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ABSTRACT Video and images acquired by a visual system are seriously degraded under hazy and foggy
weather, which will affect the detection, tracking, and recognition of targets. Thus, restoring the true scene
from such a foggy video or image is of significance. The main goal of this paper was to summarize current
video and image defogging algorithms. We first presented a review of the detection and classification
method of a foggy image. Then, we summarized existing image defogging algorithms, including image
restoration algorithms, image contrast enhancement algorithms, and fusion-based defogging algorithms.
We also presented current video defogging algorithms. We summarized objective image quality assessment
methods that have been widely used for the comparison of different defogging algorithms, followed by
an experimental comparison of various classical image defogging algorithms. Finally, we presented the
problems of video and image defogging which need to be further studied. The code of all algorithms will be
available at http://www.yongxu.org/lunwen.html.

INDEX TERMS Foggy image classification, image defogging, video defogging, image quality assessment.

I. INTRODUCTION
Fog and haze are a common phenomenon on land and ocean.
In foggy and hazy weather, there are many atmospheric par-
ticles of significant size. They not only absorb and scatter the
reflected light of the scene, but also scatter some atmospheric
light to the camera. Thus, the image acquired by the camera is
degraded and usually has low contrast and poor visibility [1].
This will seriously influence the visual system especially the
visible light visual system. Due to the degradation of the
image, the targets and obstacles of the image are difficult to
detect. This is bad for automated video processing, such as
feature extraction, target tracking, and recognition of objects.
This is also one of the main reasons for accidents in the
air, on the sea, and on the road. So it is important to design
an image defogging algorithm to improve the environmental
adaptability of the visual system.

With the development of computer technology, the video
and image defogging algorithms have received much atten-
tion and are widely applied in civil and military fields, such
as remote sensing, target detection, and traffic surveillance.

Hautière et al. [2] used the image defogging algorithm to
enhance the visibility of the vehicle visual system, which
can effectively prevent car accidents. For images of outdoor
scenes, Narasimhan et al. analyzed the visual manifestations
of different weather conditions, such as haze, fog, cloud,
and rain [3], and then established an physical imaging model
based on the atmospheric scattering phenomenon for image
defogging [4], [5]. Because the existing defogging or dehaz-
ing algorithms have no clear boundaries, in this paper we
use image defogging to refer to algorithms that have the
ability to remove fog or haze from the image. Many improved
defogging algorithms based on the physical model were pro-
posed for outdoor scenes. Some video and image defogging
algorithms were also proposed for real-world traffic surveil-
lance scenes [6]–[9]. In order to improve the visibility of the
unmanned surface vehicle (USV) visual system,Ma et al. pre-
sented an improved image defogging algorithm based on the
dark channel prior to foggy sea image restoration, and the pro-
posed single image defogging algorithm was also extended to
fast video defogging [10]. Under poor visibility conditions
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such as foggy weather, it is difficult to find runways and
hazards from the visual system of a flight. In order to solve
this problem, Rajput et al. presented a contrast enhancement
algorithm based on the Retinex theory which can effectively
improve the visibility of the foggy image acquired by the
flight visual system [11]. Most existing defogging algorithms
also aim at removing fog from land images. However, there
are few studies of the sea and air. The above applications all
demonstrate that the video and image defogging algorithms
are significant and well worth studying.

In past years, some institutions have done research on
image defogging and obtained good results. In America, the
Langley Research Center (LRC) of National Aeronautics
and Space Administration (NASA) has studied the image
enhancement and defogging algorithm since 1995, and their
research has made a great contribution to the field of image
enhancement based on the Retinex theory.1 Their algorithms
can greatly enhance the visibility of an image acquired
under bad weather conditions, such as smoke, haze, under-
water, night, or low illumination conditions [11]–[15]. On the
DSP microprocessor, their algorithms can reach a speed
of 30 frames per second with an image size of 256×256 [16].
The French Central Laboratory of Roads and Bridges made
significant progress in enhancing the visibility of the vehicle
visual system in foggy weather [2], [17]–[19]. They also
established three Foggy Road Image Databases (FRIDA) for
benchmarking visibility restoration algorithms.2 The Com-
puter Vision Laboratory of Columbia University established
a weather and illumination database (WILD) which was
acquired under a variety of weather and illumination con-
ditions of the outdoor urban scene3 [3]. They proposed
many image defogging algorithms to improve visibility by
using multiple images of the same scene [3]–[5], [20]–[23].
A group in the Hybrid Imaging Laboratory of Technion of
Israel developed an image defogging algorithm via multi-
ple polarization images4 [24]–[28]. The Visual Computing
Group of Microsoft Research Asia in cooperation with the
Chinese University of Hong Kong made significant progress
in single image defogging and proposed the dark channel
prior to image restoration which obtained vivid restoration
effects of outdoor foggy images [29], [30].

FIGURE 1. A complete video defogging system.

This paper aims to study the image and video defogging
algorithms proposed during the last decade. A complete video
defogging system is shown in Fig.1. Most of existing video

1More results about the Retinex algorithm are available at:
http://dragon.larc.nasa.gov/retinex/background/retpubs.html

2FRIDA is available at: http://perso.lcpc.fr/tarel.jean-philippe/index.html
3WILD is available at: http://www.cs.columbia.edu/CAVE/software/wild/

index.php
4More results of the polarization-based defogging algorithm are available

at: http://webee.technion.ac.il/~yoav/research/instant-defogging.html

and image defogging algorithms do not take into account the
factor of whether there is fog or not. However, for an intelli-
gent defogging algorithm, the judgment method of the foggy
and non-foggy image is very important. Thus, in this paper,
we will also give a brief summary of it. The structure of this
paper is as follows. In Section II, we shall first provide some
methods to judge whether an image needs to be processed.
Section III summarizes many defogging algorithms for single
image defogging. Section IV briefly introduces some recent
video defogging algorithms. Section V introduces some qual-
ity assessment criteria which are widely used to compare dif-
ferent image defogging algorithms. Experiments are shown
in Section VI. Finally, we summarize the paper and present
some problems which need to be studied in the future.

II. DETECTION AND CLASSIFICATION OF FOGGY IMAGES
Existing video and image defogging algorithms are always
directly applied to the image regardless of the presence or
absence of fog. But for real-world applications, it is necessary
to know whether the image acquired in the current environ-
ment needs to be processed by a defogging algorithm. The
main reason is as follows: visibility of the restored image
obtained by the defogging algorithm may be worse than the
original image if no judgment is made. Also, the use of
the defogging algorithm is time consuming, which is not
beneficial to realize the real-time target detection, tracking,
and recognition. There are two methods which can judge
whether the current scene has fog or not. The first method is
the fog detection method which regards the invisible area of
the image as the foggy area. The second method is the foggy
image classification method.

A. DETECTION OF FOGGY AREAS IN IMAGES
Two methods are able to detect the foggy areas of the image.
The first method is based on the semi-inverse image, and
the second method is based on the meteorological visibility
distance.

1) FOGGY AREA DETECTION BASED ON
THE SEMI-INVERSE IMAGE
Ancuti et al. first proposed a foggy area detection algorithm
based on the ‘semi-inverse’ image5 [31]. The semi-inverse
image S is obtained by selecting the maximum of the original
image pixel and its inverse image pixel which is formulated as

Sc(x) = max[I c(x), 1− I c(x)] (1)

where c denotes one of the RGB channels, I is the original
image, and 1− I c(x) denotes the inverse image of the original
image.

After renormalizing the inverse image, Ancuti et al.
detected the foggy areas in the h∗ channel of the Lch color
space, and regarded the pixels which have a large difference
between the semi-inverse image and original image as clear

5More results of the ‘semi-inverse’ defogging algorithm are available at:
http://research.edm.uhasselt.be/~oancuti/Dehaze_ACCV_2010/

166 VOLUME 4, 2016



Y. Xu et al.: Review of Video and Image Defogging Algorithms and Related Studies

pixels, and regarded the remaining pixels as foggy pixels.
This foggy area detection method is based on the fact that
the intensity values of pixels in the foggy area of the image
are usually much bigger than those of pixels in the clear
area. In the sky or foggy areas of an image, pixels usually
have a high intensity in all color channels, i.e. I cfog(x) > 0.5.
Thus, the semi-inverse image will have the same value as the
original image in these areas. However, in clear areas, there
is at least one channel of the semi-inverse image where pixel
values will be replaced by the inverse image. In other words,
the output of Eq.(1) is respectively the original image in foggy
areas and the inverse image in clear areas. Then the foggy area
can be easily detected by the difference between the original
image and its semi-inverse image. This algorithm is simple
and effective for detection of foggy areas in foggy images,
but it is not suitable for the judgment of whether the current
scene has fog or not. This is because the sky area or white
area of a clear image will be mistaken for a foggy area via
this algorithm.

2) FOGGY AREA DETECTION BASED ON THE
METEOROLOGICAL VISIBILITY DISTANCE
The International Commission on Illumination (CIE) defined
themeteorological visibility distance of an image and its mea-
surement method [32]. The meteorological visibility distance
of an image is widely applied in the field of foggy image
detection of a vehicle visual system [33]. For a foggy image,
Hautiere and Tarel et al. proposed a daytime foggy area detec-
tion algorithm via calculating the meteorological visibility
distance [34]. They first used the Canny-Deriche filter to
extract the image contours so as to highlight the edges of road-
ways. Then the region growing algorithm was performed to
find the road surface layer. Third, they established four condi-
tions to obtain the target region. Finally, the visibility distance
of the image was obtained by calculating the measurement
bandwidth. Hautiere and Tarel et al. used a horizontal line to
denote the visibility distance. For the vehicle camera system,
the region above the horizontal line usually has low contrast
and can be regarded as the foggy area or invisible area.
Bronte et al. also detected the foggy area of an image via
estimating the visibility distance [35].

