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ABSTRACT Bilateral teleoperation systems with haptic feedback allow human users to interact with objects
or perform complex tasks in remote or inaccessible environments. Communication delays in teleoperation
systems jeopardize system stability and transparency, leading to degraded system performance and poor
user experience. In this paper, we provide a survey of the model-mediated teleoperation (MMT) approach,
which has been developed to guarantee both system stability and transparency in the presence of arbitrary
communication delays. This survey focuses on two major parts: 1) the historical development of the MMT
approach from the late 1980s to the present and 2) the main challenges facing the design of a reliable MMT
system. Alongwith the discussion of theMMT challenges and the proposed solutions, a series of experiments
has been conducted to compare the performance between the existing techniques and to supply data that were
missing in the previous studies on the MMT approach.

INDEX TERMS Model-mediated teleoperation, tele-haptics, time-delayed teleoperation, stability and
transparency, parameter estimation, haptic data reduction, model update.

I. INTRODUCTION
Remote interaction solutions such as voice or video con-
ferencing have reached a high level of sophistication and
widespread use. While the feeling of being present in a
remote environment is clearly available with these systems,
a complete immersion cannot be realized without the possi-
bility of physical interaction with the remote environment.
To this end, bilateral haptic teleoperation systems have been
developed. These systems supply the user with multimodal
sensor information concerning the remote environment while
commanding a robotic system in the remote space. Haptics,
as an extension of visual and auditory modalities, refer to
both kinesthetic and tactile information and include position,
velocity, force, torque, vibration, etc. In this paper, we use the
word haptic to refer to kinesthetic components such as force
and motion.

Using a teleoperation system with haptic feedback, the
users can thus truly immerse themselves into a distant envi-
ronment, i.e., modify it, and execute tasks without phys-
ically being present but with the feeling of being there.
A typical teleoperation system comprises three main parts:
the human operator (OP)/master system, the teleoperator
(TOP)/slave system, and the communication link/network

FIGURE 1. Overview of a teleoperation system (adapted from [1]).

in between [1]. During teleoperation, the slave and mas-
ter devices exchange multimodal sensor information over
the communication link. As illustrated in Fig. 1, the slave
robot follows the received position or velocity commands
sent by the master. The haptic, visual, and audio signals
captured by the sensors on the slave side are sent back
to the master and displayed to the OP. This teleoperation
structure, sending motion (position/velocity) signals and
receiving haptic signals, is referred to as position-force tele-
operation architecture and is widely used [14], [15], [19].
Another teleoperation architecture relevant to this paper is
the position-position structure, where the master sends its
position/motion signals to the slave, and also receives the
slave’s position/motion signals. The haptic feedback is then
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rendered based on the master and received slave motion
signals [18], [41].

Use of haptic feedback, in addition to visual and audio
information increases the sense of being present in the remote
environment [8], thereby allowing an OP to perform dan-
gerous tasks at a safe distance. Applications include the
handling of nuclear/toxic/explosive materials [2], the explo-
ration of space and underwater [3]–[5], and the improve-
ment of a user’s ability to perform complex tasks such as
telesurgery [6] and tele-teaching/tele-training [7]–[11]. For
an overview please refer to [12].

Communication between geographically distributed
master and slave systems over a network is afflicted with time
delay and packet loss. Communication delay normally ranges
from a few milliseconds up to several hundred milliseconds,
depending on distance and the communication infrastructure.
The delay can even increase to several seconds in space
applications. As many studies have shown, even a small
communication delay or packet loss rate in the haptic channel
jeopardizes the system’s stability and transparency [13]. To
guarantee stability and to improve the level of transparency in
the presence of communication unreliabilities, passivity-
based control schemes, such as the wave-variable (WV)
transformation [14]–[16] (see Fig. 2(a)) or the time domain
passivity approach (TDPA) [17]–[19] (see Fig. 2(b)), have
been developed. Ideal system transparency is defined as
a perfect match between master and slave position and
force signals [20], or a match between the environment

FIGURE 2. (a) Passivity-based teleoperation using the wave-variable
transformation. (b) Passivity-based teleoperation using the time-domain
passivity approach. For (a) and (b), the velocity and force signals are
modified to guarantee system passivity. (c) A state-of-the-art
model-mediated teleoperation architecture. The use of the local model
enables non-delayed haptic rendering thus guaranteeing system stability.

impedance and the perceived impedance by the OP [13].
System stability (passivity) and transparency, however, are
conflicting objectives in passivity-based teleoperation system
design [13]. This means that the system gains stability at the
cost of degraded transparency [14], [15], [19], [24], [25].
An overview of passivity-based teleoperation control
schemes can be found in [21]–[23].

Model-mediated teleoperation (MMT) has been proposed
to address both stability and transparency issues in the pres-
ence of communication delays [26]–[28] and packet loss [29].
In the MMT approach, a local object model is employed on
the master side to approximate the slave environment. The
model parameters describing the object in the slave envi-
ronment are continuously estimated in real time and trans-
mitted back to the master whenever the slave obtains a new
model. On the master side, the local model is reconstructed
or updated on the basis of the received model parameters,
and the haptic feedback is computed on the basis of the
local model without noticeable delay (see Fig. 2(c)). If the
estimated model is an accurate approximation of the remote
environment, both stable and transparent teleoperation can be
achieved [27], [30], [31].

Figure 2 shows a comparison between the conventional
passivity-based teleoperation architectures (the WV method
and the TDPA, Fig. 2(a) and 2(b)) and the MMT archi-
tecture (Fig. 2(c)). In the passivity-based architectures, the
control blocks (wave-variable transformation or passivity
observer) ensure system passivity by dissipating system out-
put energy bymodifying the corresponding velocity and force
signals. Additionally, in the TDPA architecture, the computed
system energy needs to be exchanged between the master
and slave. Compared to the passivity-based architectures, the
MMTapproach requires neither amodification of the velocity
and force signals nor the exchange of information about
the system energy. MMT systems do not send the delayed
force signals back to the master. Instead, they generate non-
delayed force feedback based on a local model on the master
side which is an approximation of the remote environment.
The authors of [32] compared 10 different control schemes
including the passivity-based control and predictive control
(an early version of MMT) in terms of their stability region,
position and force tracking, displayed impedance, position
drift, etc.

For the passivity-based architectures, balancing system
conservatism (amount of dissipated energy) and system pas-
sivity is one of the main challenges for achieving high
system transparency [13], [20]. For the MMT architecture,
the challenges are quite different from the passivity-based
architectures. In general, an MMT system requires a fast
and accurate environment modeling method. These modeling
methods include parametric and non-parametric approaches
(see Sec. 3). Besides this, data communication, local model
updating, and stable slave controlling are also important chal-
lenges for MMT (see Sec. 2.2). The number of studies on
MMT and MMT-relevant challenges has rapidly increased in
recent years due to the benefits of MMT in terms of system
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stability and transparency. To the best of our knowledge,
however, a comprehensive survey of MMT does not exist.

In this paper, we present a survey of MMT and summarize
its main challenges. Studies of and corresponding solutions to
these challenges are also discussed. In addition, we present a
series of experiments to compare the performance between
the existing techniques and to supply the data that were
missing in previous studies. As the field of MMT is very
broad, we do not claim this survey to be complete, but its goal
is to cover and highlight the most important issues related
to the MMT approach. Analytic analysis for system stability
and transparency is beyond the scope of this paper. However,
MMT-relevant stability and transparency issues will also be
discussed.

The remainder of this paper is organized as follows.
In Sec. 2, we review the development of MMT and discuss
the challenges facing this technique. In Secs. 3, 4, 5, and 6, we
review the corresponding studies on these challenges. System
transparency of MMT is discussed in Sec. 7. Sec. 8 concludes
the paper and outlines open issues for future studies.

II. DEVELOPMENT AND CHALLENGES OF
MODEL-MEDIATED TELEOPERATION
MMT has been studied by a great number of researchers
since the late 1980s. Different names have been suggested
for the general concept of MMT. Among them, the most
frequently used ones are adaptive impedance-reflecting
teleoperation [26], [33], [34], [36], [38], model-based
teleoperation [39], [40], model predictive/prediction-
based teleoperation [41]–[44], [48], [50], virtual-reality-
based teleoperation [49], and MMT [27], [28], [35], [37].
After more than 25 years of development, some challenges
of MMT have already been intensively studied, while others
are still lacking solutions. In the following, we briefly review
the development of MMT and provide a summary of the main
challenges facing MMT.

A. DEVELOPMENT OF MMT
1) ORIGINS
The key idea of MMT is to use a predicted environment
model on the master side to locally provide a stable and non-
delayed force feedback. The idea of environment prediction
can be traced back to 1957, the year that the Smith Predictor
was developed to eliminate the potential instability caused by
delayed feedback signals [51]. This method, named after its
inventor Otto J. M. Smith, however, was not proposed for
teleoperation systems but for stabilizing a general feedback
control system in the presence of time delay.

The use of prediction of the remote environment for
teleoperation systems originated in the late 1980s. At that
time, the so-called predictive display approach was devel-
oped to visually compensate for the communication delay
[52], [53]. In [52], a computer graphics model of the slave
arm was overlayed on real video images. This allowed the
OP to locally view the motion of the slave robot before it

actually moved and, hence, to avoid possible collisions. An
extension of this idea in [54] additionally provides the user
with a photorealistic view on the remote slave using three-
dimensional (3D) environment reconstruction in combina-
tion with texture-mapping. A predictive display with force
feedback for teleoperation systems was presented in [40]
by Kotoku. The force signals were generated based on a
predefined spring-damping model.

In 1989, Hannaford [26] proposed an online environment
estimation scheme for teleoperation systems, called bilateral
impedance control. This concept of using an online estimated
environment model to provide non-delayed force feedback
signals is very similar to the state-of-the-art MMT approach.
Hence, we consider the structure proposed in [26] to be the
first prototype of MMT. The online estimation algorithm
focused on estimating the impedance of the OP and the envi-
ronment (H-matrix). As illustrated in Fig. 3, the estimator cal-
culates the applied force/torque and the equivalent impedance
at the OP port and the environment port and transmits the
estimates θ̂1,2 to the other side for position/force tracking.
It was proved that if the estimates of the environment model
approach their actual quantities, and if the actuator is able to
represent a large impedance, then the teleoperation system
can be ideal in the presence of communication delays.

