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ABSTRACT Improving patient flow is a way to refine health services. An efficient patient flow can improve
the quality of services and the utilization of resources. A smart environment could facilitate the experience
of individuals within a physical space, such as a hospital. Meanwhile, a smart healthcare environment could
improve patient flow through an efficient scheduling policy and the utilization of healthcare resources by
an optimized capacity plan. This paper, first, explores a dynamic scheduling policy to improve the patient
flow, and an efficient capacity scheme based on the varying patient flow. This scheduling policy and the
capacity scheme can be built in a smart hospital environment through wireless sensor networks and smart
healthcare systems. The research applies a formal modeling approach that can provide a quantitative analysis
of systems. This approach, performance evaluation process algebra, can give strict definitions for the patient
flow in order to model the dynamic scheduling policy and the capacity scheme; moreover, it provides a
scalable performance analysis by the fluid flow approximation. Finally, this paper is concerned with how
formal method might be used to model and analyze the scheduling policy and the capacity plan on improving
the healthcare service before deployment.

INDEX TERMS Patient flow, scheduling, capacity planning, smart environment, PEPA.

I. INTRODUCTION
Smart environments can improve people’s experience and
behaviours in a physical space. They achieve the improve-
ment through knowing enough information of individuals
with the use of new technologies, such as wireless sensor
network, smart systems, cloud technologies and some kinds
of smart devices [1], [2]. These technologies help to collect
useful information to support a decision making process
provided by a smart healthcare system [3]. The smart envi-
ronment can infer action from people’s context and then
influence collective behaviour of individuals in the envi-
ronment. The practice conference of a well designed smart
environment can improve individuals’ experience by provid-
ing people’s information in the environment and manage the
healthcare resources intelligently [4], [5].

Today, quality of services (QoS) in national healthcare has
become a conspicuous issue due to the growing pressure
to improve quality and heightening patient [6]. The QoS in
healthcare generally includes two aspects: quality of serving
patients and healthcare management. In England, National
Health Service (NHS) provides free healthcare services for

all UK citizens. Thus, UK governments concern much for
the utilization of healthcare resources and the quality of
healthcare service. Therefore, research and investigations are
funded to get the issues solved in UK. This paper generates
a research under such background to improve the quality and
efficiency of the healthcare service through a smart hospital
environment.

In this paper, we proposes a dynamic scheduling policy
which has more efficient scheduling ability to avoid long
waiting in the hospital. The dynamic policy could improve
serving efficiency by scheduling patients in terms of the real
time status. Furthermore, the research also investigates an
efficient capacity plan which the allocation of patients for
each position in the department.

Model scenario is based on patient flow of a rheumatology
department in UK. The patient flow is a systematic process of
attending to patients, from the time they walk into a medical
facility to the time they check out for discharge. It includes
patient’s medical activities and behaviours in the hospital.
In this paper, the patient flow is modelled with a dynamic
scheduling function in order to generate a performance
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analysis by measuring patient waiting queue in the
department. On the basis of analysis, an efficient workflow
scheme is proposed improve the patient flow further. The
initial patient flow model is generated from the current
workflow of the rheumatology department. The main goal of
this paper is to improve the scheduling process and help the
department to refine work procedure for better service quality
and efficiency.

In the hospital, a smart environment can be designed
to facilitate people’s experience by modifying collective
behaviours. The smart environment includes a set of devices
and many intelligent supporting techniques, just as our
dynamic scheduling policy and capacity planning scheme.
However, to engineer a design efficiently that satisfies users,
techniques are required early in the design to model and eval-
uate the effects of design. The goal of early evaluation aims to
predict the impact of systems before deployment and provide
useful information for later refinements or versions of design.
This smart environment scenario has some novel features.
Firstly, individual interactions are always behaved as implicit
activities with in the smart environment. Secondly, individual
behaviours are always affected by the environment or other
individuals. These novel features bring a new perspective to
the usability engineering.

This paper is concerned to model the patient flow using a
formal method to discuss these novel features. A limitation
of formal method for the analysis of collective behaviours is
how to solve the state space explosion problem that caused by
the model solving to complex models with multiple instances
required to define the collective behaviour. Performance
Evaluation Process Algebra (PEPA) is an expressive formal
language for modelling distributed systems. PEPA provides
a scalable model-based technique – Fluid Flow Analysis
that supports analysis of many replicated instances with syn-
chronised behaviours that could cause state explosion. This
technique is built on the process algebra and add new
techniques for quantitative analysis.

Section 2 gives a brief review of the previous work on
evaluating some scheduling schemes. Section 3 describes the
details of patient flow and specifies the current problems
in the scenario. Section 4 introduces PEPA syntax and the
fluid flow analysis. Section 5 includes the initial model
based on current patient flow and performance evaluation
of the dynamic scheduling policy; furthermore, an optimized
capacity plan is proposed in terms of the analysis. In section 6,
the patient flowmodel is evolved to a new scheme to improve
the efficiency. Section 7 validates the results of formal models
using another modelling technique. Section 8 draws conclu-
sions and gives an outline of future research.

II. RELATED WORK AND CONTRIBUTIONS
In previous work, the patient flow is modelled as a closed
network. All incoming patients return to the start point after
completing a series of activities in the hospital. The closed
network model can reach a steady state after running for a
period of time. However, in fact, people always go to the

hospital during the working hours except some emergencies.
Thus, the number of patients always vary with time elapse.
As a result, the patient flow model no longer reaches a steady
state finally. This paper will explore this real world situation
by creating an open network in the patient flow model. This
research uses a scenario that directly comes from a hospital
department. The patient flow model will be built in terms of
department workflow.