The fog detection method based on the meteorological
visibility distance divides the foggy image into two regions:
visible area and invisible area. Although the fog detection
algorithm has the ability to detect the foggy area of images,
it also has some shortcomings. The invisible area above the
horizontal line of the image does not means that it should be
absolutely assigned to the foggy area. Some distant scenes of
natural clear images also look blurry and may be mistaken for
invisible areas or foggy areas by the fog detection algorithm.
Moreover, for some foggy images with inhomogeneous fog
distribution, it is hard to find a horizontal line to separate the
foggy area and clear area. But the meteorological visibility
distance can be used to judge which area has thin fog or
dense fog. This may be helpful to estimate the parameters of
defogging algorithms.

B. CLASSIFICATION ALGORITHM OF FOGGY IMAGES
The foggy image classification method needs to establish an
image library which contains large amounts of clear images
and foggy images. The method extracts some features which
have large difference between the two types of images, and
then uses an effective classifier to train the features and obtain
the classification hyperplane. Finally, a query image can be
classified as a foggy image or clear image. The flowchart of
foggy image classification is shown in Fig.2.

FIGURE 2. The flowchart of foggy image classification.

In the fog classification method, the features are the most
important and directly determine the classification accuracy.
There is no feature that can accurately classify the foggy
image and clear image. Li et al. pointed out that for image
visibility, the intensity of the dark channel and image contrast
can be used as the feature for the classification of foggy and
clear images [36]. Yu et al. extracted the image visibility, the
image visual contrast, and the intensity of the dark channel
image as features and used the support vector machine (SVM)
for foggy image classification [37]. The image visibility is
also calculated by the meteorological visibility distance. The
measurement of the image visual contrast was first proposed
by Jobson et al. [38]. Exploiting the atmospheric scattering
model, Zhang et al. took the angular deviation between each
foggy image and a clear image of the same scene as features
for foggy image classification [39]. They also used the SVM
to classify the foggy image. Although their method can obtain
good classification performance, it is hard to simultaneously
obtain a clear image and foggy image of the same scene in
real-world applications. Pavlic et al. presented a foggy image
classification method by using the global features, in terms
of the power spectrum of the Fourier transform and the SVM
for the vehicle visual system on highways [40].

Some issues still need to be solved for foggy image classi-
fication in the future and the main issues are as follows:
(1) There is no a perfect criterion to judge whether an

image is a foggy image or clear image. For example, on
sunny days, some distant scenes of natural clear images
look blurry. It is hard to determine whether they need
to be processed or not. In other words, some images are
hard to be assigned to the category of a foggy image or
clear image.

(2) It is necessary to find more effective features to
recognize foggy images. Because the computational
efficiency is important, the features need to be fast
extracted. Maybe some quality assessment indexes can
be used as features of foggy image classification.

(3) It is significant to judge the fog level of the scene. For
some defogging algorithms, if we can get the fog level
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FIGURE 3. The categories of image defogging algorithms.

of the current environment from the image classifica-
tion, then some parameters of defogging algorithms can
be adaptively adjusted to obtain better performance.
This is beneficial to video and image defogging in
real-world applications. In addition, we can adaptively
select the best defogging algorithm in terms of the fog
level of the foggy image.

III. IMAGE DEFOGGING ALGORITHM
In some literatures, the image defogging algorithm is
simply divided into two categories in terms of whether
a physical model is used or not [36], [41]–[45]. The
first category is image restoration based on the physical
model [19], [22], [46]–[48], and the other is based on image
enhancement [49]–[54]. The image restoration method
establishes a physical imaging model based on the degrada-
tion reason of images under foggy conditions. This category
of algorithms needs to estimate the parameters of the phys-
ical model, such as the atmospheric light and transmission
(depth). The restored image can be obtained by inversely
solving the physical model. Image restoration algorithms aim
to obtain a natural and clear image which has good visibility
while maintaining good performance on color restoration.
The second category of defogging algorithms is based on
image enhancement and does not take into account the physi-
cal imaging model of foggy conditions. It tries to use various
image enhancement methods to enhance the contrast and visi-
bility of the foggy image. In recent years, fusion-based defog-
ging algorithms which enhance the image by fusing multiple
input images have received much attention [55]–[58]. Thus,
fusion-based defogging algorithms can be regarded as the
third category of defogging algorithms. The categories of
image defogging algorithms are shown in Fig.3.

FIGURE 4. Physical atmospheric scattering under foggy conditions [22].

A. IMAGE DEFOGGING BASED ON IMAGE RESTORATION
In 1976, McCartney first proposed the atmospheric scattering
physical model based on the Mie scattering theory [59]. Fig.4
shows the physical atmospheric scattering model under foggy
weather. The physical model is composed of the airlight
model and direct transmission model. Fig.4 also shows the
degradation reason of images under foggy conditions. In the
direct transmission model, the light for imaging will be atten-
uated by atmospheric scattering, which leads to the degrada-
tion of edge details and object textures of the image. In the
airlight model, some sunlight will also be scattered by the
atmosphere and transmitted to the camera, and these lights
are not the scene lights and can be considered as the fog
component of the image whose influence is similar to that
of a veil to hide the objects in the image. For a clear image,
the direct transmission model makes up a large proportion
in the imaging model. With an increase of the concentration
of the fog, the proportion of the direct transmission model
will decrease while the proportion of the airlight model will
increase and visibility of the image will decrease. In other
words, the airlight model is the main reason that leads to an
image acquired under foggy conditions being a fuzzy image
with low contrast and visibility.
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Narasimhan and Nayar [5], [23] and
Nayar and Narasimhan [60] regarded that the scattering
coefficient is not relevant to the wavelength of visible light
in the homogenous atmosphere and presented a simplified
physical model for image restoration:

I (x) = I∞ρ(x)e−βd(x) + I∞(1− e−βd(x)), (2)

where I∞ is the brightness of the sky, ρ(x) is the normalized
radiance of a scene point x, β denotes the scattering coef-
ficient of the atmosphere, and d(x) represents the distance
between scene point x and the camera. In the right side
of Eq.(2), the first item represents the direct transmission
model and the second item indicates the airlight model. Eq.(2)
also indicates that the proportion of the direct model will
decrease due to an increase of the distance. It is also the reason
why some distant scenes of the image look blurry on a clear
day.

He et al. [29] further simplified Eq.(2) as

I (x) = J (x)t(x)+ A∞(1− t(x)), (3)

where J denotes the clear image, t is the transmission, and
A∞ is the atmospheric light value corresponding to an object
at an infinite distance and is usually simply estimated from
the sky area.

There are only two unknown parameters in Eq.(3). If we
can obtain transmission t and atmospheric light value A∞,
then restored image J will be obtained. For the defog-
ging algorithm based on the physical model, the parameters
directly determine the defogging result. This means that the
more accurately the parameters are estimated, the better the
defogging performance will be. We should point out that
the simplified physical model is based on the assumption of
single-scattering and homogeneous atmospheric medium, so
this model may be not the best imaging model for some cases,
such as sea fog or inhomogeneous fog.

In the past years, many image restoration algorithms based
on the physical model have been proposed and can be
divided into two categories based on the number of the
image used: the first is image restoration based on multiple
images and the second is image restoration based on a single
image [61], [62].

1) IMAGE RESTORATION BASED ON
MULTIPLE FOGGY IMAGES
Image restoration algorithms based on multiple images can
be divided into two categories as shown in Fig.3. The first
uses multiple foggy images obtained under the same weather
of the scene. The second uses multiple images of the scene
acquired under different weather conditions.

a: MULTIPLE IMAGES OBTAINED UNDER THE SAME
WEATHER OF THE SCENE
Because the fact that the airlight scattered by atmospheric par-
ticles is partially polarized, references [24], [26]–[28], [63]
proposed some novel image defogging algorithms by using

multiple polarization images. Treibitz et al. compared the
image restoration effect with either one or two polarization
images, and demostrated that using two polaization images
reduces the noise for image restoration [64]. The polarization
images with different brightnesses of the same circumstance
of the scene are obtained by using a polarization filter with
different orientations. This type of image restoration algo-
rithms uses at least two polarization images to estimate the
parameters of the physical model and then inversely solves
the physical model for image restoration.

Schechner et al. first discussed an image restoration
algorithm by using two polarization images [28]. The
two polarization images are captured through parallel and
perpendicular orientations, respectively. The image defog-
ging algorithms based on polarization images assume that
the direct transmission is unaffected by the orientation,
and the two polarization images are respectively defined
as Eq.(4) and Eq.(5).

I⊥ =
D(x)
2
+ V⊥(x), (4)

I ‖ =
D(x)
2
+ V ‖(x), (5)

D(x) = J (x)t(x) is the direct transmission model. V⊥ and V ‖

are the airlight model of the parallel and perpendicular polar-
ization images, respectively.

V⊥(x) = A⊥∞(1− t(x)), (6)
V ‖(x) = A‖∞(1− t(x)), (7)

where A⊥∞ and A‖∞ are the atmospheric light values of the
two parallel and perpendicular polarization images and can
be estimated from the sky area. The degree of polarization is

p ≡
V⊥ − V ‖

V⊥ + V ‖
. (8)

In the polarized defogging method, the degree of polariza-
tion p and atmospheric light A∞ of each polarization images
are the key parameters for estimating restored image J .The
degree of polarization can be estimated by two atmospheric
light values of the polarization images as

_p =
A⊥∞ − A

‖
∞

A⊥∞ + A
‖
∞

. (9)

Then the airlight model and transmission can be estimated
from Eq.(4)-Eq.(9).

