate an alternative, portable, and cheap, single-camera
decision support system with the following components:
simultaneous multiple bullseye marker tracking, autonomous
joint angle calculation, visualization, and subject classifica-
tion. Validation of the proposed tracking method with the
current state-of-the-art Vicon optical motion analysis system
shows overall good limits of agreement on the upper limb
motion analysis. In addition, we designed three RGS binary
and multi-class classification methods, of which OAO-RGS
has strong potential to explicitly classify participants into
a healthy group and different stroke groups with the aid
of levels of impairment. In practice, for a 10-second trial,
a patient can get his/her upper limb kinematics assessed
in under 2 minutes, given the average processing time
(see Section III-A) per video frame. Experimental results
show that the proposed decision support system can track the
markers with high accuracy, capture the upper limb motion
explicitly, and give stroke survivors and clinicians visual
and written feedback based on classification with the aid of
impairment levels.
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