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ABSTRACT As the smart cities emerged for more comfortable urban spaces, services, such as health,
transportation, and so on, need to be promoted. In addition, the cloud computing provides flexible allocation,
migration of services, and better security isolation; therefore, it is the infrastructure for the smart cities.
Single instruction-set architecture (ISA) heterogeneous multi-core processors have higher performance per
watt than their symmetric counterparts and are popular in current processors. In current cloud computing,
which integrates a few fast out-of-order cores, coupled with a large number of simpler, slow cores, all cores
expose the same ISA. The best way to leverage the effectiveness of these systems is to accelerate sequential
CPU-bound threads using fast cores, and to improve the throughput of parallel memory-bound threads using
slow cores. However, shared hardware resources, such as memory, respond to requests from all cores, which
interfere with each other, leading to both low speed for fast cores and low throughput for slow cores. In this
paper, we propose a dynamic resource partitioning (DRP) method for single-ISA heterogeneous multi-cores,
which partitions the shared resources according to both threads’ requirements for the shared resources and
the performance of their running cores. The key principle is to profile both threads’ resource characteristics at
run-time and the performance of the cores that the threads are running on to estimate demands for resources.
Then, we use the estimation to direct our resource partitioning. Moreover, we integrate our DRP with
current memory scheduling policies to improve the system performance further for the two methods being
orthogonal.

INDEX TERMS Single-ISA heterogeneous multi-core, cloud computing, performance per watt, dynamic
resource partitioning, memory scheduling, performance.

I. INTRODUCTION
Power density concerns in processor ICs led to the multi-
core era [1] where a single and very powerful processor has
been replaced by several smaller cores with more modest
computational capabilities [2]. As long as the cores are
identical, incoming program threads can be assigned to
cores arbitrarily by the operating system (OS). However,
for a given power budget, symmetric multi-core
processors (SMPs) have been shown to be outperformed

by single-instruction-set architecture (ISA) heterogeneous
multi-core processors (HMPs), which can cater for the needs
of diverse workloads [3]–[5], such as the cloud computing.

In cloud computing, multiple virtual machines (VMs) for
different services can be collocated on a single physical
server, and they can operate independently with virtualization
technology, which provides flexible allocation, migration of
services, and better security isolation. So the cloud computing
is the infrastructure for the smart cities, which provides better
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health service, transportation service and so on. A single-ISA
heterogeneous multi-core processor (HMP) includes cores
exposing the same instruction-set architecture, but differing
in features, size, speed and power consumption [6], [7].
A typical HMP would contain a few complex, large and
high-power fast cores and a number of simple, small and
low-power slow cores. It is well known that HMP systems
can mitigate scalability bottlenecks in parallel threads by
accelerating sequential threads on fast cores [6], [8], [9].

However, threads running concurrently contend with each
other for the shared resources in multi-core systems, con-
taining both SMP and HMP systems. Threads can be slowed
down compared to when it runs alone and entirely owns the
shared resources, such as memory system. The problem of
shared resources contention is more serious in HMP systems
for fast cores being unable to accelerate, because they can’t be
responded faster from shared resources. So, the effectiveness
of the HMP can’t be leveraged, and it is wasting of the fast
cores. Therefore, if the shared resources contention of the
HMP system is not properly managed, it can degrade both
individual thread, especially thread running on fast core, and
overall system performance, simultaneously causing system
unfairness [10]–[16]. In addition, memory streams of differ-
ent threads are interleaved and interfere with each other at
DRAMmemory in HMP system; the inter-thread interference
destroys original spatial locality and bank level parallelism
of individual threads, thus severely degrading system perfor-
mance [11], [12]. As the number of cores on a chip continues
to grow inHMP, the contention for the limited sharedmemory
resources and the interference become more serious [11].

The effectiveness of the HMP system can be evaluated
by three objectives: power efficiency, system throughput and
fairness. The most important one is the power efficiency,
which is the most advantage of the HMP. The second is the
overall system throughput, which should remain high. And
the last is the fairness, which is no single thread, especially
the thread running on fast core, should be disproportionately
slowed down.