_

V (x) =
V⊥(x)− V ‖(x)

_p
, (10)

t(x) = 1−

_

V (x)

A⊥∞ + A
‖
∞

. (11)

Thus, the restored image can be achieved by using trans-
mission t and airlight model

_

V (x) to inversely solve the
physical model of Eq.(3). The original image defogging
algorithm based on polarization images does not take into
account the problem that the natural image acquired on a
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clear day also encounters airlights scattering. So it is possible
to get a more natural restored image by preserving part of
airlights. Motivated by this idea, Schechner et al. proposed
an improved algorithm by multiplying a coefficient to the
polarization degree i.e. _p = εp (1 ≤ ε ≤ 1/p) [26].
Miyazaki et al. estimated the parameters by using two traffic
signs of the traffic image as the reference [63]. Their algo-
rithm needs to set up a traffic sign database for finding the
two traffic signs, which is hard to satisfy the need of real-
time processing. Considering that some images do not have
a sky area, Shwartz et al. [27] proposed a novel method to
estimate A∞ by selecting two similar features in the scene.
In order to inhibit noise amplification of the polarization-
based dehazing algorithm, an adaptive regularization
approach was proposed to further optimize the restored
image [64].

In the polarization-based defogging algorithm, the value
of A∞ is manually estimated. Although the polarization-
based defogging algorithm has better performance than some
algorithms based on optical filtering, the manual opera-
tion is not helpful to automatically remove the haze. The
polarization-based defogging algorithm is based on the par-
tial polarization of airlight. Therefore, its effect will decrease
as the polarization degree decreases. Moreover, it will fail
in dense foggy weather. Also, for some scenarios especially
the scenario with a moving camera, it is hard to acquire two
polarization images since the scenes change more rapidly
than the filter rotation.

b: MULTIPLE IMAGES OBTAINED UNDER DIFFERENT
WEATHER CONDITIONS OF THE SCENE
Narasimhan et al. studied the image restoration algorithm by
using two or more images which were acquired under differ-
ent weather conditions [3]–[5], [21]–[23]. Narasimhan et al.
analyzed the visual manifestations of different weather condi-
tions, and then presented a physical dichromatic atmospheric
scattering model [60]. Based on this model, they presented a
geometric framework for scene understanding under foggy
weather and computed the three-dimensional structure and
color of the scene from two or more foggy images [21]. But
if the color of the object in the scene is similar to that of fog
or haze, it is instable for defogging using this model. In order
to solve this problem, a monochrome atmospheric scattering
model was presented [22]. Narasimhan et al. also presented
a fast image defogging algorithm based on this model [22].
First, the depth discontinuities and the scene structure can be
computed by the changes of intensities of the two images
of the scene under different weather conditions. Then the
contrast can be enhanced via using the scene structure. They
also extended their algorithm to video defogging, which was
able to enhance the visibility of the surveillance scene.

Above image restoration algorithms are only suitable for
surveillance scenes. For other dynamic scenes especially
for vehicle cameras, these algorithms will fail because the
above two images are hard to be simultaneously acquired.
We should point out that the monochrome atmospheric

scattering model only describes how scene intensities are
affected by homogeneous weather conditions, so it will fail
in weather with inhomogeneous fog or haze.

2) IMAGE RESTORATION BASED ON
A SINGLE FOGGY IMAGE
Compared to image restoration algorithms using multiple
images, single image restoration algorithms have many
advantages and have received much attention in recent
years [19], [29], [47], [65]–[68]. Single image defogging
algorithms are able to enhance arbitrary foggy images under
any condition.

As discussed in previous sections, transmission tand atmo-
spheric light value A∞ are the key parameters for inversely
solving the physical model. But the physical model of Eq.(3)
is an underdetermined equation, so we should use some prior
knowledge to estimate the above two parameters.

a: RESTORATION ALGORITHM OF FATTAL
Fattal presented a method to estimate the transmission and
atmospheric light based on the assumption that surface
shading and transmission are locally uncorrelated6 [48].
He presented a refined physical model via two decompo-
sition steps. He first decomposed unknown clear image J
to the product of surface albedo coefficients R and shading
factor l i.e. J = Rl. Then he further decomposed R into
two components. One component was parallel to the atmo-
spheric light A∞ and the other was a residual component R′.
The independent component analysis (ICA) algorithm [69]
and a Gauss-Markov random field model [70] were used to
calculate transmission t . Atmospheric lightA∞ was estimated
by using the ICA algorithm based on the assumption that
surface shading and transmission are uncorrelated in a small
window. The defogging method of Fattal uses the statistical
property to estimate parameters for image restoration. Thus,
the performance greatly depends on the input image. The
method will fail when the image has dense fog and insuffi-
cient signal-to noise ratio.

b: RESTORATION ALGORITHM OF Tan et al.
Tan et al. proposed an automated defogging algorithm based
on a single image according to two basic observations: first,
the clear or enhanced images usually have higher contrast
than foggy images and second, the airlight changes smoothly
in a small local area [71]. Tan et al. first used the white
balance operation to transform the input image into white
color. Then the Markov random field was used to model the
airlight model. Based on this model, the airlight could be
estimated via maximizing the local contrast of the restored
image. Their algorithm can automatically enhance the vis-
ibility of a foggy image and does not need any user inter-
action. In their proposed method, the global parameter of
atmospheric light A∞ is simply estimated by the highest

6The code of Fattal’s algorithm is available at: http://www.cs.huji.ac.il/
~raananf/projects/defog/

170 VOLUME 4, 2016



Y. Xu et al.: Review of Video and Image Defogging Algorithms and Related Studies

intensity of the input image. The purpose of their method is to
obtain a restored image which has maximum contrast. They
do not take into account color restoration, which gives color
distortion to the enhanced image. Because the patch-based
operation is used to estimate the airlight model, some ‘halo’
effect may also appear in the resulting image especially in
depth discontinuities areas.

c: RESTORATION ALGORITHM OF He et al. AND
THEIR IMPROVED ALGORITHM
In order to solve the above problems, He et al. proposed a
novel defogging algorithm based on a single image, which
has proved to be an effective method to restore outdoor
images7 [29].

He et al. studied a large amount of clear outdoor images
and found that in most areas of a clear outdoor image (except
for the sky area and white area), there is a channel of pixels
with the minimum value of zero. This is also called the dark
channel prior theory. The dark channel image is calculated by

Jdark (x) = min
c∈{r,g,b}

( min
y∈�(x)

(J c(y))), (12)

where � denotes a square window centered at pixel x, and r,
g, and b are the red, green, and blue components, respectively.
For a clear image except for the sky area and white area,
Jdark ≈ 0.

According to their findings, He et al. [29] first proposed a
dark channel prior (DCP) theory to estimate the transmission
for image restoration by taking the following min operation
in the local area on Eq.(3)

min
c∈{r,g,b}

( min
y∈�(x)

(
I c(y)
Ac∞

)) = t(x) min
c∈{r,g,b}

( min
y∈�(x)

(
J c(y)
Ac∞

))

+ (1− t(x)). (13)

In terms of Eq.(12) and Eq.(13), coarse transmission t̃ is

t̃(x) = 1− min
c∈{r,g,b}

( min
y∈�(x)

(
I c(y)
Ac∞

)). (14)

Because of the use of the min filtering in the local area
of the dark channel image, the dark channel image will
have block artifacts (halo artifacts). This will also cause the
restored image to have block artifacts. In order to solve the
block artifacts, the original DCP defogging algorithm used
a soft matting operation to optimize the transmission. In the
original DCP algorithm, atmospheric light value A∞ was
also obtained via the DCP theory. He et al. first selected a
local area in the dark channel image which had the top 0.1%
brightest pixels, and then simply chose the pixel with the
highest intensity of the original foggy image in the selected
area as atmospheric light A∞. Finally, restored image J was
obtained using

J =
I (x)− A∞
max(t(x), t0)

+ A∞, (15)

7More results and information of the DCP defogging algorithm are
available at: http://research.microsoft.com/en-us/um/people/kahe/cvpr09/
index.html

where t denotes the optimized transmission via soft mat-
ting and t0 is a small constant used to prevent the zero
denominator.

The DCP defogging algorithm can effectively remove the
fog from an outdoor foggy image. Gibson et al. provided a
mathematical explanation why the DCP theoryworks well for
image defogging [72]. The more various color information
the foggy image has, the better the restoration effect will be.
But if the image has a large sky area, largewhite area, or dense
fog and inhomogeneous fog, the DCP theory will fail.
Moreover, the soft matting algorithm to refine the transmis-
sion is time consuming and cannot be applied in practical
applications. Nevertheless, if we use the coarse transmission
for image defogging, the resulting image will have halo arti-
facts caused by the patch-based min filtering. Huang et al.
analyzed the drawback of the original DCP defogging algo-
rithm and proposed an improved DCP algorithm with three
modules for single image defogging [47]. Their algorithm
can also enhance sandstorm images. In order to improve the
efficiency, Xie et al. proposed to use the multiscale Retinex
algorithm to estimate the transmission [73]. Gibson et al. also
used median filtering to optimize the transmission [46], [74].
In addition, their work demonstrated that performing the
defogging algorithm before image compressing is better than
defogging after compressing [74]. But using median filter-
ing may cause edge degradation. Some researchers tried to
use filters which have good performance in preserving edge
information to replace the soft matting algorithm. For exam-
ple, the weighted least square (WLS) based edge-preserving
smoothing method [75], locally adaptive Wiener filter [76],
bilateral filtering [77], and joint bilateral filtering [78] are
good candidates. He et al. proposed a guided image filtering8

method which proved to have a better edge preservation
effect and was faster than bilateral filtering and joint bilateral
filtering [30]. Then some improved defogging algorithms
were further proposed based on guided image filtering. For
example, Pei et al. used the DCP theory and guided image
filtering to restore the night-time haze image [79]. Chen
proposed an improved DCP defogging algorithm by using a
pair of visible light (VL) and near-infrared (NIR) images to
restore the near-infrared image [80]. In order to improve the
defogging efficiency, Lin andWang [9] first resized the trans-
mission by using the down-sampling algorithm, and then used
guided image filtering to optimize the transmission. Using
the edge-preserving filters above to replace the soft matting
algorithm for image defogging not only can greatly improve
the efficiency, but also obtains a better edge restoration effect.