FIGURE 3. First prototype of the MMT control architecture. The
exchanged parameters θ̂1,2 contain the effort (force/torque) and
impedance on both the master and slave sides (adapted from [26]).

2) SMITH PREDICTOR-BASED PREDICTIVE CONTROL
From early 2000s, predictive control was studied for sta-
bilizing teleoperation systems with time delays [41]–[47],
wherein the most typical system structure was based on the
Smith Predictor.

The Smith Predictor [51] was originally designed to sta-
bilize a linear time-invariant (LTI) system in the presence of
time delays. As illustrated in Fig. 4(a), the transfer function
of the example system is

Y
X
=

G1G2e−sT

1+ G1G2e−2sT
(1)

The delay term e−2sT in the denominator indicates poten-
tial instability. The use of the Smith Predictor in Fig. 4(b)
leads to a modified transfer function:

Y
X
=

ĜG2e−sT

1+ ĜG2e−2sT
(2)

where Ĝ = G1
1+G1Ĝ2(1−e2sT )

. If Ĝ2 is an accurate prediction of

VOLUME 4, 2016 427



X. Xu et al.: MMT: Toward Stable and Transparent Teleoperation Systems

FIGURE 4. (a) An example system block diagram with delays. (b) The use
of the Smith predictor to compensate for the delays (adapted from [51]).

G2 (Ĝ2 = G2), the transfer function of Fig. 4(b) becomes

Y
X
=
G1G2e−sT

1+ G1G2
(3)

which ensures a stable system if G1 and G2 are stable.
Obviously, the Smith Predictor can eliminate the potential
instability caused by the delayed feedback signal.

Based on the Smith Predictor, Huang and Lewis pro-
posed a recurrent neural network (RNN)-based predictive
control scheme for a position-position teleoperation archi-
tecture [41]. The proposed RNN estimator is able to model
the non-linear behavior of the slave-environment system.
Non-linear in this context means that no linear relation-
ship between the system outputs (i.e. force) and the system
inputs (i.e. position, velocity, and acceleration) exists. A typ-
ically and widely used non-linear environment model is the
Hunt-Crossley model (see Sec. 3.1.1). On the other hand, if a
linear relationship exists between the inputs and outputs, the
system is linear (e.g., the Kelvin-Voigt model [71], [72]).

FIGURE 5. Predictive control architecture using a Smith Predictor for a
position-position teleoperation system. The linear predictor on the
master side is designed offline. The environment can be non-linear. Here
xm and xd

s denote the master and desired slave position. xs and fe are
the measured slave position and slave contact force. Adapted from [41].

As discussed in [41] and illustrated in Fig. 5, the non-linear
slave-environment behavior is assumed to contain an invari-
ant linear part, which is used on the master side to predict the
slave behavior. A non-linear compensator is designed on
the slave side to compensate for the model mismatch between
the linear predictor on the master side and the non-linear
behavior on the slave side. The assumption of an invariant

linear part in the slave-environment non-linear behavior lim-
its the system capacity for dealing with time-varying slave-
environment behavior, since the linear predictor on themaster
side is predefined and not updated in real time. However,
for teleoperation with rich knowledge about the remote envi-
ronments (e.g., pre-scanning and available history data for
the current environment), a precisely predefined environment
model can also provide stable haptic interaction without the
need for parameter estimation. The idea of using predefined
models has been adopted for many applications, such as pre-
dictive aid in teleoperation systems [40], [55], in-orbit space
robot teleoperation [39], and MMT systems with pre-scan
process [56]. The use of predefined models in MMT systems
shows some level of improved stability against communi-
cation delay, and also of robustness against small modeling
errors [39].

A consequence of using a predefined model is obviously
the potential modeling error. This error originates from the
difficulty of modeling complex environments and the limited
resolution of the sensor measurements. In practice, there
are situations in which we have limited knowledge about
the remote environment, especially when the slave enters
a new environment or interacts with dynamic (movable or
deformable) objects. Therefore, online environment model-
ing and model updating are inevitable. This requires the slave
system to be able to extract the environment geometry and
impedance in real time. The geometry represents the position
and shape of the object model, while the impedance describes
the physical properties of the environment model, including
mass/inertia, stiffness/compliance, damping, friction, etc.

The authors of [46] and [47] discussed the Smith predictor-
based predictive control structures which allowed for an
online environment modeling method. Fite et al. proposed
a model-based prediction in [45] to enable a teleoperation
system to deal with a time-varying environment. The environ-
ment is assumed to be a linear spring model, and the model
parameter (stiffness) is continuously estimated and updated
online on both the master and slave sides. In [42] and [43],
a neural network (NN)-based prediction scheme for dealing
with both non-linear and time-varying environments has been
developed. As illustrated in Fig. 6, the NN estimator is trained
online to model the environment input-output dynamics. The
trained weights of the NN estimatorWji are transmitted back
to the master to update the local NN model. If the estimation
is accurate, the estimated force f̂e on the master side with

FIGURE 6. Predictive control architecture using a Smith Predictor for
a position-force teleoperation system with the force feedback term.
Adapted from [42] and [43].
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the delay term e−s(Tf+Tb) is able to cancel the received (and
delayed) slave contact force fe. Note that although the trans-
mitted weights are delayed, they converge to stable values
and have minimal changes after the initial learning period is
passed.

This scheme retains the original structure of the Smith Pre-
dictor. The communication delay, however, must be known to
eliminate the effect of the delayed force signal on the master
side. In addition, imprecise modeling of the environment
leads to incomplete cancellation of the contact force from
the slave side, and results in potential contact oscillation and
control difficulties. Alfi et al. proposed a modified structure
in [47] to improve system robustness against uncertainties of
time delay andmodel parameters. In the presence of measure-
ment errors in time delay and model parameters, simulation
results showed good performance of their method in motion
and force tracking. To completely avoid these issues, the
authors of [42] and [43] presented a zero-feedback NN-based
predictive control scheme, where the slave force is no longer
sent back to the master (Fig. 7). The force signal on the
master side is only computed based on the local NN-model.
Thus, knowing the communication delay is not required.
Improvements on system performance while using the zero-
feedback structure are shown in [42] and [43]. However, the
system stability of this control architecture highly depends
on the accuracy of the environment model and the employed
schemes for model updating on the master side.

FIGURE 7. Predictive control architecture using a Smith Predictor for
a position-force teleoperation system without force feedback term.
Adapted from [42] and [43].

The capability of dealing with nonlinear and varying
environments in the presence of unknown communica-
tion delay enables the zero-feedback predictive control
scheme to serve as a benchmark for studies of the MMT
approach. In fact, the general structure in Fig. 7 is con-
ceptually identical to the state-of-the-art MMT architecture
illustrated in Fig. 2(c). We use the architecture illustrated
in Fig. 2(c) to represent an MMT system in the following,
if no further specification is made.

3) MMT IN COMPLEX ENVIRONMENTS
The Smith Predictor-based studies on MMT introduced
in Sec. II-A.2mainly focus on 1D environments withoutmod-
eling the environment geometry. From the year 2000 onward,
studies on MMT have turned to the matter of efficiently
modeling complex environments, including their impedance
and geometry in 3D space, and how to stably update the local
model on the master side and stably control the slave system

when the local model and the environment mismatch. In fact,
model mismatch can lead to a mismatch in position tracking
on the slave side, resulting in dangerous slave behavior such
as undesirably deep penetration into an object or improperly
large force acting on the environment (see Sec. VI).

Mitra and Niemeyer were the first to use the name MMT
in [27] to indicate an alternative type of information exchange
between the master and slave. Different from the conven-
tional teleoperation architecture wherein the force signals are
transmitted in the backward channel, MMT systems send the
estimated model parameters back to the master. The authors
also presented a qualitative analysis of the trade-off between
the level of communication delay and the level of abstraction
in control schemes. They suggested that the abstraction for
control schemes should adapt to the communication delay
in order to maintain successful teleoperation. As illustrated
in Fig. 8, the MMT approach according to this analysis is
able to deal with relatively larger communication delays. The
relatively lower update rate of MMT implies that the MMT
approach is unsuitable for quickly changing environments,
since frequent updating of the model parameters could lead to
stability issues. In [27], a constrained model update scheme
on the master side and a position-force-switching control
scheme on the slave side are proposed to avoid instability
when the slave is first establishing an environment model or
a model update is needed. A general discussion of the system
stability of MMT can be found in [57].

FIGURE 8. The level of abstraction and data complexity with update rates
and robustness to delays (adapted from [27]).

For MMT with an unknown environment geometry,
Tzafestas et al. in [33], Verscheure et al. in [58], and Xu et
al. in [59] proposed online estimation algorithms for 1D, 2D,
and 3D environment models, respectively. These algorithms
use the position and force signals measured on the slave
side to estimate the environment geometry and impedance.
The geometry and impedance parameters, however, can be
estimated only after the slave’s first contact with the environ-
ment.

Using additional sensors, e.g., a laser range finder ([50]
for a 1D environment), a stereo camera ([28] for
a 2D environment), or a time-of-flight camera ([60], [61] for a
3D environment), the environment geometry can be esti-
mated even prior to contact. Prior knowledge of the envi-
ronment geometry minimizes the modeling error at the
time of the slave’s first contact with the environment,
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and improves system stability when the slave establishes
a hard contact with rigid objects. A point-cloud-based
MMT (pcb-MMT) system [60], [61] enables the MMT
approach to deal with arbitrarily complex environment
geometries. To limit the data rate which is used for updating
the environment model, a perception-based data transmission
and compression scheme for updating the model param-
eters was proposed in [61]. As illustrated in Fig. 9, the
depth images captured by a 3D sensor are used to estimate
the environment geometry. The corresponding impedance
parameters are estimated after the slave comes into contact
with the environment. They are transmitted to the master
side according to the adaptive updating scheme once the
model parameters are obtained. On the master side, a local
model is reconstructed based on the received model param-
eters (environment impedance and point cloud data). Thus,
the force feedback signal can be generated locally without
noticeable delays. The environment modeling, perceptual
data transmission, and local haptic rendering were integrated
into a pcb-MMT framework in [61].

FIGURE 9. Overview of a point-cloud-based model-mediated
teleoperation system using additional 3D sensors (adapted from [61]).