Improving patient flow has always been a topic in the
research of healthcare. Recently, some related study is con-
ducted with the development of mainstream technologies,
such as Internet of things, big data, smart environment, cloud
computing, and so on. In [7], Chong proposes a system
dynamic approach which is a modelling technique used for
complex behaviours of organizational and social systems.
Chong’s study aims to examine the trade-offs of various
safety and quality outcomes in an Emergency Department
in order to evaluate the efficiency of healthcare systems.
Similarly, our research has a final goal to improve efficiency
and QoS of the healthcare system. However, a solution is pro-
vided by applying a smart environment in the physical space
to support people’s experience and healthcare management.

In Shao’s research [8], the workflow of surgical operations
is explored to reduce the disruption by creating a continuous
time Markov chain (CTMC) model and then solving the
Markov chain to conduct the related performance analysis.
CTMC model can predict system status in future on the basis
of properties in Markov process. This paper directly gener-
ates the model using CTMC. The drawback of such direct
modelling approach comes from the state space explosion
problem when a system has complex behaviours or massive
instances. For this reason, PEPA is used to model the patient
flow. PEPA is based on a underlying CTMC and implements
scalable analysis using the fluid flow analysis to avoid the
state space explosion.

Nikakhtar’s [9] research aims to examine the relationship
between patient flow in a social network and the correspond-
ing network characteristics. In this research, a simulation
model is developed to describe the patient flow and gener-
ate performance measure. Simulation techniques are widely
used for the study of patient flow. Nevertheless, simulation
also has some drawbacks in time-consuming and debugging
especially when the target model has complex behaviours and
interactions, or a large number of instances. Consequently,
formal method could preserve high efficiency in building
models and generating scalable analysis. Hence, our research
adopts a formal method – PEPA to define the patient flow
model and conduct a performance analysis.

According to the reviewed literatures [10]–[15], current
research has obtained many achievements especially in
developing new solutions to improve the patient flow.
In fact, there are still some gaps in this area. In our study,
a real-life scenario with statistic figures is used to build
patient flow models. Moreover, a formal approach (PEPA)
is applied for modelling as it can provide efficient and
strict model definitions. Finally, we adopt a novel analysing
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solution – Fluid Flow Approximation for the performance
evaluation which can conduct a scalable analysis without the
interference of state space explosion. The contributions of our
work are summarized as follows:
• In this paper, we firstly complete an investigation and
obtain the general workflow of the department in a
hospital, and then collect massive figures based on
a longterm statistics. These figures include the infor-
mation of current schedule and staffing, the everyday
arrivals for different kinds of patients, the duration of
serving patients in each step of the workflow, and so on.
This empirical research is conducted to learn the actual
issues in the medical department and generate a real life
model.

• The key issue in the department is to improve the quality
of service by refining the scheduling process in the
patient flow, and tomake an efficient capacity plan based
on the analysis of patient flow. This paper proposes
a solution to fix the scheduling and capacity planing
issues by building a smart environment in the depart-
ment. Meanwhile, the research also develops a policy
to conduct the dynamic scheduling and an approach to
generate the efficient capacity plan. Finally, the research
successfully helps the department refine current work-
flow and capacity scheme.

• Moreover, this research uses a formal method (PEPA)
to implement the performance modelling and analysis.
In formal models, functions are creatively applied in the
model definition specified as action rates. Such func-
tional rates could represent complex system behaviours,
such as a decision making process, scheduling process,
and so on. They actually expend the application range of
formalmethod. In addition, the fluid flow approximation
is chosen as the main analysing technique as it can
prevent the state space explosion problem.

III. INITIAL PATIENT FLOW MODEL
The early research in the rheumatology department indicates
that the scheduling process has a potential problem that is the
inaccurate prediction of appointment time for each patient.
In this department, the problem directly affects appointments
for upcoming patients, which may cause a long waiting
queue and the waste of healthcare resources. This paper pro-
poses a solution to improve the patient flow and the depart-
ment workflow through building a smart environment in the
hospital. Smart environments could collect information, such
as location, progress and even the vital signs of patients,
from individuals in a local area. The information can be
obtained through smart devices (e.g. smart phones), radio
frequency identification devices (RFID), wireless sensor net-
work (WSN), WIFI or 3G/4G network, and so on [1]–[3].
Individuals can be recognized and traced by connecting their
own smart devices or issued smart cards to a smart system.
Thereafter, their location can be traced in order to provide
them the useful information, such as navigation tips, progress
or predicted waiting time, and so forth. All these services can

facilitate people’s experience in the hospital, and also support
healthcare management. On one hand of this research, the
explored dynamic scheduling policy is based on such col-
lected location information, which can dynamically generate
prediction for following appointments and support the patient
scheduling in the hospital. On the other hand, a capacity plan
can be made in terms of the patient flow analysis.

FIGURE 1. Patient flow of rheumatology department.

According to the investigation in hospital department,
a general workflow is obtained which can represent the
flow of most patients in this department. Figure 1 describes
the detailed patient flow of the rheumatology department.
As rheumatic disease is common in the old, rheumatology
department has a relatively stable amount of patients. These
patients can be divided into two categories: the first category
includes new patients (NEW) that are the first time to the
department. The new patients must take an X-Ray scan and
a blood test as a part of routine practice. The other category
are follow-up (FU) patients that come to the department for
periodic reexamination or treatment. These patients do not
need an X-Ray scan unless a special demand. Moreover, all
patients must check in and have a general check-up for their
physical conditions before meeting a consultant. Thereafter,
the new patients will be arranged for the blood test and
X-Ray scan; however, the follow-up patients just have a
routine blood test. After completing examinations, patients
are discharged until the results are available.