Meng et al. proposed an improved DCP defogging algo-
rithm by imposing an inherent boundary constraint on the
transmission function and using the weighted L1-norm based
contextual regularization to optimize the transmission9 [81].
In this algorithm, the restored image is always bounded

8More information about the guided image filtering are available at:
http://research.microsoft.com/en-us/um/people/kahe/eccv10/

9More results and code of Meng’s DCP defogging algorithm are available
at: http://www.escience.cn/people/menggaofeng/research.html
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as C0 ≤ J (x) ≤ C1, and the coarse transmission map is

t̃(x) = max
y∈ω(x)

{
min

[
max

c∈{r,g,b}

(
Ac−I c(y)
Ac−Cc

0
,
Ac−I c(y)
Ac−Cc

1

)
, 1
]}
,

(16)

where C0 and C1 are the two boundary constraints of the
transmission map and A is the atmospheric light which is
selected as the highest intensity of each channel after per-
forming minimum filtering and maximum filtering with a
moving window.

Meng et al. [81] used the following optimal transmission
function with the weighted L1-norm based contextual
regularization for optimizing the coarse transmission map

λ

2

∥∥∥t − _
t
∥∥∥2
2
+

∑
j∈ω

∥∥Wj ◦ (Dj ⊗ t)
∥∥
1, (17)

where λ is the regularization parameter for balancing the
two terms of the objective function,W is a weighting matrix,
D is a first-order differential operator, and ◦ and ⊗ are the
element-wise multiplication operator and convolution oper-
ator, respectively. Fine transmission t can be obtained by
minimizing the above objective function. This transmission
optimization algorithm has good effect on the restoration of
foggy images, but fine transmission is obtained by iteration
computation which is time consuming. The number of iter-
ations and the two boundary constraints cannot adaptively
adjust.

d: RESTORATION ALGORITHM OF Tarel et al.
As the soft matting algorithm is too complex, Tarel et al.
proposed a fast image restoration algorithm by using median
filtering and its variant to replace the soft matting algo-
rithm10 [19]. The algorithm of Tarel et al. can real-time
process color or gray images. In this algorithm, the atmo-
spheric light value A∞ is set to (1, 1, 1) via the white balance
algorithm. Because min filtering is the reason of the block
effect in the restored image, they only used the dark chan-
nel image to estimate the atmospheric veil. For each pixel,
they assumed that the atmospheric veil V (x) was less than
the minimal component of the original foggy image. They
wanted to obtain the maximum Vwhich is smooth in most
areas except for the edge area of the image. In order to
improve the efficiency while preserving the edge and corner,
they exploited the median filtering and its variant. First two
median filtering operators were used to acquire the following
coarse atmospheric scattering veil

V (x) = max(min(pB(x),W (x)), 0), (18)

W (x) = min
c∈{r,g,b}

(I c(x)) is the minimal component of the

original foggy image, B(x) = C(x) − median
y∈�(x)

(|W − C| (y)),

C(x) = median
y∈�(x)

(W (y)), p ≤ 1 and p denotes the

restoration degree, p is usually set to a constant in the range

10The code and image set of Tarel’s defogging algorithm are available at:
http://perso.lcpc.fr/tarel.jean-philippe/publis/iccv09.html

of [0.9,0.95], and � is the diameter of the median filtering
window.

Tarel et al. proposed a Median of Median Along Lines
algorithm to achieve the optimal coarse atmospheric scat-
tering veil. The restored image then can also be obtained
by Eq.(3). The defogging algorithm of Tarel et al. can restore
both gray and color images.

e: Bayesian DEFOGGING
Based on the fact that the scene albedo ρ and depth d are
two statistically independent components, Kratz and Nishino
proposed a Bayesian defogging algorithm for single image
defogging11 [65], [82]. They first factorized the image into
the scene albedo and depth as

ln(1−
I (x)
I∞

) = ln(ρ(x)− 1)− βd(x). (19)

They defined Ĩ (x) = ln(1− I (x)
I∞

), C(x) = ln(ρ(x)−1), and

D(x) = −βd(x). C(x) and D(x) can be viewed as the items
of the scene albedo and depth, respectively. Then a Factorial
Markov Random Field (FMRF) was applied to model the
dependence between these two items and the input image

p(C,D|Ĩ ) ∝ p(Ĩ |C,D)p(C)p(D). (20)

Scene albedo C and depth D were estimated via maxi-
mizing Eq.(20). The restored image was then achieved by
inversely solving the physical model.

Wang et al. presented another depth map estimation algo-
rithm via multiscale depth fusion based on Bayesian theory
and Markov regularization12 [53]. They first assumed that
each prior depth map pi was composed of noise εi and true
depth maps t as follows

pi(x) = Hi(x)t(x)+ εi(x), i = 1, . . . ,m, (21)

whereHi is the weight which denotes the contribution degree
of the true depth map to the prior map. They used the
Gaussian function to model the noise. Then the true depth
map was estimated by maximizing the following posteriori
function

t = argmax {P(D|p1, . . . , pm)} . (22)

They used the Gibbs distribution to model P(D) and
transformed Eq.(22) to an energy function defined as

t = argmax
t
{E(t)}, (23)

where E(t) = U (t)+
∑

i σ
−2(pi − t)T (pi − t). The first term

U (t) is the smoothing term with both smoothing and edge-
preservation constraints, and the second term can be viewed
as the noise component. After the iteration computation of
the energy function, the fine depth map and restored image
can be achieved. The algorithm is effective in reducing the

11More results of Bayesian defogging are available at: https://www.
cs.drexel.edu/~kon/defog/index.html

12More results of Wang’s algorithm are available at: http://www.
ykwang.tw/single-image-defogging.html
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halo artifacts, but the iteration is time consuming, and the
parameters need to be set manually.

f: LEARNING-BASED RESTORATION ALGORITHM
Tang et al. proposed a novel transmission estimation method
via a learning-based approach [83]. They used the Random
Forest to learn a regression model which revealed the relation
between the haze-relevant features and their true transmission
of image patches. For an unknown foggy image, the image
is first divided into several small patches and haze-relevant
features are extracted, and then the learned Random Forest
model is used to obtain the transmission of each image patch.
After that, the coarse transmission is obtained by aggregating
the transmission of each image patch. The algorithm also uses
the guided image filtering to further optimize the transmis-
sion. The learning-based algorithm has the ability to learn
adaptive regression models for different weather conditions,
which is able to restore the foggy image with inhomogeneous
fog or dense fog. But the learning-based algorithm also has
many shortcomings. The algorithm needs many fog-free and
foggy image pairs as training data for learning the regression
model, but it is hard to obtain a large number of training data.
The coarse transmission which is estimated by the regression
model is not the true transmission of the image. It cannot
reveal the true depth information of the image especially edge
areas.

B. IMAGE DEFOGGING BASED ON
IMAGE CONTRAST ENHANCEMENT
Image contrast enhancement algorithms aim to improve the
contrast of the image and are widely used in the field
of image defogging, underwater image enhancement, and
medical image enhancement.

1) IMAGE DEFOGGING BASED ON THE RETINEX THEORY
Edwin Land first proposed the Retinex theory based on color
constancy [84]. The term Retinex comes from two words
‘‘retina’’ and ‘‘cortex’’, which indicates biological visual per-
ception. The Retinex theory has been widely applied in the
field of image defogging, dark image enhancement, andMars
Express image enhancement [12], [85]–[87].

The Retinex theory considers that an image is composed
of the incident component and reflection component. The
incident component represents the luminance information of
an image, and it is also called the luminance image. The
reflection component expresses the inner information of an
image, and it is also called the reflection image. The Retinex
model is shown in Fig.5.

Based on the the Retinex theory, the image S(x, y) can be
described as

S(x, y) = L(x, y) · R(x, y), (24)

where Sis the original foggy image, R is the reflection
component, L is the incident component, and (x, y) are the
position coordinates of the image.

FIGURE 5. Retinex model [85].