B. CHALLENGES OF MMT
Environment modeling is the foremost challenge in MMT,
since a perfect match between the local model and the
environment enables stable teleoperation in the presence of
arbitrary communication delays. If the models of the master
and the slave environment are mismatched (which happens
normally due to environment changes, improper model
approximation, or inefficient parameter estimation methods),
a model update on the master side is required. According to
whether the local model matches the remote environment, we
define the following two states for MMT:
• Steady state: The estimated model parameters have
converged to the actual quantities, and the localmodel on
the master side matches the environment. Model updates
in this state are not required. For an efficient MMT
system, the teleoperation system should be in steady
state as often and as long as possible.

• Transition state: Due to environment changes or
inaccurate environment estimation, a model mismatch
between the local model and the actual environment may
occur. In this case, the local model needs to be updated
as quickly as possible. Transition states occur irregularly
during teleoperation.

Beside online model estimation, handling the stability
issues in a transition state is another important challenge
for MMT. An analysis of the MMT control block helps us
understand the concrete issues related to this challenge. First,
we modify the MMT structure that is illustrated in Fig. 2(c)
to the control block diagram in Fig. 10. The estimated envi-
ronment parameters are denoted as θ̂ .

FIGURE 10. Overview of an MMT control architecture without force
transmission in the backward channel.

Unlike the conventional teleoperation architecture, the
MMT approach opens the control loop between the master
and slave and leads to two decoupled control loops, one on the
master and one on the slave side as illustrated in Fig. 10. The
stability of the MMT system can be determined using the sta-
bility of the human-master local model closed loop (loop 1)
and the slave-environment closed loop (loop 2), which has
been discussed in [30], [31], and [77]. During the transition
state, the geometry and impedance of the local model could
dramatically change, resulting in unstable haptic rendering
in loop 1. Meanwhile, due to the model mismatch in the
transition state, the master could use an improperly large
force signal to command the slave or could command the
slave to access an unreachable position, e.g., deep penetration
of a rigid object. This could lead to the damage of both
the slave robot and the objects in the remote environment.
Thus, a stable haptic rendering (model updating) approach
and a stable slave control scheme in a transition state are
required. We consider this to be another important challenge
facing MMT.

In addition, attention must be paid to data transmission
in the communication network. First, network resources and
transmission conditions limit the update rate of the model
parameters. Second, the potential loss of the packets that
contain environment parameter updates may introduce addi-
tional model mismatch. Both these increase the time period
of the transition state and can lead to aggravated stability
issues. Thus, it is necessary to design an efficient and reliable
communication protocol for transmitting model parameters
to achieve a stable MMT system.

According to the discussion above, we summarize themain
challenges of MMT.

1) A stable and quickly convergent parameter estimation
method for a model that approximates the environment
on the slave side, discussed in Sec. III.

2) An efficient and reliable data transmission for model
parameters over the network, discussed in Sec. IV.

3) A stable haptic rendering algorithm, based on the local
model, with changing model parameters on the master
side, discussed in Sec. V.
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4) A stable slave control scheme for safe position and
force tracking on the slave side during the period of
model mismatch, discussed in Sec. VI.

We observe that all these challenges except the first one
directly deal with the issues in transition states. However,
this does not mean that the MMT system is absolutely stable
in steady state without any constraints. In fact, the haptic
rendering (loop 1 in Fig. 10) suffers from various stability
issues in the steady state. For instance, stability of haptic ren-
dering in the steady state is influenced by environment stiff-
ness, damping, and sampling period [62]–[65]. In addition,
the slave-environment interaction (loop 2 in Fig. 10) in the
steady state can also be unstable, especially when the slave
establishes a hard contact [66], [67]. However, these stability
problems in the steady state are not particular issues forMMT
but general issues for teleoperation systems. As there have
already been intensive studies on these issues in teleoperation
systems, we do not focus on them in this paper. Instead, we
focus on the aforementioned four challenges particular to
MMT systems.

Some of the studies discussed in the following sections
do not focus on MMT systems directly but rather on the
fields of robotic systems, haptic rendering in virtual envi-
ronments, or human psychophysics. However, their methods,
system design, and experimental results are very relevant to
MMT and can be directly used for addressing its challenges.
Therefore, we consider these studies to beMMT-relevant and
include them in our following discussion.

III. ENVIRONMENT MODELING
The task of environment modeling is to identify the
input-output response of the slave-environment system.
Depending on whether environment models are known or
not, the identification can be divided into parametric and
non-parametric methods, respectively. In parametric meth-
ods, an environment model is assumed based on certain
pre-knowledge or previously available information. The iden-
tification involves the estimation of the model parameters
including the geometry and the physical properties in real
time. This is referred to as online parameter estimation or
online contact dynamics identification. For non-parametric
methods, no assumption is made for the environment models,
and the aim of the identification is to directly estimate a linear
or non-linear input-output mapping for the slave-environment
system.

In this section, we discuss both the parametric (Sec. 3.1)
and non-parametric (Sec. 3.2) environment modeling meth-
ods. In addition, we also touch on the issues that are relevant
to environment modeling such as persistent excitation and
estimation limits (Sec. 3.3), and the modeling of human
behavior (Sec. 3.4).

A. PARAMETRIC ENVIRONMENT MODELING
One of the earliest studies on contact dynamics identifi-
cation for robotic systems is impedance control [66]. The
knowledge of the slave-environment contact dynamics plays

a fundamental role in several robotics tasks and teleopera-
tion systems. The availability of an accurate description of
contact dynamics is helpful for allowing the robot controller
to be adaptive to the current working conditions, e.g., the
interaction with compliant or stiff environments [66], [68].
Different kinds of estimation algorithms, such as adaptive-
control-based methods [38], [69] and various kinds of least
squares methods [70], [71], have been developed. Most of
these approaches can be used for MMT systems. However,
these methods can only deal with linear environments with-
out estimating environment geometry. Reviews and compar-
isons of these methods can be found in [71] and [72].

To avoid repeating the work presented in [71] and [72], we
focus on the more recent estimation methods that are not dis-
cussed in the two review papers. The estimation approaches
investigated in the following include parameter estimation for
nonlinear models with known environment geometries and
parameter estimation for linear models with geometric uncer-
tainty. With known geometry, the initial position (or surface
information) of the object model in the remote environment
is assumed to be known. The geometry parameters are nor-
mally not included in the environment model. With geometry
uncertainty, the position and orientation of the object model
are among the parameters that need to be estimated.

1) NON-LINEAR MODEL WITH KNOWN GEOMETRY
The Hunt-Crossley model [73] shows nonlinear behavior of
its contact dynamics, using a position-dependent environment
damping model:

F(t) =

{
Kxn(t)+ Bxn(t)ẋ(t) x(t) ≥ 0
0 x(t) < 0

(4)

where x(t) represents the penetration of the slave
end-effector, K is the stiffness, B denotes the damping, and
n is a constant that typically lies between 1 and 2. Com-
pared with the Kelvin-Voigt model (the dynamics of a linear
damper-spring system), the Hunt-Crossley model is more
consistent with physical intuition and the notion of a coef-
ficient of restitution, which represents the energy loss during
impacts [74]. Typical parameter estimation algorithms for the
Hunt-Crossley model have been proposed in [75] and [76],
referred to as the two-stage method [75] and the single-stage
method [76], respectively.

a: THE TWO-STAGE METHOD
To handle the non-linearity of (4) with respect to the expo-
nent n, the estimation of K and B is separated from the
estimation of n. As illustrated in Fig. 11, two recursive least
squares (RLS) estimators are designed for the two-stage
method. In the first stage 01, the values of K and B are
estimated by minimizing the force error between the
measured slave contact force and the computed force based
on the employed environment model, assuming that n̂ is
known. In the second stage 02, the parameter n is estimated
by assuming known K̂ and B̂.
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FIGURE 11. The two-stage estimation method for the Hunt-Crossley
model (adopted from [75]).

Obviously, the estimation of 02 is dependent on 01 and
vice-versa, as each estimator relies on the results from the
other stage. The authors of [75] have also found that the
convergence conditions for the two-stage method are very
strict. First, the number of samples for estimating the model
parameters must be sufficiently large. Second, the conver-
gence is very sensitive to the initial values of {K̂ , B̂, n̂}.
An improper choice of the initial values causes substan-
tial estimation errors, resulting in slow convergence or even
unstable estimation.

b: THE SINGLE-STAGE METHOD
The single-stage method [76] can estimate all three param-
eters K , B, and n with one RLS estimator. It also requires
less restrictive conditions for convergence compared to the
two-stage method.

Considering the environment model in (4), the measured
slave contact force for the single-stage method can be
expressed as follows:

F(t) = Kxn(t)+ Bxn(t)ẋ(t)+ ε (5)

where ε is the measured noise. A natural logarithm of both
sides is used to decouple the parameter estimation:

lnF(t) = ln(Kxn(t))(1+
Bẋ(t)
K
+

ε

Kxn(t)
)

= lnK + n ln x(t)+ ln(1+
Bẋ(t)
K
+

ε

Kxn(t)
) (6)

Assuming

|
Bẋ(t)
K
+

ε

Kxn(t)
| ≤ |

Bẋ(t)
K
| + |

ε

Kxn(t)
| � 1 (7)

and using ln(1+ α) ' α (|α| � 1), (6) can be linearized as

lnF(t) ' lnK + n ln x(t)+
Bẋ(t)
K
+

ε

Kxn(t)
(8)

The above assumption requires that at least ||ẋ||∞ <

0.1K/B and the power of the noise to be sufficiently small.
The former requirement can be easily fulfilled, since the
speed of operation within the contact is not high in prac-
tice and the stiffness is normally larger than the damping
parameter. The latter requirement can be approached using
high resolution sensors and applying filters after the measure-
ment.

According to (8), the environment dynamics (4) can be
represented for x(t) > 0 as

y = φT θ + ε̄ (9)

with

y = lnF, φT = (1, ẋ, ln x), θ = (lnK ,
B
K
, n)T (10)

The exponentially weighted RLS (EWRLS) approach [71]
is employed to compute the model parameters at the sample
time t = kT with the sample period T :

Lk+1 =
Pkφk+1

λ+ φTk+1Pkφk+1
(11)

Pk+1 =
1
λ
(Pk − Lk+1φTk+1Pk ) (12)

θ̂k+1 = θ̂k + Lk+1(Fk+1 − φTk+1θ̂k ) (13)

where P is the covariance matrix and λ is the forgetting factor.
The estimated parameters of the model K̂k , B̂k , and n̂k can be
derived from θ̂k = (ln K̂k ,

B̂k
K̂k
, n̂k )T .