With a smart environment, patients need register their
smart phones in system or be issued a smart card including
a sensor. Their location can be traced by detectors deployed
in the hospital environment. Then, the smart system is able to
return related information to patients via their smart phones
or deployed public displays. These information can notify
patients what to do and where to go next. For the department,
it is easy to know the progress of each incoming patient and
estimate the time of completion so that appointment sys-
tem can efficiently arrange up-coming patients. Furthermore,
systems can schedule consultants for different patients based
on the realtime information of their progress. Our research
proposes a solution that can refine the current scheduling
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and capacity planing process based on such smart hospital
environment. In addition, we also propose a newworkflow for
the department in order to improve the efficiency and quality
of service.

IV. MODELLING AND ANALYSING APPROACHES
This section gives a brief introduction to PEPA language
which is adopted as the main modelling technique in the
work. PEPA, developed by Hillston in the 1990s [21],
is a high-level model specification language for low-level
stochastic models. Process algebra is designed as a formal
modelling technique for concurrent systems that have sub-
systems interacting with each other. PEPA describes such
systems as an interaction of the components that engage in
activities. PEPA, as an extension of classical process algebra,
is usually used for performance modelling and qualitative
analysis of large and complex resource-sharing systems.

As a stochastic process algebra, PEPA has several attractive
features wihch were not available in other performance mod-
elling techniques. These features can be summarized as [21]:
• Compositionality, the ability to model a system as the
interaction of subsystems.

• Formality, giving a precise meaning to all terms in the
language.

• Abstraction, the ability to build up complex models
from detailed components, disregarding the unnecessary
details.

A. SYNTAX OF PEPA
PEPA is a compositional approach that decomposes a system
into subsystems which are easier to model. PEPA models
are constructed by the composition of components which
perform individual activities or cooperate on shared ones.
For each activity, PEPA defines a pair (α, r) where α is an
action type and r is an action rate. PEPA language has only
four combinators, which are prefix, choice, cooperation and
hiding [21].
• Prefix: It is the basic building block of a sequential
component: the process (a, r).P performs action a at
rate r and then evolves to component P.

• Choice: It generates a competition between two or more
potential processes: (a, r).P + (b, s).Q represents that
either action a or b wins the race at the rate r or s and
then behaves as P or Q respectively.

• Cooperation: Its operator joins two processes together,
in which these two processes may share some actions:
the process P FGL Q, L = {a, b} denotes that pro-
cesses P and Q must cooperate with the shared
actions a and b. Any other action is performed inde-
pendently. Additionally, P ‖ Q in PEPA syntax means
P FGL Q, L = φ.

• Hiding: The process P | {a} hides the action a from view
and prevents other processes from joining with it.

• Constant: As assumed, a countable set of constants is
defined. The constants are components with themeaning
of defining an equation such as A def

= P which gives the

constant A the behaviour of the component P. This is the
way of assigning names for behaviour components.

The syntax of PEPA is given as:

P ::= (a, λ).P | P+ Q | P〈L〉Q | P | Q | A

This PEPA statement involves all four combinators
mentioned in the previous paragraph. The last part of this
statement P ::= A is to identify component P with A. When
the rate of action is passive, we use the symbol >.

B. PERFORMANCE MEASURE USING PEPA
To complete performance modelling and analysis of patient
flow scheduling, an efficient modelling technique must be
selected to fit the features of patient flow model. As men-
tioned before, the potential modelling techniques should be
suitable for modelling a Markov process and avoiding the
state space explosion problem. This subsection briefly intro-
duces several often used techniques.

Currently, two popular modelling languages for Markov
models are queuing networks and stochastic Petri nets (SPN).
The queuing network is a directed graph in which each node
represents a queue (also called service centre). Customers
representing system jobs flow through the nodes and com-
plete service. The arcs of the network represent the system
topology and routing probabilities. The amount of customers
currently occupying each service centre represents the current
state of the system. Queuing network has the feature
compositionality but it is informal.

In contrast, SPN is a formal mathematical modelling
language. SPN is a directed graph with two kinds of node,
places and transitions. The system state is represented
through the number of tokens at each place in the network.
SPN is an alternative mean of generating stochastic models
for performance modelling. However, SPN has some restric-
tions in compositionality compared with queuing network.
It is complex to represent the layered structure of systems.
Now we choose PEPA as the main modelling language.
PEPA, as a high-level modelling paradigm for CTMC, has
a compositional structure. This compositionality can be
exploited to reduce the state space of the CTMC [21].
Furthermore, this technique takes advantages of symmetries
within the system, and may be formally defined based on
the models PEPA description. Thus, a PEPA model can
be applied with the underlying CTMC to define a Markov
Reward Process (MRP) from which performance evaluation
can be derived. PEPA’s features are summarized at the begin-
ning of section 4.

Queuing network provides compositionality but not for-
mality; stochastic Petri nets offers formality but not compo-
sitionality; and neither gives abstraction mechanism [22].

C. FLUID FLOW APPROXIMATION
PEPA language offers compositional function for creating
models towards large scale systems. Meanwhile, a novel
performance analysis technique, fluid flow approximation, is
provided for large scale models using PEPA.
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Just as most discrete state-based modelling formalisms,
process algebra easily suffer from the failure due to the gen-
eration of extremely large state space making the numerical
solution via linear algebra costly or even intractable. Fluid
flow approximation generates a set of coupled ordinary differ-
ential equations (ODEs) underlying continuous time Markov
chains (CTMC). This approach is given two adjustments.
Firstly, it does not calculate the probability distribution over
the entire state space; instead, a more abstract state represen-
tation is chosen based on state variables [23]. Secondly, it is
assumed that these state variables are subject to continuous
rather than discrete change [23]. Based on these adjustments,
fluid flow approximation offers an efficient solutionwith a set
of ODEs, and lead to the evaluation of transient and steady
state measures. This approach successfully avoids the state
space explosion in the analysis via exploring ODEs.