The Retinex-based defogging algorithm achieves the
reflection image by solving the Retinex model. In order
to obtain R from S, the logarithm is applied to both sides
of Eq.(24).

log S(x, y) = logL(x, y)+ logR(x, y). (25)

From Eq.(25), if we can obtain L, then R can be obtained.
So the estimation of L directly determines the effect of image
defogging. In order to estimate the incident component, the
random path-based algorithm [88], the passion equation-
based iteration algorithm [89], and the multiple-scale algo-
rithm based on the difference-of-Gaussian (DOG) operator
were proposed in early studies. Hurlbert et al. summarized
the above estimationmethods of the incident component [90].
In addition, McCann et al. proposed two Retinex algo-
rithms based on the multi-resolution pyramid: the McCann99
Retinex algorithm and the Frankle-McCann Retinex algo-
rithm13 [91], [92]. The goal of the Retinex algorithm for
image enhancement is to simultaneously realize the dynamic
range compression, color constancy, and color/lightness
rendition [93]. The above estimation algorithms are very
complex and do not achieve good performance in color con-
stancy. Because the Gaussian function has good performance
over a wide range of space constants, Jobson et al. pro-
posed to use the Gaussian function to estimate the incident
component [93], [94]. This is also the original single scale
Retinex (SSR) algorithm, in which the incident component is
estimated by

L(x, y) = S(x, y) ∗ G(x, y), (26)

where‘‘∗’’ represents the convolution operation. Gaussian
function G(x, y)can be expressed as G(x, y) = k ·

exp
(
−
x2+y2

σ 2

)
, where σ is the scale parameter of the

Gaussian function and k is a normalizing factor which is
used to ensure

∫∫
G(x, y)dxdy = 1. For a RGB image, the

reflection image is achieved:

ri(x, y) = log(Si(x, y))− log(Si(x, y) ∗ G(x, y)), (27)

where r(x, y) = logR(x, y), i ∈ {r, g, b} is one of three
channels of a RGB image. In the SSR algorithm, the per-
formance of image enhancement is determined by scale

13The matlab code of the McCann99 Retinex algorithm and the
Frankle-McCann retinex algorithm are available at: http://www.cs.sfu.
ca/~colour/code/
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parameter σ . If the value of σ is large, then the enhanced
image preserves good color/lightness rendition, but the
restoration of image details is not good. Otherwise, the oppo-
site effect could be obtained. In other words, the SSR algo-
rithm cannot simultaneously achieve dynamic range
compression and color/lightness rendition.

In order to overcome the above drawback, the multiscale
Retinex (MSR) algorithm and the multiscale Retinex with
color restoration (MSRCR) algorithm were proposed [12],
[13], [93], [95], [96]. Different from the SSR algorithm,
the MSR algorithm applies three normalized Gaussian filters
with different scales in each channel, which can be viewed as
the weighted sum of the outputs of three SSR algorithms with
different scales and is defined as

ri(x, y) =
3∑
j=1

ωj
[
log Si(x, y)−log(Si(x, y) ∗ Gj(x, y)

]
, (28)

where ωj denotes the weight of each scale. In the MSR algo-
rithm, the three weights are all equal to 1/3. The three
scales of Gaussian function are set to 15, 80, and 250
for most images [96]. Finally, a gain/offset algorithm is
used to transform the reflection component into the display
domain [0, 255].

The MSR algorithm has the advantages of small scale
dynamic range compression, image edge detail enhancement.
and big scale color balance. But the MSR algorithm cannot
achieve good color restoration. To solve this problem, the
MSRCR algorithm uses a color restoration step to control the
saturation as

ri(x, y) = Ci(x, y)
3∑
j=1

ωj

×
[
log Si(x, y)−log(Si(x, y) ∗ Gj(x, y)

]
, (29)

where Ci is the color restoration function. After the reflection
component is obtained by Eq.(29), the output also needs to be
transformed into the display domain. Moore et al. presented
an automatic normalization method to deal with the output of
the Retinex-based algorithm [97]. Jobson et al. presented a
‘canonical gain/offset’ algorithm to transform the output into
the display domain [96].

Petro et al. analyzed SSR, MSR, and MSRCR algorithms
and pointed out that the color restoration function was at risk
of inverting colors, and then presented a color restoration
method which was applied to the intensity channel [98].
The source code and the online demo are accessible at a
homepage.14

The fog is the low-frequency component of the image.
In order to enhance an outdoor foggy image scene,Wang et al.
first used the wavelet transform to enhance the foggy image,
and then used the SSR algorithm to improve the brightness
to achieve a fog-free image [49]. Zhao et al. used the non-
linear sigmoid function to replace the logarithm function in

14More results of Petro et al. are available at: http://www.ipol.im/pub/art/
2014/107/

the MSR algorithm for foggy image defogging [54]. The
original SSR, MSR, and MSRCR algorithms use Gaussian
filtering to estimate the incident component, which will lead
to edge degradation of the enhanced image. The reason is
that Gaussian filtering does not have good edge preservation
performance. In order to solve this problem, Hu et al. first
used the bilateral filter to estimate the incident component,
and then used the Gamma adjustment and sigmoid function
to further enhance the reflection image [99]. Yang et al.
proposed a novel variable filter Retinex algorithm which
adaptively selected the scale parameters for every local area
of the foggy image [100]. The proposed algorithm can greatly
enhance the local contrast of the image and improve the
visibility.

2) IMAGE DEFOGGING BASED ON THE TRADITIONAL
IMAGE CONTRAST ENHANCEMENT METHOD
In this section, we will briefly summarize the image defog-
ging algorithm based on the traditional image contrast
enhancement method, such as the intensity transforms,
homomorphic filtering, high-boost filtering, and wavelet.

a: INTENSITY TRANSFORMS
The histogram of the foggy image is usually distributed
centrally since most pixels have large color values or
gray values. Thus, the foggy image has low contrast and
dynamic range. Intensity transforms are a simple and effec-
tive method which enhances the image by redistributing
the histogram [101]. The power-law gamma transforma-
tion, piecewise-linear transformation, and histogram equal-
ization (HE) are typical contrast enhancement algorithms and
are widely used in the field of night image enhancement,
X-ray image enhancement, and image defogging. In the field
of image defogging, the power-law gamma transformation
and piecewise-linear transformation are usually applied in
the last step, which is used to improve the brightness of the
enhanced image. Gao et al. [102] applied it to each channel
of the enhanced image obtained by theMSR algorithm. In the
Retinex-based algorithm, the gain/offset step which is used to
transform the reflection component to the display domain can
also be regarded as a special piecewise-linear transformation.
Ma et al. used the piecewise-linear transformation to further
improve the visibility of the enhanced image obtained by the
SSR algorithm [85].

The HE method enhances the image by redistributing
the image histogram to expand its dynamic range. The
HE method is divided into two categories: global his-
togram equalization (GHE) and local histogram equaliza-
tion (LHE) [52], [103]. The GHE algorithm can enhance the
global contrast of a foggy image, but it cannot enhance the
local contrast of a foggy image. For foggy images with an
inhomogeneous fog distribution, the GHE algorithm cannot
achieve good performance. Especially in the depth discon-
tinuities area, the GHE algorithm leads to halo artifacts.
Jun and Rong [104] used the GHE algorithm to first enhance
the foggy image, and then used the wavelet transform to
reduce halo artifacts and noise.
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In order to enhance the local information of an image,
various LHE algorithms and their improvements have
been proposed [103], [105], [106]. Kim proposed a par-
tially overlapped sub-block histogram equalization (POSHE)
algorithm. The POSHE algorithm first performs the
GHE algorithm on each sub-block, and then applies a
weighted fusion strategy to the overlapped pixels [103]. The
POSHE algorithm not only improves the contrast of the
image, but also reduces the ‘block’ artifacts. Patel et al. com-
pared the performance of brightness preservation of many
local histogram equalization algorithms [107]. Ramya et al.
proposed a brightness preserving dynamic fuzzy histogram
equalization (BPDFHE) algorithm to enhance the visibility
of foggy images and to maintain color fidelity [7]. In order
to reduce the noise caused by the HE algorithm, the contrast
limited adaptive histogram equalization (CLAHE) was pro-
posed [108]. Xu et al. [8] performed the CLAHE algorithm
on the intensity component of the HIS space to enhance the
visibility of a foggy image while reducing the noise.

Even though image contrast can be enhanced by histogram
stretching, the image often appears unrealistic. This simple
technique will fail when the image has significant depth
variations or there is inhomogeneous fog or haze. Directly
performing the HE algorithm on each channel will change the
color structure of foggy images, which causes the HE algo-
rithm to suffer from a color distortion problem. Although we
can only apply the HE algorithm to the intensity channel to
reduce the color distortion, the enhanced image also encoun-
ters the problem of color degradation due to the influence of
the intensity on all channels of an image of the fog. However,
for some foggy images with dense fog, the visibility of the
enhanced image obtained by the HE-based algorithm is better
than other methods, such as the Retinex-based algorithms and
physical model-based algorithms.

b: HOMOMORPHIC FILTERING
In general, in the frequency domain, the high-frequency com-
ponents of an image are associated with the image area whose
intensity dramatically changes, such as the edge of the image.
The low-frequency components represent the flat area of an
image including the sky area. The airlight component of the
physical model can be regarded as the main component of
low-frequency. The edge information of a foggy image is usu-
ally degraded owing to the influence of fog. In other words,
the high-frequency components are decreased while the
low-frequency components are increased. So if we can
improve the high-frequency components and weaken the
low-frequency components of an image, the visibility of a
foggy image may be enhanced. The homomorphic filtering
method has a model similar to the Retinex theory, but it
does not need to estimate the incident component [109].
Homomorphic filtering enhances an image by using high
pass filtering to enhance the high-frequency components and
reduce the low-frequency components. This algorithm is sim-
ple and fast, but it also cannot enhance a foggy image with
dense fog or inhomogeneous fog.

c: HIGH-BOOST FILTERING
High-boost filtering also enhances an image by amplifying
the high frequency component [101]. High-boost filtering
and Retinex-based algorithms also have some similarities.
The mask image of high-boost filtering can be viewed as
the reflection image of the Retinex-based algorithm. High-
boost filtering fuses the mask image and original image to
improve the high frequency component, which can enhance
the visibility and edge information of the image. This algo-
rithm is also simple and fast. The visibility can be enhanced
by the algorithm, but it will cause color distortion and noise
amplification.

d: WAVELET TRANSFORM
Similar to homomorphic filtering and high-boost filtering
methods, the wavelet transform also enhances an image by
improving the high frequency component and reducing the
low frequency component [110]. Busch et al. proposed a fog
visibility analysis method via the wavelet transformation for
a traffic control system [111]. Jia and Yue [112] first used the
wavelet transform to decompose the luminance component of
the YUV space, then removed the airlight model by applying
Gaussian filtering to the low-frequency sub-bands, and used
the high-pass filter to enhance the image information in the
high frequency sub-bands. Finally, the enhanced image was
obtained via the inverse wavelet transform. Rong et al. used
the unsharp masking algorithm to enhance the contrast of
the low-frequency [113]. The wavelet-based algorithm has
good performance in reducing the halo effect and noise, but
the visibility cannot be improved especially for images with
heavy fog or inhomogeneous fog. This is mainly because
the filter used is simple and does not take into account the
information of the scene. In other words, the fog component
and edge information cannot be well estimated via the simple
filtering. Yang et al. combined thewavelet transformation and
physical model for image defogging [114]. They used the low
frequency obtained by the wavelet transform to estimate the
coarse transmission, and then used the guided image filtering
to optimize the transmission for image defogging.