The sensitivity of the single-stage and two-stage methods
with respect to initial conditions, parameter variations, the
estimation-convergence rate, and the computational load are
investigated in [76]. Compared with the two-stage method,
the single-stage method is not only faster but also more robust
against noise, insensitive to the initial values of the dynamic
parameters, and capable of tracking finite abrupt changes in
the model parameters.

One problem with using EWRLS for parameter estimation
is that once the estimated parameters converge, the covari-
ance matrix P reaches a small value; thus, the estimates
of θ̂ do not track any changes. One solution, suggested
in [71] and adopted in [77], is to use the self-perturbing
RLS (SPRLS) [78]. In SPRLS, the only change compared to
the EWRLS is in the updating of the covariance matrix:

Pk+1 = Pk − Lk+1φTk+1Pk + βNINT(γ e
2
k−1)I (14)

where ek−1 = Fk − φTk θ̂k−1 is the estimation error in force
and I is an identity matrix. γ and β are predefined parameters.
The function NINT(·) is defined as

NINT(x)

{
x, if x ≥ 0.5
0, else

(15)

Using SPRLS, the authors of [77] extended the single-
stage method to a 6-DoF case for both linear and non-linear
environment models and experimentally showed a stable and
quickly converging parameter estimation.

2) LINEAR MODELS WITH GEOMETRIC UNCERTAINTY
Merely estimating the environment impedance is insufficient
for MMT. Environment geometry provides another constraint
on motion and force feedback. The environment geometry
represents the surface position and orientation of the object
model on the slave side. Using the force feedback signals,
‘‘touched’’ and ‘‘untouched’’ states can be distinguished by
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defining a force threshold. The position of the object can
be considered at the position where the slave state changes
from ‘‘untouched’’ to ‘‘touched’’. Using additional vision
or distance sensors, the environment geometry can be esti-
mated even before the slave comes into contact with the
environment. The estimation of geometry differs according
to whether additional sensors are used, as will be discussed
in the following three subsections.

a: WITHOUT ADDITIONAL SENSORS (1-DoF)
Without additional visual or distance sensors, the environ-
ment geometry can only be estimated based on the slave’s
motion and force feedback after the contact happens.

Funda and Paul [79] proposed a teleprogramming archi-
tecture to extract the environment geometry according to
the motion restriction of the slave’s primary contact point
and wrist. Kinesthetic feedback is provided based on the
estimated motion constraints (environment geometry). The
authors of [27] proposed a contact-determination approach
to estimate the position of a 1D rigid wall:

if: |Fmeasured | > Fthreshold
then: contact = true

else: contact = false (16)

where Fmeasured is the force measured by the sensor and
Fthreshold is a threshold force determined by sensor noise and
disturbances. In [28], the authors extended the estimation
approach to a 2D planar surface. The surface normal was
extracted by the slave’s trajectory on the surface. The esti-
mated normal is defined as being perpendicular to the line
segment connecting two (or more) points.

The above mentioned approaches estimate only the envi-
ronment geometry. The environment is assumed to be rigid
and its impedance is set to be the maximum value of the
master or slave device. In practice, the environment can be
soft or deformable. The impedance of the environment is
normally unknown, necessitating an estimation approach for
environment geometry in combination with its impedance.

A simple solution for such a combination is to estimate
the parameters of a 1D spring model with an unknown initial
position. The environment is modeled as

Fe = Ke · (xe − xs) (17)

where xs and Fe are the slave position and force signals,
respectively. The stiffness Ke and initial position xe are
unknown and need to be estimated. The aim is to minimize
the force estimation error defined as

ef = F̂e − Fe with F̂e = K̂e · (x̂e − xs) (18)

Although (18) is a non-linear estimation problem, it can be
linearized as

F̂e = K̂e · x̂e − K̂e · xs = [−xs, 1] · θ̂e (19)

with

θ̂e = [K̂e, K̂ex̂e] = [K̂e, F̂0] (20)

RLS methods can be adopted to compute the estimates θ̂e.
Yet, the estimation is not guaranteed to be stable or con-
vergent. Therefore, the authors of [33] proposed an adaptive
impedance control law to ensure the asymptotic stability
of the parameter estimation. The general adaptation law is
assumed to be

˙̂
θe = −[γ1, γ2]T · ef = −[γ1, γ2]T · (F̂e − Fe) (21)

where the coefficients γ1 and γ2 are the adaptation gains. The
derivation of the Lyapunov function

Ve =
1
2
(θ̂e − θe)T · 0e · (θ̂e − θe) (22)

is negative definite if

0−1e =

[
γ1 0
0 γ2

]
, and γ1 > 0, γ2 > 0 (23)

Finally, the update scheme for the estimated environment
parameters is given by

˙̂Ke = γ1xs(F̂e − Fe)

˙̂xe =
F̂e − Fe
K̂e·

(−γ2 − γ1xsx̂e) (24)

Experiment 1: Since the estimation process is not shown
in [33], we conduct an experiment in simulation to com-
pare the estimation results using the impedance adaptation
law (IAL) [33] and the SPRLS method.

The model parameters of (17) in our experiment are the
same as those in [33]: Ke = 200N/m and xe = −0.2m.
A sinusoidal excitation with a frequency of 0.3Hz is used
as the input position signal. Measurement noise is simulated
by adding Gaussian noise with zero mean and a standard
deviation of 0.2N to the sensed force signals. In addition, the
adaptation gains of the IAL method are set to be γ1 = 2000
and γ2 = 50. The parameters of the SPRLS method are set
to be β = 100 and γ = 0.5. The estimation results using the
SPRLS and IAL methods are shown in Fig. 12.

According to Fig. 12, the estimated parameters using
both methods converge rapidly to the actual quantities
(K̂e ≈ 200N/m, x̂e ≈ −0.2m). The average estimation
errors of the stiffness and initial position for both methods
are less than 1%. However, the SPRLS method shows a
rapid response with a little overshoot in its initial stiffness
estimation. We also observe that the convergence rate of the
IAL method is highly dependent on the adaptation gains.

b: WITHOUT ADDITIONAL SENSORS (MULTI-DoF)
For parameter estimation in higher degree-of-freedom (DoF)
environments, Verscheure et al. [58] proposed a
Kalman-filter-based estimation algorithm to capture the
stiffness, friction coefficient, and geometry parameters of
a 2D environment model. The environment is considered to
be a 2D planar surface. Thus, the geometry parameters are the
position and the orientation of the plane. Due to the existing
friction, the direction of the force signal could deviate from
the surface normal. Therefore, the surface orientation could
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FIGURE 12. Simulation results of (a) stiffness estimation and (b) initial
position estimation, using the IAL and the SPRLS methods.

not be estimated using only the force signals. However, with
the help of torque signals, as proposed in [58], this issue can
be addressed.

To deal with curved surfaces in 3D space, Xu et al. [59]
proposed a hybrid plane and sphere-based algorithm to esti-
mate the environment impedance and geometry parameters
for rigid objects with complex surfaces. In [59], a plane or
spherical model is adaptively employed to approximate the
environments (Fig. 13). The model impedance includes only
the stiffness, and the model geometry contains the position
and orientation of the plane model and the position and radius
for the spherical model. During the estimation process, the
desired slave position (master position) is known, while the
actual slave position on the surface of the rigid object is
unknown.

For the plane model in 3D space,

ax + by+ cz+ d = 0 (25)

the surface normal is described by n = [a, b, c]T . In the
absence of surface friction, the surface normal is considered

FIGURE 13. Geometric plane (left) and sphere (right) models are used to
approximate the environment [59]. The model parameters are estimated
based on the sampled position and force signals on the slave side.

to be identical to the direction of the measured force signal
fe = [fx , fy, fz]T :

n = (
fx
|fe|

,
fy
|fe|

,
fz
|fe|

)T (26)

Thus, the geometry parameters {a, b, c} can be computed,
while the parameter d needs to be estimated. Meanwhile, the
penetration depth is the shortest distance from the desired
slave position pds = (px , py, pz) to the plane surface. With the
help of Hook’s law, the estimated force signal of the plane
model is

||f̂e|| = (
fxpx
|fe|
+
fypy
|fe|
+
fzpz
|fe|
+ d̂) · K̂ (27)

A linear optimization problem by minimizing the estimated
force error can be established as

argmin
{K̂ d̂, K̂ }

||f̂e − fe|| (28)

For the spherical model, the unknown impedance parame-
ter is the stiffness, while the unknown geometry parameters
are the sphere center o = (ox , oy, oz) and its radius r . Without
surface friction, the direction of the force signal is assumed
to be from the sphere center to the desired slave position. The
force model can be expressed as

fe/K = r− (pds − o) = penetration (29)

where r = r fe
||fe||

. Eq. (29) can be expanded into a matrix-

vector notation form. Replacing fe by f̂e, o by ô, and r by
r̂ = r̂ fe

||fe||
, a linear optimization problem can be established

argmin
{K̂ ,ô,r̂}

||f̂e − fe|| (30)

For hybrid estimation, one first applies the sphericalmodel.
If the estimated radius r is larger than a threshold value, the
model is considered to be a plane, and the plane model is
employed to approximate the environment. During teleopera-
tion, the models are continuously updated to ensure a precise
matching between the measured contact force and the force
computed from the plane- and sphere-based model.

Note that the slave position is assumed to be unknown
in this approach. In fact, the actual slave position can be
also measured if the slave is equipped with position sensors.
Obviously, with the help of slave position information, the
model geometry can be more accurately estimated.

c: WITH ADDITIONAL SENSORS (1-DoF AND MULT-DoF)
When using additional vision or distance sensors, the estima-
tion of the geometry parameters can be separated from the
estimation of the impedance parameters. The object in the
remote environment can be located before the slave comes
into contact with it. The prior knowledge of the environment
geometry not only provides a kinesthetic feedback before
the actual contact happens, but also avoids the master com-
manding the slave to go to a dangerous position, e.g., deep
penetration (see Sec. 6).
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Using a laser rangefinder in [50], Mobasser and
Hashtrudi-Zaad presented a non-contact approach for iden-
tifying environment geometry in one degree of freedom.
The slave environment is approximated using a mass-spring-
damper model containing the physical properties of stiff-
ness, damping and mass. Impedance parameters (physical
properties) are identified online using the SPRLS method.
In addition, a collision-prediction scheme based on the infor-
mation from the laser rangefinder is proposed to synchronize
the collision on both the master and slave side. Similarly,
Li and Song [70] fused the vision, position, and force sensor
data to estimate the model position in a 1D environment.