The fluid flow analysis is on the basis of the vector form.
The system inherently discrete with the entries within the
numerical vector form always bing non-negative. With the
change of the system state, the numerical vector form is
incremented or decremented in steps of one.When each com-
ponent type in themodel is replicated a large number of times,
these steps are relatively small. Thus, we can approximate
the movement between states to be continuous, rather than
occurring in discontinuous jumps. The objective of the fluid
flow approximation is to replace the derivation graph of the
PEPA model by a continuous model using a set of ordinary
differential equations.

In the fluid flow approximation, we need specify the exit
activity and entry activity of the local derivative of a sequen-
tial component. An activity (α, r) is an exit activity of D

if D enables (α, r), such as D
(α,r)
−−→ D ′. The set of exit activ-

ities of D is denoted by Ex(D). The set of local derivatives
for an exit activity (α, r) is denoted by Ex(α, r). Similarly,
an activity (β, s) is an entry activity if a derivative D ′

enables (β, s), such as D ′
(β,s)
−−→ D. En(D) denotes the set

of entry activities of D.
After specifying the concepts of the exit activity and entry

activity, the movement of the numerical state vector of the
PEPA model are represented with these concepts. Here, we
define vij (t) = N (Cij , t) for the jth entry of the ith subvector
at time t; N (Cij , t) denotes the number of instances of the
jth local derivative of sequential component Ci. In a very
short time slot δt , the change of the vector entry vij (t) can
be denoted as:

N (Cij , t + δt)− N (Cij , t)

= −

∑
(α,r)∈Ex(Cij )

r × min
Ckl∈Ex(α,r)

(N (Ckl , t))

︸ ︷︷ ︸
exit activities

δt

+

∑
(α,r)∈En(Cij )

r × min
Ckl∈Ex(α,r)

(N (Ckl , t))

︸ ︷︷ ︸
entry activities

δt (1)

dN (Cij , t)

dt
= lim

δt→0

N (Cij , t + δt)− N (Cij , t)

δt

= −

∑
(α,r)∈Ex(Cij )

r × min
Ckl∈Ex(α,r)

(N (Ckl , t))

+

∑
(α,r)∈En(Cij )

r × min
Ckl∈Ex(α,r)

(N (Ckl , t)) (2)

In formula (1), the first block represents the impact of exit
activities; however, the second block records the impact of
the entry activities. Now, we change the formula (1) based
on dividing by δt and taking a limit. If δt → 0, we obtain
the formula (2). In the following analysis, a set of ODEs can
be obtained from the PEPA model based on formula (2). The
quantitative analysis is conducted through solving the ODEs.

V. CURRENT PATIENT FLOW MODEL AND ANALYSIS
This section briefly describes the model construction of cur-
rent patient flow and related analysis. In this section, the
dynamic scheduling policy has been developed in the previ-
ous work. This section mainly demonstrates the performance
of a dynamic scheduling policy that is basis of the following
work. Moreover, model parameters are introduced based on
statistical data from the rheumatology department. The last
subsection introduces the way of generating performance
analysis with fluid flow approximation.

A. MODEL CONSTRUCTION
In previous work, the current patient flow (Figure 1) is
modelled with two different flows for new patients and
follow-up patients respectively. All activities in the flow are
represented by a set of components such as: registration,
general check-up, consultation, X-Ray scan and blood test.

The previous model are used to demonstrate how to
construct a PEPA based patient flow model. According
to PEPA syntax, it defines a series of sequential states
for two types of patients (New and FU) in terms of the
patient action flow. In PEPA model, each State is defined
with an action type and a related rate (actiontype, rate),
and then followed by the next State′ moving to, e.g. the
expression State def

= (actiontype, rate).State′. Components
for New and FU patients are modelled with a sequence of
states based on the preceding expression, which can be found
in the first and the second blocks in the following PEPA
model. Activities (e.g. general test, blood test and X-ray
scan) are defined as some components with a corresponding
action which is displayed in the third block of the following
PEPA model. These activity components have cooperation
with patient components representing behaviours of patients
through the last block of the model. The detailed PEPAmodel
is displayed as follow:

New def
= (arriveNew, rarriveNew).New_reg

New_reg def
= (register, rregister ).New_test

New_test def
= (test, rtest ).New_blood

New_con def
= (newCon, rnewCon).New_blood

VOLUME 4, 2016 139



X. Chen et al.: Patient Flow Scheduling and Capacity Planning

New_blood def
= (blood, rblood ).New_xray

New_xray def
= (xray, rxray).New_depart

New_depart def
= (depart, rdepart ).Stop

FU def
= (arriveFU , rarriveFU ).FU_reg

FU_reg def
= (register, rregister ).FU_test

FU_test def
= (test, rtest ).FU_con

FU_con def
= (fuCon, rfuCon).FU_blood

FU_blood def
= (blood, rblood ).FU_depart

FU_depart def
= (depart, rdepart ).Stop

Register def
= (register, rregister ).Register

Test def
= (test, rtest ).Test

Consultant_New def
= (newCon, rnewCon).Consultant_New

Consultant_FU def
= (fuCon, rfuCon).Consultant_FU

Blood def
= (blood, rblood ).Blood

Xray def
= (xray, rxray).Xray

Depart def
= (depart, rdepart ).Depart

Stop def
= (stop, rstop).Stop

Sys def
= (New[p1]‖FU [p2]) FG

L
(Register[n1]‖Test[n2]‖

Consultant_New[n3]‖

Consultant_FU [n4]‖Blood[n5]‖

Xray[n6]‖Depart[n7]‖Stop[n8])

L = {register, test, newCon, fuCon,

blood, xray, depart, stop}

B. MODEL PARAMETERS
This research uses a set of statistic figures measured from the
rheumatology department. All these figures are cycle time and
takt time of each activity in the workflow, such as, registra-
tion, general test, consultation, blood test, and the discharge.
The cycle time is a period required to complete one cycle of
an operation; the takt time is the average unit production time
needed tomeet customer demand. The service rateµservice rate
used in themodel can be calculated by taking the reciprocal of
cycle time tcycle time. Table 1 and Table 2 show the service rate
and takt time of each component in the patient flow model.