C. IMAGE DEFOGGING BASED ON THE FUSION STRATEGY
Fusion algorithms of the near-infrared and visible light
images have been applied in many fields, such as face
recognition, target detection, target tracking, and recog-
nition [115]–[117]. In general, the scattering in near-
infrared (NIR) is less than that in visible light (VL). So the
NIR image has more detailed information and higher con-
trast than the VL image under foggy weather. Based on this
fact, Schaul et al. proposed to fuse the NIR image and VL
image to enhance the visibility of a foggy image [58]. Two
original images were directly fused via the weighted least
squares optimization framework. Their algorithm will fail if
the NIR image has very low contrast under the condition
of dense foggy weather. The NIR image defogging and VL
image defogging will be another research direction in the
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TABLE 1. The comparison of some typical image defogging algorithms.

future, which will be useful to improve the performance of
target detection, tracking, and recognition.

Ancuti et al. proposed a fusion-based single image defog-
ging algorithm via fusion of several images derived from the
original foggy image [31]. They first used the semi-inverse
approach (see Section A(1)) to detect the foggy area in a
foggy image and then estimated the atmospheric value A∞
in clear areas. Then several images are obtained using

Li = I − ai · A∞, (30)

where ai is a constant value in the range [0, 1]. i ∈ [1, k],
k denotes the number of images used for fusion, and I is
the original foggy image. Then the foggy area detection
operation is performed on each image Li and the area with
low hue disparity of the corresponding image Li is selected
as the final input image for fusion. Finally, they achieved
the restored image via a simple weighted fusion of the input
images.

The above algorithm is based on foggy area detection
via the semi-inverse image. For some scenes, especially sea
scenes, haze detection based on the semi-inverse method will
fail due to the little difference between the original image and

the inverse image. This means if foggy area detection fails, a
bad performance will be obtained.

In order to solve the above problem, Ancuti et al. pro-
posed another simple fusion-based defogging algorithm via
another two input images also derived from the original
image [118], [119]. The first input image is obtained via
the white balance operation of the original foggy image,
and the second input image is obtained via a simple linear
transformation which is used to enhance the contrast of the
foggy image. Finally, the pixel-fusion method which uses
three weight maps is selected to fuse the two input images
for enhancing the visibility of the foggy image. Ancuti et al.
also extended their fusion-based algorithm for underwater
image enhancement [55]. Their proposed fusion-based defog-
ging algorithm is simple and fast, and can achieve similar
result as physical-based defogging algorithms, such as the
DCP algorithm [29] and Fattal [48]. But it fails when the
image contains inhomogeneous fog. The reason is that this
algorithm did not take into account the depth information of
a foggy image.

Based on the fusion strategy, Fu et al. exploited two input
images obtained by gamma correction with different scales

176 VOLUME 4, 2016



Y. Xu et al.: Review of Video and Image Defogging Algorithms and Related Studies

for sandstorm image enhancement [57]. Guo et al. also pre-
sented an improved fusion-based algorithm with different
input images for single image defogging [56].

The fusion-based algorithm is novel and effective for single
image defogging. The second input image is used to enhance
the contrast of the fused image, and the first input image
is used to compensate the color distortion and reduce the
halo effect and noise caused by the second input image.
In other words, the first image is used to restore the colors
and reduce the noise, and the second image is used to
enhance the visibility of the image. Although these algo-
rithms are fast and simple, they cannot achieve good perfor-
mance if the second input image cannot effectively enhance
the visibility of a foggy image. Table 1 summarizes the
advantages and drawbacks of some typical image defogging
algorithms.

IV. VIDEO DEFOGGING ALGORITHMS
The previous image defogging algorithms have good perfor-
mance on enhancing the visibility of foggy images. However,
in some real-world applications, such as for scene surveil-
lance and visual systems of an unmanned plane or vehicle, we
need to enhance the real-time visibility of the video acquired
by the visual system. In contrast to the various image defog-
ging algorithms, only a few algorithms were proposed for
enhancing the visibility of a video sequence in foggy weather.
In addition, most video defogging algorithms were proposed
for video surveillance with the same background image. But,
many algorithms have been proposed for video enhancement
and video denoising. Rao et al. divided the existing tech-
niques of video denoising and night video enhancement algo-
rithms into two categories: self-enhancement and context-
based fusion enhancement [120]. The self-enhancement algo-
rithms perform the defogging algorithm frame by frame and
do not take into account the inter-frame correlation infor-
mation. The context-based fusion enhancement algorithms
can exploit the inter-frame correlation information. In other
words, this category fuses the information of different or
adjacent frames for video enhancement, which is able to
preserve the color fidelity of the video. For video defog-
ging, Guo et al. proposed two fast defogging algorithms
based on the estimation of a universal foggy mask com-
ponent for the surveillance scene [121]. Video defogging
algorithms can be divided into three categories as shown
in Fig.6. The first category is the frame-based video defog-
ging algorithms which performs the single image defog-
ging algorithm on each frame of the video [74], [122]. The
second category is the fusion-based video defogging algo-
rithms which is based on the fusion of the enhanced back-
ground and foreground images of each video frame. The third
category of the video defogging algorithms is the universal
component-based defogging algorithm which is based on
the estimation of a universal component that can be used
in all video frames. Performing the single image defogging
algorithm on each frame is time consuming and may lead to
color and brightness mutations. So in this paper, we mainly

FIGURE 6. The categories of video algorithms.

introduce the second and third category of video defogging
algorithms.

Fusion-based defogging algorithms first extract the
background and foreground of each frame. Then the single
image defogging algorithm is used to separately enhance the
background and foreground image. Finally, video defogging
can be realized by fusing the enhanced background and
foreground images of each frame. Fusion-based defogging
algorithms restore only the background image, which allows
the efficiency of the video defogging to be improved. Some
researchers proposed to use the frame difference method to
extract the background and foreground image of each frame
and use the CLAHE algorithm to enhance the background
and foreground images, respectively [8], [123]. John et al.
also proposed a video defogging algorithm based on the
separation of the background and foreground of the video [6].
They first used the single image defogging algorithm based
on the physical model to enhance the background image and
simultaneously obtained the global lightness parameter. Then
the estimated lightness parameter was used to enhance the
foreground image of each frame. Finally, the enhanced video
was obtained via the fusion of the enhanced background
image and each enhanced foreground image. We should point
out that under the condition of foggy weather, the foreground
image which denotes the targets is not easy to accurately
extract, and the method may lead to color or brightness muta-
tions of two adjacent frames. The reason is that single image
defogging algorithms do not take into account the correlation
of the color and brightness information of adjacent frames.
Yoon et al. proposed an improved DCP defogging algorithm
which uses the multiphase level set formulation method to
replace the soft matting algorithm to restore each frame of
the video, and then proposed an color correction method to
solve the color mutation problem [124].

Universal component-based video defogging algorithms
try to estimate a universal component which represents the
fog distribution and apply it to subsequent frames of the
video. These video defogging algorithms are reasonable
and able to improve the efficiency. Guo et al. took the
transmission of the background image of the video as the
universal component for video defogging of the surveillance
scene [121]. They first extracted the background of the
video via the frame differential method. Then they esti-
mated the transmission of the background image by using
MSR algorithm, and used bilateral filtering and the
Rudin-Osher-Fatemi (ROF) model [125] to optimize
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the transmission. Finally, the universal transmission was
applied to enhance the subsequent frame. Xie et al. also used
the transmission of the background image of the scene as the
universal component for video defogging [126]. Although
taking the transmission of the background image as the
universal component can greatly improve the efficiency of
video defogging, some enhanced video frames especially the
frames which have a large difference from the background
will suffer from edge degradation and halo artifacts. The
reason is that the universal transmission is estimated from the
background and is not the real transmission of the subsequent
video frames. Previous frames do not have the same edge
information or depth information with the subsequent video
frames especially the frame which has many targets, so
some edges of the targets will degrade. In order to solve
this problem, Ma et al. [127] proposed a novel fast video
defogging algorithm based on the combination of guided
image filtering and fog mask theory. The fog mask theory
regards the fog as the mask or veil layer of the foggy image
and the fog mask is obtained by subtracting the enhanced
image from the original foggy image. They first used the
single image defogging algorithm to enhance the first frame
of the video and simultaneously obtained the fog mask. Then
guided image filtering was applied to obtain the new fog
masks of the subsequent frames. Finally, the enhanced video
was obtained. Their video defogging algorithm does not need
to extract the background, using guided image filtering to
obtain the new fog mask of the corresponding new frame
can effectively eliminate the ‘false contour’ phenomenon.
So their algorithm can also be applied to a scene with a mov-
ing camera. Zhang et al. also took the transmission of the key-
frame as the universal component and used the optical flow
method to estimate the transmission of the non-key-frame to
improve the efficiency [128].