Willaert et al. [28] extended the geometry estimation to
2D environments. A stereo camera is used to capture the
position and orientation of a planar surface in the slave envi-
ronment. Using a time-of-flight camera, Xu et al. [60], [61]
proposed a pcb-MMT architecture (see Fig. 9), where the
object surface is described by a point cloud. The captured
point cloud is processed online using image inpainting filters
to reduce the measurement noise and to fill holes. Thus,
the pcbMMT system is able to deal with complex object
geometry in 3D environments. Assuming a static and rigid
environment, the stiffness and surface friction coefficient can
be easily estimated based on the force signal and the known
surface geometry.
Remark for Section III.A: The aforementioned parameter

estimation methods are not capable of dealing with movable
and deformable objects in a 3D environment. For the former,
the complete model dynamics, including the object mass,
friction, and free motion and rotation behaviors, are too com-
plex to be described with a linear model [80], [81]. For the
latter, surface deformation with frictional contact (sticking
and sliding) on the surface is not modeled. Fortunately, there
exist various methods for modeling complex deformable
objects, of which multiple-degrees of freedom mass-spring
models (MSM) or finite element models (FEM) are con-
sidered to be the most popular, which have been widely
investigated in soft tissue simulations [82], [83]. However,
online parameter estimation for MSM and FEM is quite
challenging due to the computational complexity [83], [84].
The computational time needed to identify all the parameters
of an FEM can range from several minutes upto several
hours [84]. The challenge of online parameter estimation for
deformable objects is to balance the model accuracy with the
computational time.

Xu et al. proposed a radial-function-based deforma-
tion (RFBD) model in [85] to accelerate the process of online
parameter estimation. The surface deformation is not depen-
dent on complex physical models such as the MSM or FEM
but is based on predefined deformation rules. As illustrated in
Fig. 14 and 15, the deformation in the direction of the surface
normal is approximated by a radial curve. The sticking effects
due to the surface friction are described by a shearing of the
radial curve in the tangential direction. In general, the RFBD
method enables online parameter estimation for deformable
models by means of degraded physical accuracy. However,

FIGURE 14. The vertical deformation of the object surface is
approximated by a radial function. The tangential deformation (sticking
due to the surface friction) is approximated by shearing algorithms. The
blue and black lines represent the object surfaces before (left) and after
(right) the corresponding tangential deformations (adapted from [85]).

FIGURE 15. Side and top views of the surface deformation in a virtual
environment. The planar surface is described by a point cloud. The blue
and white spheres represent the master proxy and haptic interacting
point, respectively (reproduced from [85]).

due to human perceptual tolerance, the employed model can
be physically inaccurate but perceptually realistic. Future
studies in this direction should focus on developing low cost
and perceptually plausible models for deformable objects.

B. NON-PARAMETRIC ENVIRONMENT MODELING
The environment model can be partially or completely
unknown if the slave enters an environment that is either
new, has been changed, or has been previously explored,
but for which historical data is not fully available (e.g., due
to memory limitations). In this situation, it is difficult to
employ any models to approximate the environment. Thus,
parametric environment modeling is challenging. In this case,
non-parametric environment modeling methods can be used.
The task of non-parametric environment modeling is to
directly identify the linear or nonlinear input-output mapping
of the slave-environment behavior. The inputs are normally
slave position, velocity and acceleration, while the output is
the measured slave contact force.

To identify this non-linear mapping behavior without
using an environment model, NN-based online estima-
tion methods have been proposed [42], [43], [86]–[88].
The neuron weights are trained online to provide an accurate
mapping between the slave motion (e.g. x = [xs, ẋs, ẍs]) and
the measured contact force fe. Fig. 16 illustrates a NN with
two hidden layers (layers 1 and 2) and a output layer (layer 3)
that is used in [42] and [43]. The weight from the output of
neuron i to the neuron j on layer k is denoted by wki,j. The

neuron in the hidden layers is composed of a sum node and
a non-linear transfer function. The neuron in the output layer
contains only a summation.

The main challenges of using the NN-based estimation
method are the reciprocal relationships among the computa-
tional complexity, estimation accuracy, and convergence rate.
Online NN-based estimation works only for a limited number
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FIGURE 16. The neural network estimator used in [43]. It has
three inputs, two hidden layers, and one output layer.

of hidden layers and neurons. This limitation degrades the
estimation accuracy. Although it is difficult to have full infor-
mation of the slave environment, having partial information
of the slave environment is possible. This can come from a
pre-scanning procedure or available previous knowledge of
the environment. A hypothesis that needs to be verified in
future work is that even for limited prior knowledge about
the environment, there can be a significant improvement to
the estimation accuracy of the NN estimator.

C. PERSISTENT EXCITATION AND ESTIMATION LIMITS
The concept of persistent excitation first stemmed in
the 1960s [89], at which time it was generally recognized that
the input signal should be persistently exciting, i.e., contain-
ing a large enough amplitude and enough different frequency
components to excite all the modes of the environment model
to ensure that the estimated parameters converge to their true
values. For example, a non-zero velocity signal is needed to
estimate environment damping, while a non-constant velocity
signal is required to estimate object mass/inertia. A general
framework for the discussion of persistent excitation in adap-
tive systems for parameter estimation can be found in [90].

Achhammer et al. [77] discuss the persistent excita-
tion condition in MMT systems. They suggest that all the
employed environment models introduced in Sec. 3.1, includ-
ing the linear models and the linearized non-linear models,
can be excited persistently by OPs. A rule of thumb for this is
that

⌈ n
2

⌉
distinct non-zero frequencies are necessary for per-

sistently exciting a model of order n [91]. Since all the afore-
employed models are of order one (after linearization) and
the movements of human arm can provide at least one non-
zero frequency due to its natural tremor [92], the persistent
excitation is thus guaranteed if the parameter estimation pro-
cess is operated by a human user.

Another important aspect of parameter estimation is the
identifiable range. In [77], the authors discuss the identifi-
able range for stiffness. Consider a very stiff object, whose
stiffness is denoted by Ke and is much larger than the slave
stiffness Ks; then, the maximum identifiable stiffness is

Kmax =
KsKe

Ks + Ke
' Ks (31)

Therefore, the estimated stiffness is consequently limited by
the slave stiffness, even with persistent excitation.

D. MODELING OF HUMAN BEHAVIOR
Just as the environment can be modeled on the slave side,
human behavior can be modeled on the master side. The
estimated model parameters of human behavior on the mas-
ter side are transmitted to the slave to guide the slave’s
motion. The slave is thus not controlled by the delayedmaster
motion commands, but performs specific tasks in complete
autonomy based on the received human behavior model.
Similarly, if the model as well as the model parameters can
accurately approximate the user’s behavior, the slave can
behave like a human user and a complete skill transfer can be
realized (Fig. 17) [93].

FIGURE 17. MMT system with modeling of human behavior and
environment parameters (adapted from [93]).

Modeling human behavior for MMT systems has not been
studied intensively so far, since human behavior is nor-
mally complicated (e.g., nonlinear) and time-varying during
teleoperation. It is difficult to model such a behavior in real
time. A compromise is to use fixed and predefined models to
describe the motion of the human arm, and to guide the slave
motion during teleoperation.

The authors of [95] presented first, second and third order
predictors to estimate the position of the human arm. This
method, based on the successive derivatives of the original
signal, successfully compensated the effects introduced by
communication delays of up to 100 ms.

In [93], the Hogan’s minimum-jerk model was employed
as a position assistance for slave motion. According to the
Hogan’s minimum-jerk model for point-to-point human arm
movement [96], the current arm position xm at time instant t
can be modeled as a function of the initial position x0, the tar-
get position xw, a constant impact velocity vhit at the collision
instant t = T , and the movement duration T

xm(t) = x0 + (xw − x0)(6τ 5 − 15τ 4 + 10τ 3)

+ vhit (−3τ 5 + 7τ 4 − 4τ 3), τ = t/T (32)

where T can be estimated in real time and the other parame-
ters are either predefined or can be measured during teleop-
eration.

A non-zero impact velocity is necessary for a human user
to experience the contact; however, this could destabilize the
slave system at the moment of contact, especially for contact
with stiff objects [97]. To overcome this issue, the authors
of [93] have designed a minimum-jerk trajectory with zero
impact velocity (xr ) by defining vhit = 0:

xr (t) = xm(t, vhit = 0) (33)
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The real slave trajectory xs is a smooth transition from the
human-commanded trajectory to the desired slave trajectory:

xs(t) = (1− α)xm(t)+ αxr , α ∈ [0, 1] (34)

FIGURE 18. Comparison of the three trajectories of position assistance:
minimum-jerk assistance, zero hit-velocity assistance, and a smooth
transition between the former two. Left: full scale. Right: zoomed
trajectory around xw .

Figure 18 illustrates the three trajectories xm (human),
xr (zero impact velocity), and xs (slave [93]). The slave starts
at x0 along the trajectory of xm, and smoothly transitions
its trajectory to xr during its approaching to the target posi-
tion xw. At t = T , the slave reaches the target position with
zero velocity. The position assistance can improve system
stability at the contact moment, but the realism perceived by
human users is decreased [93].

Without using predefined models, the authors of [94]
proposed a neuro-predictor to predict the master states such
as position and force. For smooth trajectories and relatively
slow movements, this method showed an improved system
performance for time delays up to 1000 ms. In addition, a
neural-adaptive control method presented by Li and Su [98]
is able to describe human behavior and deal with input uncer-
tainty based on the NN estimation method.

E. SUMMARY
In summary, environment modeling is the most impor-
tant challenge for MMT systems. If prior knowledge about
the environment is available, linear or non-linear models
can be employed to approximate the environment. Vari-
ous parametric methods are able to estimate the model
parameters (geometry and impedance parameters) in real
time during teleoperation. Without knowing the environ-
ment model, the NN-based estimation approaches (non-
parametric methods) have been proposed for modeling
simple environments. The accuracy and convergence of envi-
ronment modeling highly depend on the persistent excitation
conditions. In addition, modeling of human behavior is still
underdeveloped for MMT and could be an interesting direc-
tion for future work.

IV. DATA COMMUNICATION AND DATA REDUCTION
FOR MMT
For the conventional teleoperation architecture as illustrated
in Fig. 1, haptic signals such as position, velocity, and force
on both master and slave sides need to be sampled and

packetized immediately with a typical rate of 1 kHz. This
is due to the necessity of system stability and transparency
[99], [100]. Such a high packet rate together with the addi-
tional data overhead due to the transmission of packet header
information leads to inefficient communication in a packet-
switched network [101]. Therefore, haptic data reduction, or
packet rate reduction, is required in teleoperation systems.