TABLE 1. Service rate of components in the patient flow model.

TABLE 2. Takt time at components in the patient flow model.

TABLE 3. Number of components used in the model.

In addition, a set of parameters are still required to analyse
the capacity plan of patient flow. They are the number of
patient components and other activity components showing
in Table 3. All these parameters are calculated based on the
cycle time and the takt time in Table 1 & 2.

C. PERFORMANCE ANALYSIS OF DYNAMIC
SCHEDULING POLICY
This subsection demonstrates a performance analysis of the
dynamic scheduling policy based on the preceding PEPA
model. The fluid flow approach is used to solve PEPA
model and generate performance analysis. In the analysis, the
dynamic scheduling policy is compared with the currently
used policy that is a static scheduling policy. Meanwhile, a
capacity plan is also proposed for the workflow in terms of
the statistical data, and a performance evaluation of the plan
is conducted through the patient flow model.

The static scheduling policy can reduce the length of wait-
ing queue to a stable low level. However, there are some
potential problems that cause a delay of incoming patients
being scheduled. This situation actually makes utilization of
consulting process in a low level before the length of queue
grows to a stable level. Thus, the dynamic scheduling policy
is considered to improve scheduling process so that the queue
length can reach the stable level faster. The dynamic policy
uses a function rate to control the scheduling process based
on different time slots. The function rate includes a dynamic
factor which can alter with time flowing. Expression of the
dynamic factor is:

Dynamic Factor = Max(Static Factor, 1− aT ) (3)

This dynamic factor is a Max function involving a static
factor and a formula 1− aT . T is the instant model run time,
and a is a coefficient used for altering the value of formula to
achieve the best situation in modelling. With this function, a
dynamic factor obtains a value greater than the static factor
and close to 1 at the start of run, namely the value of formula
1 − aT . At the moment, patients are scheduled faster than
the normal pace using the static scheduling. As time elapses,
the value of formula 1 − aT decreases until less than the
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static factor. Now the dynamic factor has its value equaling
to the static factor. The analysis results for the dynamic
scheduling policy are shown in Figure 2.

FIGURE 2. Number of total patients queuing for consultants with
a dynamic scheduling policy.

Figure 2 demonstrates the difference between the dynamic
scheduling policy and the static scheduling policy. In the
figure, solid line exhibits the length of consulting queue with
the dynamic scheduling policy. The dotted line indicates the
length of queue using the static policy. As shown in the figure,
it is clear that solid line has faster increase at the beginning
in contrast to the dotted line, and it also terminates earlier
that the dotted lines. This means that patients are scheduled
to consultants in a shorter period by using the dynamic
scheduling policy. In other words, the utilization of consulting
service is improved during the beginning hours due to the fast
scheduling process.

The dynamic scheduling policy improves workflow effi-
ciency and resource utilization. However, there are still some
problems in completing time. From Figure 2, it is clear that
patients usually need over 8 hours to complete their service.
Factually, department expects a completion during 8 hours
working time. Thus, the preceding capacity plan must be
adjusted to reduce the total service time by increasing the
number of consultants. Hence, next subsection will explore
a new capacity plan with an altered number of patients.

D. OPTIMIZATION OF CAPACITY PLAN
In this step, the preceding capacity plan is changed to increase
serving ability by adding more consultants in the workflow.
Based on the analysis results, it can be found that the ini-
tial capacity plan causes a timeout which means the patient
waiting time is too long. Thus, the new capacity plan should
reduce the total waiting time after increasing the number of
consultants. The initial capacity plan arranges 2 consultants
for the new patients and 3 consultants for the follow-up
patients based on the statistical figures. As the number of
follow-up patients is much greater than the new patients in
terms of our investigation, the new capacity plan tries to add

FIGURE 3. Number of patients queuing for consultants with a dynamic
scheduling policy based on varying consultants.

one more consultant for the follow-up patients. Based on the
plan, we obtain the following Figure 3.

In Figure 3, the solid line represents the queue length in the
department for all patients based on the new capacity plan.
It is clear that the solid line completes faster than the dotted
line within 8 hours due to one more consultant working for
the follow-up patients. Furthermore, from the solid line, the
stable queue length is quite close to 6 which means that each
consultant has only one patient in queuewhich is our expected
length of waiting queue. The other patients are scheduled to
come later in order to avoid unnecessary waiting. Hence, the
new capacity plan using 6 consultants in the work flow is
a better solution as it can efficiently complete all patients
in 8 hours.

E. SUMMARY
This section compares the performance of dynamic schedul-
ing policy with the currently used static scheduling policy.
According to the analysis results, it is clear that the dynamic
scheduling policy could improve the workflow efficiency and
the resource utilization especially in the beginning hours.
Moreover, the new capacity plan can meet the requirements
about completing all services within 8 hours.

VI. EVOLVED PATIENT FLOW MODEL AND ANALYSIS
The preceding section explores the performance of the
dynamic scheduling policy based on the current workflow
of department. This section will consider to evolve the cur-
rent workflow in order to reduce waiting queue further. The
evolved workflow has a changed activity flow and a modified
capacity plan.