V. OBJECTIVE QUALITY ASSESSMENT CRITERION
OF THE IMAGE DEFOGGING ALGORITHM
The image quality assessment criterion can be divided
into three categories: full-reference image quality assess-
ment [129], reduced-reference image quality assess-
ment [130], and no-reference image quality assessment [131].
The full-reference and reduced-reference image quality
assessments need a clear image corresponding to the foggy
image to act as the reference image. This is hard to be
satisfied in real applications unless there is a synthetic
foggy image. Thus, in the field of image defogging, the
no-reference metric is widely used, such as peak signal-to-
noise ratio (PSNR) [132], structural similarity (SSIM) [129],
information entropy, average gradient, and global
contrast [133].

Chen et al. presented a quality ranking system based
on support vector machines (SVM) for comparing the
image defogging algorithms15 [134]. The proposed algo-
rithm extracted 521 features of each image for training

15More quality assessment information of Chen are available at:
http://mlg.idm.pku.edu.cn/resources/pku-eaqa.html

and classification. Gibson et al. also proposed a contrast
enhancement metric (CEM) based on adaboost learning for
foggy ocean images16 [135]. The above two algorithms are
novel but too complex.

The main purpose of image defogging is to enhance the
visibility of a foggy image. A good defogging algorithm
not only needs to enhance the visibility, edge, and texture
information, but also to preserve the image structure and
colors. An image with good visibility also means that it has
obvious edge and texture information. Thus, a good image
quality assessment method needs to compare the effect of
visibility, color restoration, and image structure similarity of
different defogging algorithms.

1) ASSESSMENT CRITERION OF IMAGE VISIBILITY
There are various indexes that can be used to compare the
visibility of images, such as the first two indicators (e, r̄)
of the blind assessment [136], image visibility measure-
ment (IVM) [37], image contrast [137], and visual contrast
measure (VCM) [38].

a: BLIND ASSESSMENT INDICATOR17

The first two indicators (e, r̄) of the blind assessment use the
enhanced degree of image edges to represent the enhanced
degree of the image visibility [136]. The first indicator e
denotes the increased rate of visible edges after image defog-
ging and is calculated by

e =
nr − no
no

, (31)

where nr and no represent the cardinal numbers of the set
of visible edges in restored image Ir and original image Io,
respectively. The detailed introduction of the visible edge
segmentation algorithm is in references [136], [138]. The
CIE defines that the set of edges which have a local contrast
above 5% as visible edges [32]. Because for some images
with dense fog, the number of visible edges of the original
foggy image may be 0, we transformed Eq.(31) to

e =
nr − no
M × N

, (32)

where M and N are the image size. The larger the e, the
larger degree of visibility improvement. This indicator uses
the increased number of the visible edges to represent the
enhanced degree of image visibility.

The second indicator r̄ uses the enhanced degree of image
gradients to represent the restoration degree of the image edge
and texture information. A larger r̄ also means that the cor-
responding defogging algorithm has better edge preservation
performance than others. r̄ is calculated as

r̄ = exp

 1
nr

∑
i∈℘r

log ri

, (33)

16Code and data of CEMare available at: http://videoprocessing.ucsd.edu/
~kgibson/cem.htm

17Code and more information about the Blind assessment indicator are
available at: http://perso.lcpc.fr/tarel.jean-philippe/publis/ics07.html
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where ri = 1I ri /1I
o
i , 1I

r , and 1Io are the gradient of
the restored image and original image, respectively, and
℘r denotes the set of visible edges of the restored image. This
gradient based index can also be used as an index to measure
the restoration of edge information.

b: IMAGE VISIBILITY MEASUREMENT (IVM)
Inspired by the blind assessment indicator, Yu et al. [37]
presented another image visibility measurement method
based on the visible edge segmentation [136], [138]. The
IVM is defined as

IVM =
nr
ntotal

log
∑
x∈℘

C(x), (34)

where nr is the number of visible edges, ntotal is the number
of edges, C(x) is the mean contrast, and ℘ denotes the image
area of visible edges.

c: IMAGE CONTRAST
The contrast of a clear image is usually much higher than
that of a foggy image, so image contrast can be used to com-
pare different defogging algorithms. The higher the contrast
of the enhanced image, the better the defogging algorithm.
Ma and Wen [85] used the image global contrast to com-
pare the performance of different defogging algorithms.
Tripathi et al. used contrast gain to compare different defog-
ging algorithms [42]. Contrast gain denotes the mean contrast
difference between the enhanced image and original foggy
image [137], and is calculated by

Cgain = C̄J − C̄I , (35)

where C̄J and C̄I represent the mean contrast of the enhanced
image and foggy image, respectively. For an image with size
M × N , its mean contrast is

C̄ =
1
MN

N∑
y=1

M∑
x=1

C(x, y), (36)

where C is the local contrast of the image in a small window
and is calculated by

C(x, y) =
S(x, y)
m(x, y)

, (37)

where S(x, y) = 1
(2r+1)2

r∑
j=−r

r∑
i=−r

(I (x+i, y+j)−m(x, y))2,

m(x, y) = 1
(2r+1)2

r∑
j=−r

r∑
i=−r

I (x + i, y+ j), and r is the radius

of the local area. The larger the contrast gain, the better the
result of the defogging algorithm.

Ramya et al. used the contrast improvement index (CI)
to compare the degree of the visibility improvement,
and used the Tenengrad (Thresholded Gradient Magnitude
Maximization) criterion (TEN) to evaluate the restoration
effect of the edge and texture information [7]. The CI also
uses the local contrast to assess the image quality. The only
difference between the CI and contrast gain is the calculation

of the local contrast, so the two indexes have the same effect
on assessment of image quality. The TENmeasures the sharp-
ness of the image, and is calculated by the sum of the image
gradient. The blind assessment indicator r̄ can be regarded as
the improved index of the TEN.

d: VISUAL CONTRAST MEASURE (VCM)
Jobson et al. [38] proposed a visual contrast measure (VCM)
to quantify the degree of the visibility of the image and is
calculated by

VCM = 100 ∗ Rv/Rt , (38)

where Rv is the number of local areas, the standard deviation
of which is larger than the given threshold and Rt is the total
number of local areas. Jobson et al. did not give the threshold
computation algorithm. In experiments, we chose the OTSU
threshold image segmentation algorithm to adaptively cal-
culate the threshold [37], [139]. The VCM uses the local
standard deviation which denotes the contrast of the image
to measure the visibility. In general, the higher the VCM, the
clearer the enhanced image.

2) ASSESSMENT CRITERION OF COLOR RESTORATION
The blind assessment indicator σ can be used to assess the
color restoration performance of defogging algorithms [136].
σ denotes the rate of the saturated pixels after image defog-
ging and is calculated as

σ =
ns

M × N
, (39)

where M and N are the size of the image and ns denotes
the number of black and white pixels of the enhanced image
which are not absolutely black and white in the original
fog image. The smaller the σ , the better the result of the
defogging algorithm. But we should point out that indictor
σ is not perfect in comparing different algorithms. This is
because the enhanced image of some algorithms especially
the Retinex-based algorithms need to be transformed into the
display domain [0, 255] via the gain/offset algorithm. The
gain/offset algorithm will transform some pixels to black and
white pixels to improve the dynamic range for display, which
leads to a high σ .
Yu et al. thought that a good defogging algorithm should

allow the original foggy image and enhanced image to
have similar Histogram distributions [61]. They used the
Histogram correlation coefficient (HCC) of the two color
images as the criterion to assess the performance of color
restoration.

3) IMAGE STRUCTURE SIMILARITY
Wu and Zhu [41] used the image structural similarity (SSIM)
and universal quality index (UQI) [140] to assess the per-
formance of the structural similarity between the origi-
nal foggy image and the enhanced image. The traditional
SSIM and UQI criterions both use an image with high quality
as the reference image. Thus, the higher the SSIM and UQI,
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FIGURE 7. Comparisons of some classical defogging algorithms with an inhomogeneous fog scene. (a) original image.
(b) CLAHE [108]. (c) MSRCR [98]. (d) Fattal [48]. (e) Tarel and Hautiere [19]. (f) He et al. [29]. (g) Meng et al. [81].
(h) Ancuti et al. [31].

FIGURE 8. Comparisons of some classical defogging algorithms with a road scene. (a) original image. (b) CLAHE [108].
(c) MSRCR [98]. (d) Fattal [48]. (e) Tarel and Hautiere [19]. (f) He et al. [29]. (g) Meng et al. [81]. (h) Ancuti et al. [31].

the better the compared image. However, in real-world appli-
cations of image defogging, the original foggy image is
always chosen as the reference image, so large SSIM and
UQI do not means the image is of high quality. For example,
the SSIM index of two identical foggy images must be larger
than the SSIM index of the foggy image and the enhanced
image. So the enhanced image with the best visibility may
have the smallest SSIM and UQI. Also, the removal of fog
from a foggy image will also change the image structure. This
also leads to a small SSIM and UQI.

VI. EXPERIMENTS
In this section, some classical single image defogging
algorithms were compared via subjective and objective
assessment. Fig.7-Fig.9 show the image defogging results.
In the experiment, two classical image enhancement algo-
rithms, four physical model-based defogging algorithms,
and a fusion-based defogging algorithm were compared.
Nine objective quality assessment indexes were used to

compare these classical defogging algorithms.
Table 1-Table 3 show the quality comparison of these clas-
sical defogging algorithms.