Haptic data reduction based on human perceptual
limitations, the so-called perceptual deadband coding
approach (DB approach), was introduced in [101]–[103]
and [104] for conventional teleoperation systems without
delay, and in [105]–[107] for systems with delay. As illus-
trated in Fig. 19 for a 1D example, if the change in the
current signal with respect to the most recently sent signal is
smaller than the perceptual threshold, the current signal will
not be sent. Otherwise, the current velocity/force signal will
be sent. At the receiver side, upsampling methods such as the
zero-order hold (ZOH) strategy are used to interpolate the
irregularly received signal samples to the high sampling
rate that is required for the local control loops. The thresh-
old is defined by considering the just noticeable differ-
ence (JND) of human perceptual discrimination for haptic
signals (see Tab. 1).

FIGURE 19. 1-DoF perceptual deadband coding approach. The input
signal (a) is irregularly downsampled and only the values represented
with black filled circles are transmitted. In (b), the output signal is
upsampled using the zero-order-hold method (adapted
from [101] and [102]).

TABLE 1. JND of human perceptual discrimination for haptic signals [25].

For the standard MMT structure as illustrated in Fig. 10,
data transmission in the forward channel is the same as that
for the conventional teleoperation structure. Thus, the packet
rate in the forward channel can be reduced using the state-
of-the-art DB approach. In the feedback channel, the trans-
mitted data are the model parameters instead of force signals.
The transmission of the estimated model parameters can be
reduced in the following two ways:

1) Reduction of the estimation rate: Model parameters
are estimated only when necessary. For a slowly vary-
ing environment, there is no need to estimate the model
parameters at a high rate. For example, if we estimate
the environment parameters every 100ms, the packet
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rate is maximally 10 packets/s. However, a too low
estimation rate slows down the estimation convergence
and may not be able to follow the change of the envi-
ronment, even though the change is not frequent.

2) Selected transmission: This is to apply the DB
approach to the estimated model parameters: not every
estimate is transmitted, but only those for which the
difference between the current estimate and the most
recently sent estimate leads to a force feedback change
at the OP larger than the JND given by Tab. 1. This
scheme, in addition to the estimation rate reduction, can
further reduce the packet rate in the network.

In the following, we discuss the aforementioned two data
reduction methods for the standard MMT architecture.

A. ESTIMATION RATE REDUCTION
1) TIME-TRIGGERED ESTIMATION
A very simple way to reduce the estimation rate is to use
a time-triggered approach. The model estimator is activated
every T seconds, where T is a pre-defined estimation period.
The maximum packet rate is then 1

T packets/s.
The time-triggered estimation has some drawbacks in

following environment changes (e.g., stiffness change).
In addition, a too large estimation period slows down the
estimation convergence when the slave encounters a new
environment. For the casewhen the slave is in contact with the
environment but stops moving, signals such as the position,
velocity, and force are constant. These constant signals cannot
provide persistent excitation for the parameter estimation
(see Sec. 3.3), resulting in invalid estimates.

2) EVENT-TRIGGERED ESTIMATION
To overcome the drawbacks of the time-triggered estima-
tion, Verscheure et al. proposed an event-triggered estimation
approach in [58]. The activation of the model estimator is not
based on time but is in accordance with the slave behavior and
themeasured data. The rules of the event-triggered estimation
can be summarized in the following three aspects:
• Estimation is activated only if the robot is moved while
remaining in contact, either a normal or tangential move-
ment.

• Geometry estimation is activated at time T + 1T only
when the slave end-effector has moved by a certain
threshold amount 1s

xs(T +1T )− xs(T ) =
∫ T+1T

T
vs(t)dt > 1s (35)

• Friction estimation is not reasonable in the sticking
phase. Therefore, friction estimation is activated only
when the velocity of the slave end-effector is sufficiently
high (vs > vthreshold ).

Robustness of the estimation can be increased by process-
ing the measurements only in the sliding phase, since the
persistent excitation condition can be fulfilled. In addition,
the estimation algorithm will not be triggered with singular

measurements such as zero velocity, thus avoiding meaning-
less estimation results.

B. SELECTED TRANSMISSION
Instead of sending every estimate of the environment parame-
ters, only those estimates that result in a significant difference
in perception are transmitted to themaster. In the initial phase,
the packet rate can be very high, since the estimates vary
rapidly. Once the estimates converge to the true values, there
will be no updates required and thus the system achieves
zero transmission in the backward communication channel.
For real teleoperation systems, however, the estimates can
vary over time due to measurement noise, natural tremble of
human arm movement, etc. The designed updating scheme
should be robust to the parameter changes due to measure-
ment noise and should be able to distinguish between the
parameter changes due to noise and due to environment
changes.

1) ENVIRONMENT IMPEDANCE UPDATE
Xu et al. proposed a perception-based update scheme in [61]
to selectively transmit the estimated impedance parameters.
The transmission is based on the change in the estimated
physical properties. If the difference between the current
estimate and the most recently sent one is larger than the
JND defined by Tab. 1, an update including all the currently
estimated physical properties is triggered:

update =

yes, if
Zi(t)− Zi(t∗)

Zi(t∗)
> 1Zi

no, else
(36)

where Zi(t) is the currently estimated ith physical property.
Zi(t∗) is the most recently triggered ith physical property at
time instant t∗ < t . 1Zi denotes the JND of the ith physical
property Zi.
Experiment 2: An experiment is conducted in simulation

to evaluate the feasibility of the perception-based packet
rate reduction scheme in the presence of measurement noise
and environment changes. The environment is a 1D spring-
damper model with an initial stiffness of 200 N/m and an
initial damping of 10 Ns/m. A sinusoidal excitation with a
frequency of 0.1Hz is used as the input position signal. The
SPRLS method is used to estimate the impedance parame-
ters (stiffness and damping). At time t = 2s, the stiffness
changes to 350 N/m. At time t = 3.5s, the damping
changes to 20 Ns/m. The perception-based updating scheme
is employed to control the data transmission. The JNDs for
stiffness and damping are set to be 23% and 34%, respec-
tively, according to Tab. 1.

The simulation results are shown in Fig. 20. The esti-
mates converge quickly at the initial contact and at the time
when the environment changes. High packet rates are also
observed at these time periods (see Fig. 20(c)). After the
estimates converge to the true values, JNDs are not violated
and thus no further updates are triggered. For infrequently
varying environments, the perception-based updating scheme
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FIGURE 20. (a) Estimated stiffness values. (b) Estimated damping values.
(c) Packet rate vs. time.

can achieve a high packet rate reduction, if the estimation
algorithm shows fast convergence.

2) ENVIRONMENT GEOMETRY UPDATE
The geometry parameters can be updated together with the
impedance parameters or they can be updated when a sig-
nificant geometry mismatch, e.g., a position difference, is
detected. Similar to the impedance parameters, the geometry
parameters also depend on the adopted environment model.
For example, if a plane model is employed, the geometry
parameters are the plane normal (a, b, c)T and the plane posi-
tion d (see (25)). If a spherical model is employed, the geom-
etry parameters are the sphere center and the radius. However,
a simple geometry model cannot accurately approximate
complex environments. This leads to a model mismatch and
results in frequent model updating (packet triggering).

To avoid frequent model mismatch in geometry param-
eters, the authors of [60] and [61] suggest using a point
cloud to describe the complex environment geometry. The
point cloud can be captured by a 3D sensor, such as a stereo
camera, time-of-flight camera, and laser scanner. The update
of the environment geometry is activated while the slave is in
free space. It is deactivated and the impedance estimation is
activated when the slave is in contact with the environment.
This is to avoid sudden geometry model changes during the
slave’s interaction with the environment and to thus ensure a

stable exploration. The switch signal is triggered by the mea-
sured environment force. If the measured environment force
is larger than a pre-defined threshold, the slave is considered
to be in contact state. Otherwise, it is in free space. The
captured point cloud can be easily compressed using standard
image compression schemes if it is organized or using the
oct-tree based compression scheme proposed in [108] if it is
disorganized.
Experiment 3: In [60] and [61], point clouds are pre-

ferred over triangular meshes for two reasons. First, point-
cloud-based haptic rendering, compared with mesh-based
rendering [109], can provide similarly high quality hap-
tic feedback using a simpler and faster collision detection
scheme [110], [111]. In addition, if the surface point cloud
is captured and streamed in real time, the use of point-cloud-
based transmission and haptic rendering saves computation
time for meshing and collision tree (bounding box) creation.

In this experiment, we test the time needed for meshing
and bounding-box creation for a spherical model. The fast
meshing algorithm proposed in [112]1 and the axis-aligned
bounding box (AABB) algorithm2 are adopted for this test.
This test is run on a PC with Intel(R) Core(TM) i5 CPU,
3.33GHz, 4G RAM.

TABLE 2. Computational time of meshing and bounding-box creation for
a spherical model with two different resolutions.

According to Tab. 2, real-time meshing of geometry is
challenging. If meshing and AABB creation are necessary
for every captured point cloud frame, the maximum update
rate of the point cloud is only 20 frames/s for the low res-
olution spherical model, and 3.3 frames/s for the high reso-
lution spherical model. However, the resolution of a normal
3D sensor can be even higher than that of the tested model,
e.g., 320 × 240 points in [61]. The 3D sensor captures
many more points than the tested model and consequently
results in more time for meshing and AABB creation.
Therefore, transmitting meshes for describing environment
geometry is quite difficult.
Remark for Section IV.B: An alternative way to reduce

the packet rate is to apply a perceptual update scheme to
the estimated force and the measured contact force. This
means that if the difference between the estimated force
(computed based on the estimated environment model) and
the measured slave contact force is larger than the JND,
an update including all the model parameters is triggered.
Compared with the update scheme proposed in [61], this
method requires only one JND parameter on force for the
update decision. However, it is resource consuming, since the

1Source code from pointclouds.org/documentation/tutorials.
2Source code from www.chai3d.org.
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entire force-rendering algorithm needs to be run at 1kHz on
the slave side to compute the estimated force without delay.
Meanwhile, the slave system has to estimate the environment
parameters, which is also time-consuming if the environment
is complex. Thus, to reduce the computational load on the
slave side, applying JNDs directly to the estimated impedance
parameters is suggested in [61].