A. EVOLVED PATIENT FLOW MODEL
According to our investigation, there is a potential problem
in the current workflow. Due to the requirement of diagnosis,
new patients must take an X-Ray scan for examination when
they come to the department first time. Moreover, blood test
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is another necessary examination for both new patients and
follow-up patients. In current workflow, both blood test and
X-Ray scan are arranged after meeting consultants; thereafter
patients leave for taking those two examinations and then
come back to see consultants. Thus, patients need to see
consultants twice; furthermore, blood test and X-Ray scan
must be taken in other departments. As a result, it is a waste
of time to arrange the patients coming at the first time to see
consultants before taking blood test and X-Ray scan. As both
blood test and X-Ray scan are required for diagnosis, it would
be more efficient to take these examinations before seeing
consultants.

In contrast to the initial workflow, the new workflow
changes the activity order, which is to bring forward the
X-Ray inspection and the blood test before the general test.
The activity flow of follow-up patients remains the same.
In addition, some consultants arranged for the new patients
also serve the follow-up patients; however, some others
arranged for the follow-up patients only serve the follow-up
rather than the both. This is because the new patients must
have the blood test and the X-Ray scan in another depart-
ment. Hence, time is saved through bringing forward these
examinations before seeing a consultant so that more patients
can be served and then the efficiency can be improved.

Furthermore, when the new patients are doing their blood
tests and X-Ray scan, the idle consultants for the new patients
can be arranged to serve the follow-up patients rather than
just waiting there. Such evolved workflow ideally improves
the efficiency. Thus, even if there are just limited number
of consultants, the total amount of patients being served can
be improved without increasing waiting queue. The detailed
changes of the evolved workflow are shown in Figure 4.

FIGURE 4. Evolved patient flow of rheumatoloty department.

In Figure 4, the dotted arrows clearly depict the activity
flow of new patients. As X-Ray inspection must be handled
in another department, it must be more efficient for the new
to complete X-Ray scan before entering the department rather
than leaving for X-Ray scan halfway and coming back.

Additionally, bringing forward the X-Ray scan and blood
test for the new patients aims to arrange more consultants

from the new patients to the follow-up patients, when the
new patients are leaving for their blood tests and X-Ray
scan. Thus, in the evolved patient flow model, consultants
previously only working for the new patients now must work
for the both. When the new patients leave for blood test or
X-Ray scan, these consultants serve the follow-up patients;
once the new patients complete, these consultants should
come back for them.

B. EVOLVED PEPA MODEL
The evolved patient flow model is similar with the ini-
tial patient flow model. Most components are defined the
same, such as register, general test, blood test, X-ray scan
and depart. However, the model definition for activities of
new patients is modified in terms of the evolved workflow.
Moreover, the definition for follow-up patients also has
changed activity flow. Thus, we can obtain the detailed PEPA
model as:

New def
= (arriveNew, rarriveNew).New_reg

New_reg def
= (register, rregister ).New_xray

New_xray def
= (xray, rxray).New_blood

New_blood def
= (blood, rblood ).New_test

New_test def
= (test, rtest ).New_con

New_con def
= (newCon, rnewCon).New_depart

New_depart def
= (depart, rdepart ).Stop

FU def
= (arriveFU , rarriveFU ).FU_reg

FU_reg def
= (register, rregister ).FU_test

FU_test def
= (test, rtest ).FU_con

FU_con def
= (fuCon, rfuCon).FU_blood

+ (newCon_fu, rfuCon).FU_blood

FU_blood def
= (blood, rblood ).FU_depart

FU_depart def
= (depart, rdepart ).Stop

Register def
= (register, rregister ).Register

Test def
= (test, rtest ).Test

Consultant_New def
= (newCon, r1).Consultant_New

+ (newCon_fu, r2).Consultant_New

Consultant_FU def
= (fuCon, rfuCon).Consultant_FU

Blood def
= (blood, rblood ).Blood

Xray def
= (xray, rxray).Xray

Depart def
= (depart, rdepart ).Depart

Stop def
= (stop, rstop).Stop

Firstly from above PEPA model, it is can be seen that the
activity flow for the new patients is altered as that in the
first block: registration, X-Ray scan, blood test, general test,
consulation and departure.
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Secondly, consultants for the new patients are defined with
two actions that are consulation for the new patients, namely
newCon, and consulation for the follow-up patients, namely
newCon_fu, such as:

Consultant_New def
= (newCon, r1).Consultant_New
+ (newCon_fu, r2).Consultant_New

Thirdly, for the follow-up patients, the activity flow
remains the same except the state FU_con. Two actions
appear there, standing for the process in which the follow-up
patients are served by two groups of consultants.

Finally, the whole patient flow model can be defined as:

Sys def
= (New[p1]‖FU [p2]) FG

L
(Register[n1]‖Test[n2]‖Consultant_New[n3]‖
Consultant_FU [n4]‖Blood[n5]‖
Xray[n6]‖Depart[n7]‖Stop[n8])

L = {register, test, newCon, newCon_fu, fuCon,
blood, xray, depart, stop}

It is worth mentioning that a function rate must be applied
in PEPA model on the basis of its rules when two or more
actions are defined for a single component, such as the above
PEPA statement,Consultant_New. Hence, the action rates for
component Consultant_New is specified as below:

r1 =
New_con

New_con+ FU_con
× rnewCon

×min(New_con+ FU_con,Consultant_New) (4)

r2 =
FU_con

New_con+ FU_con
× rfuCon

×min(New_con+ FU_con,Consultant_New) (5)

In the expression (4) and (5), New_con and FU_con rep-
resent the population of patient instance in this model state.
The formal proof of using such function rate can be found in
our previous work [30], [31].