Fig.7-Fig.10 show that the MSRCR algorithm achieved
the best performance in preserving the colors, but it does
not effectively enhance the visibility. The CLAHE algorithm
is a simple and effective algorithm for enhancing dark and
homogeneous foggy images (see Fig.8(b) and Fig.9(b)), but it
fails to enhance inhomogeneous foggy images (see Fig.7(b)).
This also demonstrates that the simple CLAHE algorithm
cannot solve the depth discontinuous problem. The defogging
algorithm proposed byMeng et al is an improved algorithm of
He et al., so their defogging results were better than He et al.
(see Fig.7(g) and Fig.8(g)), but it caused color distortion
(see Fig.9(g)) owing to the error estimation of the atmo-
spheric light. The defogging algorithms of Fattal, Tarel et al.,
and Ancuti et al. greatly enhanced the visibility of foggy
images. The defogging algorithm of Fattal achieved the best
performance on removing inhomogeneous fog, but some
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FIGURE 9. Comparisons of some classical defogging algorithms with a dark and foggy scene. (a) original image.
(b) CLAHE [108]. (c) MSRCR [98]. (d) Fattal [48]. (e) Tarel and Hautiere [19]. (f) He et al. [29]. (g) Meng et al. [81].
(h) Ancuti et al. [31].

TABLE 2. The objective image quality comparison of defogging results of Fig.7.

TABLE 3. The objective image quality comparison of defogging results of Fig.8.

scenes were also removed as shown in the ‘box’ area
of Fig.7(d). Fig.8(d) and Fig.9(d) show that the defogging
results of Fattal had low brightness. A better result may be
obtained by further enhancing its brightness via the white
balance operation or gamma correction.

The above tables show that the MSRCR algorithm
achieved smaller values of all visibility assessment criteria
than other defogging algorithms. This is consistent with the
subjective assessment. The above tables also demonstrate that
all the above defogging algorithms were able to improve
the visibility of the foggy image. Specially, the improved
DCP algorithm of Meng achieved larger values of all visi-
bility criteria than the defogging algorithm of He, which is

consistent with the comparisons of the defogging results. The
above tables show that the defogging algorithm of Ancuti
achieved a larger e than other defogging algorithms, which
demonstrate that the algorithm had the best performance in
restoring image edges. The defogging algorithm of Fattal
achieved better contrast restoration performance than the
other algorithms.

Compared to the corresponding original image, the results
of Fattal, Meng, and Ancuti shown in Fig.8 and Fig.9 had
the problem of color distortion. The HCC values shown in
Table 3 and Table 4 of their algorithms prove that the
HCC criterion is consistent with the subjective assessment
and can be used as the criterion for the comparison of color
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FIGURE 10. Local areas of corresponding image in Fig.9.

TABLE 4. The objective image quality comparison of defogging results of Fig.9.

FIGURE 11. Results of some defogging algorithms on an aerial photo without a sky area. (a) original image. (b) CLAHE [108]. (c) MSRCR [98].
(d) Tarel and Hautiere [19]. (e) Meng et al. [81]. (f) Nishino et al. [82].

restoration of different defogging algorithms. The above
tables and figures also prove that the HCC criterion is better
than the third blind assessment indicator σ for the comparison
of color restoration of different defogging algorithms.

Table 2-Table 4 demonstrate that physical model-based
algorithms preserve better image structure than enhanced-
based and fusion-based defogging algorithms. The above
tables and figures prove that the smaller the SSIM and UQI
indexes, the better the defogging result. This also proves that
the removal of fog from an image will also change the image
structure.

There is no defogging algorithm that had very good perfor-
mance under all conditions, so it is hard to determine which
algorithm is the best defogging algorithm. From the above
tables and figures, it can be seen that the quality assess-
ment indexes are not absolutely consistent with the subjective
assessment, but they can be used as references for comparing
different defogging algorithms.

Some defogging algorithms are chosen for single image
defogging under different conditions, such as on the sea or
without sky area, and dense fog or thin fog. The defog-
ging results are shown in Fig.11-Fig.15. Fig.11-Fig.15 show
that the MSRCR algorithm achieved good performance in
enhancing sea fog images. For sea fog images, the algorithm
of Meng was not suitable. Fig.12 shows that the algorithm
of Nishino was robust to the image with high brightness,
but the algorithm caused color distortion. Fig.13 shows that
the algorithm of Tarel greatly enhanced the road image with
dense fog. In Fig.13-Fig.15, the transmission of the
He algorithm [29] was optimized by fast guided image fil-
tering [141]. Table 5 shows the comparison of the com-
putation efficiency of some typical defogging algorithms.
From Table 5, we can see that Meng’s algorithm needs more
computation time than the defogging algorithm of He. This
also demonstrates that to iteratively calculate the transmission
image is time consuming.
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FIGURE 12. Results of some defogging algorithms on a road scene with high brightness. (a) original image. (b) CLAHE [108]. (c) MSRCR [98].
(d) Tarel and Hautiere [19]. (e) Meng et al. [81]. (f) Nishino et al. [82].

FIGURE 13. Results of some defogging algorithms on a road scene with dense fog. (a) original image. (b) CLAHE [108]. (c) MSRCR [98].
(d) Tarel and Hautiere [19]. (e) He et al. [29]. (f) Meng et al. [81].

FIGURE 14. Results of some defogging algorithms on a sea scene with dense fog. (a) original image. (b) CLAHE [108]. (c) MSRCR [98].
(d) Tarel and Hautiere [19]. (e) He et al. [29]. (f) Meng et al. [81].

FIGURE 15. Results of some defogging algorithms on a sea scene with thin fog. (a) original image. (b) CLAHE [108]. (c) MSRCR [98].
(d) Tarel and Hautiere [19]. (e) Heet al. [29]. (f) Meng et al. [81].

TABLE 5. The computation time (s) of some typical defogging algorithms.

TABLE 6. Defogging time (s) of different improved dark channel prior algorithms based on using different transmission methods.

The dark channel prior based defogging algorithm is one
of the most popular single image defogging algorithm in
recent years. To improve the edge preservation and efficiency,

various transmission optimization algorithms have been pro-
posed. Thus, we compare some typical transmission opti-
mization algorithms in this experiment. Fig.16 and Table 6
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FIGURE 16. Comparison of some improved dark channel prior based defogging algorithms based on different transmission optimization methods.
Images in the first row are the original foggy image and defogging results obtained using the optimization of soft matting [29], bilateral filtering [77],
joint bilateral filtering [78], guided image filtering [30] and Meng’s optimization algorithm [81], respectively. Images in the second rows are original
transmission image and the optimized transmission image obtained using the above algorithms, respectively.

show the comparison of some typical improved dark chan-
nel prior based defogging algorithms. We see that the soft
matting algorithm, bilateral filtering, joint bilateral filtering
and guided image filtering algorithm obtained close results,
but using guided image filtering can greatly improve the
efficiency.

VII. CONCLUSIONS
This paper not only summarizes various video and image
defogging algorithms, but also gives a brief introduction
of related image restoration and enhancement methods.
Although single image defogging algorithms have received
significant development in past years, there are still many
problems which need to be addressed. In addition, video
defogging algorithms are the key technology for realizing the
goal of intelligent defogging, but also many difficulties have
to be overcome. The main problems are as follows:

1) Few technologies can judge whether the current scene
has fog or not. The existing defogging algorithms only
have the ability to restore a foggy image. So it is
important to overcome this problem in the future. The
fog level classification of the foggy image is also worth
studying. It is able to improve the estimation of some
parameters for image defogging. In past years, many
pattern recognition algorithms have been proposed,
especially deep learning based classification methods.
The deep learning method does not need humans to
find the most difference features of the foggy images
and clear images. It can automatically extract the dis-
criminative features from images and learn a model for
classification.

2) There is no single image defogging algorithm that
can obtain good performance in all kinds of foggy
weather. Existing single image defogging algorithms
can effectively enhance an image with homogenous
fog or thin fog. However, if the fog is unevenly dis-
tributed in an image or an image is full of dense fog,
some single image defogging algorithms will fail. So it
is necessary to further study single image defogging
algorithms that are able to adaptively enhance a foggy

image acquired under different foggy weather, such as
night foggyweather, dense foggyweather, and inhomo-
geneous foggy weather. Maybe we can integrate foggy
image classification, visibility detection, and single
image defogging to solve this problem. Some existing
algorithms especially defogging algorithms based on
the imaging physical model under foggy weather focus
on land foggy images. This imaging model may be
not the perfect model for other scenes, such as on
the sea or in the air. So it is necessary to establish a
more appropriate model or multiple models for various
scenes. The fusion-based defogging algorithm may be
a potential approach to address these problems. For
some special scenes, we can fuse two defogging images
obtained using two different defogging algorithms.

3) In some of the existing defogging algorithms,
parameters need to be set manually. Although a good
performance can be obtained by constantly adjusting its
parameters, this is unrealistic in real-time applications.
Simple, fast, and effective algorithms are necessary.
The parameters can be adaptively set in terms of the
fog level of images. This also demonstrates that classi-
fication of the fog level of images is very important.

4) Video defogging algorithms are an important
technology in the visual system. However, all the
existing video defogging algorithms focus on a surveil-
lance scene. There are no effective video defogging
algorithms for a scene with a moving camera. For
video defogging, effectiveness and real-time process-
ing are equally important. It is difficult to simulta-
neously ensure good defogging results and real-time
processing. For some existing video defogging algo-
rithms based on background extraction, the background
estimation has a great influence on the result of video
defogging. Thus, to find a good and fast background
estimation algorithm under foggy weather is necessary.
The color shift problem also needs to be overcome in
further study. For amoving camera such as vehicle trav-
eling data recorder, the frame-based video defogging
algorithms and universal component-based defogging
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algorithms should be more suitable. For real-time sce-
narios, maybe we can sacrifice a little image restoration
quality to improve the efficiency.

5) As previous objective assessment is not absolutely
consistent with the subjective assessment, it is hard
to be directly applied to evaluate different defogging
algorithms. Thus, a better quality assessment index or
method also needs to be proposed. Maybe some intel-
ligent machine learning algorithms such as the deep
learning algorithm can be introduced for image quality
assessment.
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