FIGURE 21. A MMT system with the model estimator on the master side.

Remark for Section IV: An alternative structure for
MMT is to place the model estimator on the master
side as illustrated in Fig. 21. This structure is employed
in [48], [70], [93], and [96]. In this case, the only data
exchanged over the network are the haptic signals, and not
the environment parameters. This structure reduces the com-
putational load on the slave side. However, for this structure it
is difficult to apply the data reduction scheme. The position,
velocity and force signals need to be continuously transmitted
from the slave to the master, to ensure the accuracy of the
online parameter estimation. Even in the case of constant
contact force, signals still need to be transmitted, as a constant
slave contact force does not mean that the estimation on
the master side already converges. This alternative MMT
structure can be used for example for ground-space tele-
operation systems in which the computational capacity of
the slave computer is limited by weight or cost restrictions,
but communication quality is guaranteed by sufficiently high
communication priority and capacity.

V. STABLE HAPTIC RENDERING
Stable haptic rendering on the master side in both transition
and steady states are mandatory for the system stability of
MMT. In this section, we first discuss the existing model
updating schemes in the transition state. Then, we introduce
the visual-haptic asynchrony issue in the steady state which
could lead to potentially unstable collisions.

A. PASSIVITY-BASED MODEL UPDATING
As discussed above, the local model on the master side needs
to be updated if the slave detects a new model, or if there is
a significant model mismatch between the local model and
the environment. In this case, the slave triggers an update.
The parameters of the local model are updated according to
the received data. Improper update schemes, e.g., a sudden
change in stiffness or model position, result in a suddenly
changed force that is displayed to the human user. This is
called the model-jump effect [57]. If the users cannot adjust
their arm impedance quickly enough to follow (stabilize) this

force change, an unexpected motion occurs, causing dan-
gerous slave behavior. Therefore, smooth and stable model
updating is required.

The concept of passivity is a powerful and widely used
tool for the analysis of system stability, either for vir-
tual environments [17], [62], [63] or for real teleoperation
systems [15], [19]. System passivity characterizes the energy
exchange over an N-port network and provides a suffi-
cient condition for the input/output stability. Using the con-
cept of passivity for model updating, the key point is to
avoid energy injection into the system, or to ensure that
the injected energy can be dissipated by system damping or
friction.

1) ZERO ENERGY INJECTING
Mitra and Niemeyer have proposed a constraint-based
scheme for updating model position in 1D environment to
avoid energy injection [27]. For this approach, any position
updating that introduces energy injection will be delayed,
unless the user’s motion allows for a position update that will
not introduce energy injection.

FIGURE 22. Two methods for updating object position. Left: direct
updating leads to suddenly increased penetration and thus injects
energy into the system. Right: gradual updating without injecting
energy into the system. Adapted from [27].

As illustrated in Fig. 22, the master is in contact with the
current local model (a 1D floor), while a new floor position
xest is detected and transmitted to the master. If the position
of the floor on the master side is immediately updated to the
actual position xest , the penetration is increased and energy is
injected into the system. This leads to a suddenly increased
contact force being displayed to the user.

The solution proposed in [27] is to constrain the master
floor position x fm to be below the master position xm:

x fm = min{xest , xm} (37)

This means that if the master proxymoves upward, the master
floor moves accordingly, but always below the proxy posi-
tion. If the master moves downward, the master floor keeps
still to provide a rigid contact (Fig. 22). Until the master floor
reaches its actual position (the estimated position), the system
switches to steady state and the constraint of (37) can be
removed.

Although this updating scheme guarantees system passiv-
ity, it is designed only for position updating rather than for
impedance updating. Meanwhile, the updating period can
be very long, since the updating process depends on the
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master’s motion. Only when the master reaches the actual
floor position can the entire update period be completed. In
addition, Mitra et al. found that compared with some non-
passive update approaches, e.g., gradually moving the master
floor from the old location to the actual position at a fixed
velocity, the user does not haptically prefer this passive updat-
ing scheme [113]. Therefore, further studies on the passivity-
based model updating scheme are required.

2) NON-ZERO ENERGY INJECTING WITH
ENERGY DISSIPATION
If the updating process leads to energy injection, but for
each sampling period the same amount of energy (or more)
can be dissipated, the system is still passive. According to
this concept, Xu et al. [114] have proposed a passivity-
based model updating scheme using adaptive damping. This
approach allows for the updating of both impedance and
geometry parameters in 3D environments.

FIGURE 23. Block diagram of the master sampled-data system including
a 3D spring-damper model. The unknown parameters are the stiffness,
damping, and initial position of the local model (adapted from [114]).

As illustrated in Fig. 23, the environment is modeled
as a spring-damper model, where K = diag(kx , ky, kz),
B = diag(bx , by, bz), and x∗ = (x, y, z)T denote the stiffness,
damping, and initial position, respectively. The haptic ren-
dering is passive if the energy storage Ws in the local model
is smaller than the work input by the OP (denoted as Wh)
between two samples from t = 0 to t = T . The input workWh
within a sample period T is

Wh = fTh (x1 − x0) = fTe (x1 − x0)+ Ek +
∫ T

0
ẋTBdẋdt

(38)

where Ek = 1
2md (||ẋ1||

2
− ||ẋ0||2) denotes the change in

the kinetic energy within a sample period. Bd = bd I3 is the
device damping. x0 and x1 are the device position vectors at
the time t0 = 0 and t1 = T , respectively. The energy storage
within a sample period T is

Ws = Ek + Ee

= Ek +
1
2
(x1 − x∗1)

TK1(x1 − x∗1)

−
1
2
(x0 − x∗0)

TK0(x0 − x∗0) (39)

where Ee denotes the change of the elastic potential energy
within a sample period. x∗ is the object’s initial position.K is

the object stiffness matrix. The subscripts ofK and x∗ denote
the corresponding time instants t0 = 0 and t1 = T .
Passivity conditions for updating the stiffness, damping,

and initial position can be derived according to the estimated
environment force fe = K0(x0 − x∗0)+ (B0 + αI3)ẋ0 and the
constraint Wh ≥ Ws. To simplify the passivity conditions,
the authors of [114] derived a conservative condition for a
1D environment. The conclusions were as follows:
• Updating the model dampings will not break system
passivity.

• Updating only the stiffness, the passivity condition is

k̇ =
1k
T
≤ 2(α + bd + b−

k0T
2

) · (
ẋ0
x1
)2 (40)

• Updating only the initial position, the passivity
condition is

2T ẋ0
k

[k(x0 − x∗0 )+ (bd + b+ α)ẋ0]+ (x0 − x∗0 )
2

≥ (x1 − x∗0 −1x
∗)2 (41)

Eqs. (40) and (41) show the upper bound of the rate of change
in stiffness and initial position for given dampings [α, bd , b],
respectively.

FIGURE 24. Floor position updating using the zero and non-zero energy
injecting methods. Environment parameters: stiffness k = 1000 N/m, total
system damping bd + b0 + α = 20 Ns/m, and sampling time T = 1 ms.

Experiment 4: An experiment is conducted in simulation
to compare the position updating schemes proposed in [113]
and [114] for a 1D floor. As illustrated in Fig. 24, the ini-
tial floor position on the slave side (the black solid line) is
at 0 m. It suddenly changes to 0.04 m at t = 2s. The master
(the blue solid line) is controlled so as to be in contact with
and penetrate into the floor from t ≈ 0.7s to t ≈ 2.9s.
After t ≈ 2.8s, the contact is released. During this con-
tact, the position of the local floor model is updated in one
of the two ways: 1) the zero energy injecting method [27]
(the red dashed line) and 2) the non-zero energy injecting
method [114] (the green dotted-dashed line).

According to Fig. 24, the non-zero energy injecting
approach can update the model position faster, since the sys-
tem damping can dissipate the energy generated by increasing
the penetration. The updating process ends before the contact
is released. The zero energy injecting method, however, only
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updates the model position maximally at the current master
position. Thus, the updating process is slower than the non-
zero energy injecting method.

The authors of [114] also show that for stiffness updat-
ing, users prefer the non-zero energy injecting update
scheme rather than the non-passive/fixed-rate update scheme
proposed in [113].

B. MODEL DISPLACEMENT FOR
VISUAL-HAPTIC ASYNCHRONY
In the presence of communication delay, the video signal
displayed on the master side is transmitted from the slave
side and thus delayed; the locally rendered force signal,
on the other hand, is non-delayed. Hence, visual-haptic
asynchrony (VHA) exists between the displayed video and
haptic signals and increases with the communication delay.
An example of this VHA effect in a 1D environment is
illustrated in Fig. 25(a). At the time instant when the user hap-
tically feels the collision, the video shows that the slave end-
effector is still not in contact with the environment. For MMT
systems in steady state under time delay, haptic feedback is
displayed before the video signal. In this case, it is difficult
for human users to predict the collision time and to control
the collision velocity. An improperly large collision velocity
can result in instability or cause damage to the slave robot.
Therefore, the VHA effect must be properly compensated for.

The effect of VHA has been investigated in many
studies including [114]–[116]. It was found that VHA
could be detected by a human user when it exceeded

FIGURE 25. The principle of dynamic model displacement. The position of
the local model is shifted downward to synchronize the haptic collision
with the visual collision (adapted from [117]). xs and xm denote the slave
and master position. xs

obj and xm
obj represent the position of the real

object on the slave side and the position of the rendered local model on
the master side, respectively. xshift is the model displacement for
visual-haptic synchronization.

50ms− 150ms depending on the tasks. In addition, the VHA
has negative effects on task performance and completion
time. To compensate for the VHA in MMT, delaying the
locally rendered haptic signal to synchronize it with the video
signal is not recommended, since delayed haptic feedback
leads to instability [13]. To address this issue, a dynamic
model displacement scheme was proposed in [118] to com-
pensate for the VHA while ensuring system stability. In the
presence of communication delay, the position of the local
model is adaptively shifted along the motion direction of the
master to haptically delay the collision time (see Fig. 25(b)).
With growing xshift , the delay of haptic collision is increased,
and thus the VHA can be reduced. While releasing the
contact, the local model is gradually moved back to its
actual position with the constraint on the master position, as
described in [27]. The haptic signals are still rendered locally
without delay; thus, the system remains stable.

The required displacement xshift to fully compensate for the
VHA can be computed based on the master motion and the
round-trip delay TR

xshift (t) = xm(t)− xs(t) = xm(t)− xm(t − TR)

=

∫ t

t−TR
ẋm(τ )dτ (42)

where xs(t) is the currently displayed slave position on the
delayed video, which has a delay of TR.