C. PERFORMANCE ANALYSIS
The evolved patient flow model also applies the dynamic
scheduling policy that has been explored in the preceding
section. Analysis in this section uses the same technique
that is the fluid flow approximation and the same configu-
rations and parameters introduced in Section 5.2. However,
the capacity plan is changed based on the evolved workflow.
In the new plan, the number of consultants are changed to:
4 consultants arranged for the new patients and 2 consultants
for the follow-up patients. This is because that the consultants
serving the new also serve the follow-up patients when the
new patients leave for examinations in another department.
Thus, to ensure all incoming patients completed on time, one
more consultant should be arranged for the new patients in
contrast to the previous case.

Figure 5 indicates the number of patients queuing for
consulting service without a scheduling policy. In the figure,
solid lines represent queue length of the new patients and

FIGURE 5. Number of new and FU patients queuing for consultants based
on an evolved model.

follow-up patients in the evolved workflow. The dotted lines
stand for queue length based on the initial workflow. For the
evolved model, it is clear that the queue length of follow-up
patients has a dramatic decrease due to the new workflow;
however, the queue length of new patients has a bit increase
because consultants for the new patients also serve the follow-
up patients. In any case, the evolved workflow has an overall
reduced queue length compared with the initial workflow.

In order to compare with the initial model, the following
analysis uses the same parameters except the capacity scheme
for consultants. The fluid flow approximation ais applied to
run the analysis with the same condition setting. Analysis is
conducted in the model without a scheduling policy in order
to show the improvement of the evolved workflow. There-
after, as the dynamic scheduling policy is the most efficient
policy compared with the static policy, the analysis is then
conducted based on the case using the dynamic scheduling
policy.

In Figure 6 and 7, the preceding dynamic scheduling is
applied to generate a performance analysis in the evolved

FIGURE 6. Number of new and FU patients queuing for consultants with
a dynamic scheduling policy based on an evolved model.
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FIGURE 7. Number of new and FU patients queuing for consultants with
a dynamic scheduling policy (Evolved model vs.initial model).

workflow model. Figure 6 represents the queue length of
new patients and follow-up patients respectively based on
the evolved workflow. The figure clearly shows that the
stable queue length of follow-up patients is reduced from
around 4.0 to 2.0. Such dramatic drop is caused by the evolved
workflow in which consultants for the new patients can also
serve the follow-up patients when they are idle. Once there are
some new patients coming to the department, these consul-
tants serve the new patients in priority. Moreover, the queue
length for the new patients remains almost the same as that in
the initial workflow. This means that the evolved workflow
has no negative effect on the new patients compared with the
initial workflow; meanwhile it improves the efficiency and
utilization of consulting service through reducing the number
of queuing follow-up patients.

Figure 7 displays the queue length of overall patients in
the evolved workflow. In the figure, solid line represents the
queue length in the evolved workflow which has a stale value
between 3 and 4. However, in the initial workflow, the queue
length represented by the dotted line is between 5 and 6.
The figure clearly demonstrates that the evolved workflow
can improve service efficiency for the overall patients. This
improvement causes a dramatic decrease of waiting queue in
the patient flow.

D. SUMMARY
In this section, an evolved workflow is developed to improve
the efficiency and utilization based on the current workflow
of the rheumatology department. According to the analysis
results, the evolved workflow can successfully reduce the
waiting queue by changing the activity flow of follow-up
patients and reallocating consultants for two groups of
patients. This means that the evolved workflow can obviously
refine the patient flow through improving the efficiency and
utilization of healthcare service.

VII. MODEL VALIDATION
This paper mainly uses a formal method to model the patient
flow of a department and analyses the performance of related

scheduling and capacity schemes by solving the underlying
CTMC models with an ODE based fluid flow approach.
According to the literature review, most preceding research
using formal method for a Markov model creates models
as a closed network or with infinite incoming events, which
could bring the system to a steady state. However, this patient
flow model is designed as an open network; meanwhile, the
number of incoming patients is finite in each run of model in
order to model the real situation of patient flow.

To ensure the accuracy of formal models, it is necessary
to validate the preceding formal models with another mod-
elling technique that has completely different modelling and
analysing process. In this section, the validation of PEPA
models is conducted through discrete event simulation (DES)
that models the operation of a system as a discrete sequence of
events in time and continuously tracks the system dynamics
over time. In DES, time is broken up into small time slices and
the system state is updated according to the set of activities
happening in the time slice [32]. The simulation tool used for
the validation is OMNeT++ that is an extensible, modular
and C++ based simulation framework for modelling net-
works such as, queuing network and communication network.
OMNeT++ is chosen as the main tool due to its powerful
functions in simulating and analysing queue network. The
patient flow model, in fact, is a kind of queue network.

A. DES TOOL: OMNeT++

According to the definition in the OMNeT++ community,
OMNeT++ is an extensible, modular, component-based
C++ simulation library and framework, primarily for building
network simulators. OMNeT++ is developed to solve differ-
ent kinds of network models, such as wired and wireless com-
munication networks, queueing networks, and distributed
networks, and so on. To facilitate simulation, OMNeT++
offers an Eclipse-based IDE, a graphical runtime environ-
ment, and a host of other tools. Therefore, the simulation
is easy to generate and execute. OMNeT++ IDE extends
Eclipse platform with some new functional modules: an edi-
tor with both graphical view and command lines (an NED
file), a functional module for parameter setup and simulation
configuration (an INI file) and an analysis module for the
simulation output (an ANF file). More details of OMNeT++
and OMNeT++ IDE can be found in the documentation of
OMNet++which is available on theOMNeT++ community
site.

B. SIMULATION MODEL
Simulation model is created in terms of PEPA model and
related parameters. Thus, this model should be completely the
same as that built with PEPA. Regarding these conditions, a
queue network in the simulation should be built as a multi-
server network, and the number of servers equals the number
of components used in PEPA model.

Figure 8 is a simulation design scheme based on the initial
patient flow model using PEPA. In the diagram, rectangles
represent all defined components in the PEPA model and
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FIGURE 8. Simulation design scheme of patient flow model.

parallel lines represent queues of components. Arrows stand
for the flow of patients in the department. The shaded dia-
mond connected to the component General Test is defined as
a scheduler in which scheduling policies are simulated. In the
simulation model, all components and actions are completely
equivalent to PEPA model as well as all parameters. This is
to ensure the correctness of validation using discrete event
simulation.

C. SIMULATION MEASUREMENT AND VALIDATION
In order to validate PEPA models, simulation measurements
should be conducted under the same parameter conditions.
Thus, all parameters applied in simulation are those figures
displayed in Table 1 & 3. As the aim of this section is to val-
idate PEPA models, we only simulate the initial patient flow
and validate the related PEPA model with a no-scheduling
scheme and models with two kinds of scheduling policies.
Figure 9, 10 and 11 represent the simulation results of
the initial patient flow with the no-scheduling scheme, the
static scheduling policy and the dynamic scheduling policy
respectively.

In Figure 9, dashed lines for the simulation results plot
close to the solid lines representing results of PEPA model.
Hence, we can argue that results from PEPA models using
fluid flow analysis have reliable accuracy when the patient
flow model does not include a scheduling policy. The sim-
ulation in this step is to validate the prototype of patient
flow model so as to conduct the following comparison with
scheduling policies.

Figure 10 displays the queue length of the new patients and
the follow-up patients based on the initial workflow with a
static scheduling policy. Dashed lines represent the figures

FIGURE 9. Number of new and FU patients queuing for consultants based
on PEPA and simulation.

FIGURE 10. Number of new and FU patients queuing for consultants with
a static scheduling policy based on PEPA and simulation.

FIGURE 11. Number of new and FU patients queuing for consultants with
a dynamic scheduling policy based on PEPA and simulation.

obtained from simulation that are around a value 1.5 for the
queue length of new patients and a value 3.0 for the queue
length of the follow-up patients in a stable phase. It is clear
that both dashed lines for the simulation results approximate
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to solid lines that represent the results from PEPA model
using fluid flow approximation. This step verifies that PEPA
analysis based on the initial patient flow model with a static
scheduling policy has accurate results by comparing with
simulation results.

Figure 11 describes the results of PEPA model and sim-
ulation based on the patient flow model with the dynamic
scheduling policy. Similarly, the simulation results denoted
by the dashed line get very close to those results from PEPA
model which are represented by a solid line. This proves the
validity and high accuracy of PEPAmodel and corresponding
analysis when the dynamic scheduling policy is applied in the
patient flow model.

D. SUMMARY
In this section, validation using discrete event simulation
is implemented to verify the accuracy of PEPA model and
related analysis. As the simulation is a time-consuming work,
we just complete the validation for some analysis results
of PEPA model which are based on models of the initial
workflow. PEPAmodels of two workflows (the initial and the
evolved) have the same architecture and analysis technique –
fluid flow approximation. Hence, simulation for one of the
two workflows can provide adequate proof for the model
validation. Here, the initial workflow is chosen for the
validation. According to comparisons, we can get a conclu-
sion that analysis based on PEPA models is highly accurate
and reliable in contrast to the simulation results.

VIII. CONCLUSION
To improve the patient flow, a smart environment can be
applied to support behaviours of patients and management
of workflow in the hospital. Smart environment can be devel-
oped depending on technologies of IoT (Internet of Things)
and CPS (Cyber Physical Systems). This paper aims to pro-
vide a solution applying a smart environment for the rheuma-
tology department in order to obtain well improvement of its
patient flow and workflow. This research, firstly, explores a
dynamic scheduling policy that can improve the efficiency
and utilization of consulting service and reduce patient wait-
ing queue. Secondly, an evolved workflow and a new capacity
plan are developed for the rheumatology department which
can improve the efficiency and quality of service.

This paper has achievements in two areas. On one hand, the
research accomplishes a performance modelling task for the
patient flow of a department. The scheduling model is created
on the basis of the department patient flow so as to refine
the scheduling process by using a novel dynamic scheduling
policy. The capacity model is initially built on the initial
workflow; then the initial workflow is refined by giving a new
action flow and capacity scheme, which can improve service
efficiency greatly. On the other hand, this research adopts
a formal method for performance modelling and analysis
due to its features in compositionality and high efficiency.
Another creative modelling technique is that function rates
are used in the formal method to model complex system

behaviours, such as the dynamic scheduling process. As a
result, formal method has an immense scope of applications
by using function rates.

According to the performance measurements, the dynamic
scheduling policy has ability to improve the scheduling effi-
ciency and service utilization due to its adaptable feature,
especially when the number of incoming patients is varying.
Based on the initial workflow of department, a evolved work-
flow is created in order to improve the service efficiency
any further. From the analysis results, it is clear that the
evolved workflow scheme greatly improves work efficiency
by changing the order of activity flow and the consultant allo-
cation scheme. Moreover, a new capacity plan is generated
for the evolved workflow in terms of the statistical data and
the performance results of the dynamic scheduling policy.
Regrading the analysis, such new capacity plan can
ensure that all scheduled patients can finish their activities
within 8 working hours.

To extend this work, we will explore a patient flow model
that is more close to the real situation further by considering
the no-show and cancellation in the patient flow. This situ-
ation will takes more difficulties to the scheduling process.
Thus, a specific and workable solution should be explored to
improve the scheduling process. Furthermore, in fact, upcom-
ing arrivals in the department usually do not arrive at a stable
rate; and also for the serving activities of consultants, the
service rate should be varying based on different consultants
and unknown situations. In our future work, we will model
the situation with unstable arrivals and varying consulting
activities in order to promote a new scheduling policy.
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