With the advantage of compensating the VHAwhile ensur-
ing system stability, the model displacement scheme, how-
ever, introduces two additional issues that could jeopardize
system stability and transparency. First, the manual shift of
the local model leads to model mismatch between the master
and the slave sides. In addition, a slave control approach must
be applied to guarantee a stable slavemotion during themodel
mismatch (see Sec. 6). Second, the model displacement intro-
duces additional movement for the human arm while estab-
lishing contact. A large xshift can be perceived by the human
user and leads to an unrealistic kinesthetic experience of
distance. However, the reduction of xshift increases the VHA.
Therefore, a displacement compromise between theVHA and
the perceived distance errors has been experimentally found
in [118].

For example, for a constant approach velocity of 10 cm/s
with a delay of 200ms, a maximum displacement of
xshift = 10 cm/s × 200 ms = 2 cm is enough to
fully compensate for the VHA. However, if the entire arm
movement during the approach phase is 20 cm, the 2 cm-
displacement introduces an additional 10%movement, which
can be perceived by human user according to Tab. 1. Thus,
we limit the displacement in this case to xshift = 1.5 cm.
The additional movement is then less than 8% and cannot be
perceived by the human user.Meanwhile, the remainingVHA
is 2 cm−1.5 cm

10 cm/s = 50 ms, which could also hardly be perceived
by the user. Thus, a good compromise between the VHA and
subjective experience is achieved in this case.
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FIGURE 26. Slave control issues during model mismatch when a simple
position control approach is used. (a) Position mismatch for rigid objects:
undesired penetration and large contact force. (b) Stiffness mismatch for
deformable objects: large contact force and improper compression.

VI. SLAVE CONTROL IN THE TRANSITION STATE
In this section, we discuss the transition-state slave control.
In the transition state, the local model on the master side is
mismatched to the remote environment. Thismodelmismatch
can lead to a mismatch in position tracking on the slave side,
resulting in dangerous slave behavior such as undesirably
deep penetration into an object or improperly large force
acting on the environment (see Fig. 26). The state-of-the-
art transition-state slave control approaches for dealing with
such issues are the switching position control (PC)/force
control (FC) method [27], [28] and the relative tracking
method [61], [119]. The feasibilities of the two approaches
for dealing with a position mismatch or a stiffness mismatch
are discussed next.

A. SWITCHING POSITION/FORCE CONTROL
The slave is operated in PC mode if it is in free space, and
is placed under FC if it is in contact with the environment.
In the FC mode, the slave is controlled to execute the same
task force (contact force) to the environment as applied on
the master side. The switch between the two control modes is
triggered by the measured environment force Fe.

|Fe| = 0→ PC: (xs, ẋs)(t) = (xm, ẋm)(t − Tf )

|Fe|> 0→ FC: (xs,Fs)task (t) = (xm,Fm)task (t − Tf ) (43)

where Tf is the communication delay in the forward channel.
In the FC mode, the slave no longer follows the mas-

ter position but applies the same task force to the environ-
ment. For the case of position mismatch, this control scheme
ensures identical master and slave contact forces and prevents
the slave’s improper penetration into the object. However, if
there is a stiffness mismatch and the stiffness of the local
model is larger than that of the environment, in order to apply
the same task force on both the master and slave side in the
FC mode, the slave needs to compresses the environment
more than on the master side. Thus, the slave reaches an
improper position due to the large compression, which can
lead to damages to the environment.

B. RELATIVE TRACKING
The relative tracking scheme [119] is a modification of the
PD controller. The original PD controller for position tracking

on the slave side is

Fs = kp(xm − xs)+ kd (vm − vs) (44)

where Fs is the force applied to the slave and kp and kd are the
PD gains for position and velocity. The modified PD control
for relative tracking is

Fs = kp[(xm − xmw )−(xs − x
s
w)]+kd [(vm − v

m
w)−(vs − v

s
w)]

(45)

where xmw and xsw are the position of the local model on the
master side and of the object on the slave side, respectively.
vmw and vsw denote their velocities. For a static environment,
vmw = vsw = 0.

FIGURE 27. Relative tracking control scheme on the slave side for dealing
with model mismatch.

The principle of the relative tracking scheme is illustrated
in Fig. 27. The penetration on the slave side is identical to that
on the master side. Thus, undesired penetration on the slave
side can be avoided.

One problem with using the relative tracking is that when
the PD gains of the slave are different from those of the
master, the applied slave and master force can be different.
The force deviation between the master and slave leads to
potential instability.
Remark for Section VI: Using either one of the two control

approaches alone cannot completely address the potential
stability issues in the transition state. A solution is to use
a hybrid control scheme by taking the advantage of the FC
and the relative tracking approaches. This means that either
when the slave contact force reaches the same quantity as the
master force or when the slave penetration reaches the same
depth as it does on the master side, the slave will not execute
any motion commands. This stops the increase in contact
force and penetration, and thus ensures stable force/position
tracking on the slave side.

VII. SYSTEM TRANSPARENCY OF MMT
A comprehensive study on system transparency for MMT
is not available in literature. In this section, we discuss
the factors that mainly influence the transparency of MMT.
In addition, we discuss a possible definition of transparency
for the steady state and the transition state in MMT.

System transparency describes the accuracy with which a
teleoperation system can display a remote environment to the
human user. In the traditional sense, a teleoperation system
is called transparent if the impedance displayed to the human
user Zh is identical to the environment impedance Ze [13]:

Zh = Ze (46)
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This means that no external dynamics are felt in free space
and that the remote environment is exactly represented on the
master side during contact.

Lawrence [13] has proposed a definition for transparency
error to describe the difference between the displayed
impedance and the environment impedance over a certain
frequency range:

Zerror =
1

ωmax − ωmin

∫ ωmax

ωmin

|Zdiff (jω)|dω (47)

with

Zdiff (jω) = |logZh(jω)| − |logZe(jω)| (48)

The lower the value of Zerror , the higher is the degree of
transparency.

For MMT systems in the steady state, system transparency
depends on the accuracy of the model estimation. The esti-
mated model impedance Zest will be directly transmitted to
the master and displayed to the human user. Thus, Zest = Zh,
if no packet loss over the network is assumed. Therefore,
(47) can be used to measure the steady-state transparency.

For MMT systems in the transition state, system trans-
parency is affected mainly by the duration of the transition
state. The duration Ttrans can be defined as a sum of the
round-trip delay TR, the convergence time of the parameter
estimation Tconv, and the duration of the model updating
Tupdate

Ttrans = TR + Tconv + Tupdate (49)

The smaller Ttrans is, the shorter the transition state lasts,
and thus the less model mismatch the MMT system has.
Ideally, the duration of the transition state should be zero;
thus, the model mismatch in the transition state is avoided.
However, this is impossible due to the communication delay
and the non-zero convergence time of the model estimation
algorithm. The use of a quickly convergent estimation algo-
rithm and a fast model updating scheme can improve system
transparency. However, too short of an updating time leads
to model jump effects and results in instability as discussed
in Sec. V. From this perspective, stability and transparency
become conflicting objectives.

In the transition state, the parameters of the local model are
time-varying, leading to time-varying displayed impedance.
Frequency analysis of the displayed impedance cannot per-
fectly describe the time-varying impedance. Thus, we suggest
using time-frequency analysis methods such as the short-
time Fourier transform (STFT). Using STFT, the displayed
impedance at time t and frequency ω can be written as
Zh(t, jω). The transparency error in the transition state is then

Z transerror =
1

ωmax − ωmin

∫ Ttrans

0

∫ ωmax

ωmin

|Zdiff (t, jω)|dωdt (50)

with

Zdiff (t, jω) = |logZh(t, jω)| − |logZe(t, jω)| (51)

Eq. (50) indicates that longer-duration transition states cause
larger transparency errors. For the ideal case where the dura-
tion Ttrans is zero, the transparency error according to the
integration in (50) is also zero. This means that zero transition
duration can avoid model mismatch, which conforms to our
discussion above.

The total transparency of MMT systems is a combination
of the transparency error in the steady and transition states.
Combining them is an interesting topic for future work.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have presented an overview of relevant
studies on model-meditated teleoperation (MMT) from the
late 1980s to the present. The MMT method was developed
to achieve both stability and transparency in the presence of
communication delays. Based on a local model on the master
side, which is a prediction of the remote environment, haptic
feedback can be rendered locally without delay. According to
the principle of the Smith Predictor, an MMT system can be
both stable and transparent if the local model is an accurate
approximation of the remote environment.

The most important challenge of MMT is the environ-
ment modeling. A precise and quickly converging model
estimation algorithm is the key for designing an efficient
MMT system. At present, the online estimation algorithms
can deal with linear and non-linear environment models
using only limited samples of slave motion and contact force
information. For complex environment geometries, external
3D sensors can be employed to capture a precise description
of the surface geometry. Besides the model estimation, other
challenges such as data compression, model updating in the
transition state, and slave control in the transition state are
also discussed. Data compression reduces the communication
load and avoids potential conjestion in the network, espe-
cially for transmitting the model parameters of complex envi-
ronments. Proper model updating and slave control schemes
in the transition state ensure system stability when the local
model on the master side is mismatched with the remote
environment. The final goal of addressing these challenges
is to ensure the stability of the slave-environment closed loop
and the human local model closed loop, thus guaranteeing a
stable and transparent teleoperation system.

In summary, it can be stated that theMMT approach has the
benefit of being simultaneously stable and transparent for rel-
atively simple environments. However, due to the limitations
of existing online model-estimation algorithms, the MMT
approach cannot work efficiently in complex or completely
unknown environments. A table summarizing relevant studies
on MMT can be found in the appendix.

Regarding future work, one idea is to develop an online
modeling algorithm for deformable objects. This requires a
sufficiently simple model whose parameters can be iden-
tified online and which can provide a sufficiently precise
description of the deformable object. To be sufficiently sim-
ple, this model can be physically inaccurate, but should
be able to provide a perceptually realistic haptic feedback.
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On the other hand, the use of more external sensors can
improve the estimation accuracy of the model parameters.
With the help of additional sensors, the model parameters,
both geometric and physical properties, can be identified even
before the slave gets into contact with the environment.

APPENDIX
A SUMMARY OF RELEVANT STUDIES ON MMT
A summary of relevant studies on MMT is shown in the
previous page.
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