Previously proposed two kinds’ techniques to improve
throughput and/or fairness for SMP system: the first one is
memory scheduling, which reorders memory accesses. So it
can potentially recover a portion of original spatial locality.
However, the primary design consideration of the memory
scheduling is not reclaiming the lost locality. Furthermore,
the effectiveness in recovering locality of memory scheduling
is restricted due to the limited scheduling buffer size and the
arrival interval (often large) of memory requests from a single
thread. In a word, memory access scheduling can somewhat
decrease inter-thread interference, but it does not address the
issue at its root [17], [29], [30]. The other one is resource
partition, mainly memory partition, which divides memory
resource among threads to reduce interference. So solves
the interference at its root and improves DRAM system
performance. However, current memory partitioning policies
are proposed for SMP, which is based on the hypothesis
of all cores having the same performance. In HMP, the

most advantage and challenge is to exert the different
characteristics of the heterogeneous performance core.
Therefore, current memory partitioning policies don’t suit
HMP system. Moreover, resource partitioning does not take
into account system fairness, and its ability to improve
fairness is also restricted.

To maximize the effectiveness of the HMP system,
we propose Dynamic Resource Partitioning (DRP) which
dynamically partitions shared resources to accommodate
the core/thread pair’s disparate requirements. The key idea
is to profile both cores’ and threads’ resource charac-
teristics at run-time and estimate their needs for shared
resources, mainly shared caches, memory banks and mem-
ory bandwidth, then direct our resources partitioning based
on the estimation. Moreover, in order to improve fairness,
we combine memory scheduling police into our DRP,
which can improve throughput and fairness simultane-
ously to maximize effectiveness of the HMP. Experimental
results demonstrate that this combination is able to
enhance power efficiency, throughput and fairness simul-
taneously for HMP system, therefore, maximizing the
effectiveness.

In summary, the paper aims to make the following contri-
butions through the proposal of DRP:

1) We propose a dynamic resource partitioning to
maximize effectiveness of the single-ISA het-
erogeneous multi-core system. DRP dynamically
partitions shared resources, containing shared cache,
memory banks and memory bandwidth, according to
core/thread pair’s resource requirement.

2) We combine DRP with memory scheduling policies
to improve power efficiency, throughput and fairness
simultaneously, because resource partitioning is
orthogonal to memory scheduling. As resource par-
titioning focuses on preserving row-buffer locality,
memory scheduling focuses on improving system
performance by considering core/threads’ memory
access behavior and system fairness.

3) We estimate the core/thread’s resources requirement
according to the characteristic of both the core and the
thread running on it, not just the thread’s characteristic.
It is important to character the core’s performance in
the HMP for maximizing its effectiveness.

4) Experimental results show our DRP is better than cur-
rent related approaches in maximizing effectiveness of
the HMP system.

The rest of this paper is organized as the follows.
Section II elaborates on essential background and related
work. Section III explains our DRP framework. Section IV
describes experimental methodology and Section V presents
the results of our experiments. Finally, Section VI concludes
this paper.

II. BACKGROUND & RELATED WORKS
In this section, we provide a review of DRAM system
and discuss how past research dealt with the challenges of
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providing power efficiency, performance and fairness for
modern memory systems in HMP.

FIGURE 1. Organization of a modern memory subsystem.

A. DRAM SYSTEM
1) DRAM ORGANIZATION
Figure 1 illustrates the multiple levels of organization of
the memory subsystem. To service memory accesses, the
memory controller (MC) sends commands to the DIMMs on
behalf of the CPU’s last-level cache across a memory bus.
As shown, recent processors have integrated the MC into the
same package as the CPU. To enable greater parallelism, the
width of thememory bus is split intomultiple channels. These
channels act independently and can access disjoint regions of
the physical address space in parallel [18].

Multiple DIMMs may be connected to the same channel.
Each DIMM comprises a printed circuit board with reg-
ister devices, a Phase Lock Loop device, and multiple
DRAM chips. The DRAM chips are the ultimate destination
of theMC commands. The subset of DRAM chips that partic-
ipate in each access is called a rank. The number of chips in a
rank depends on howmany bits each chip produces/consumes
at a time. Each DIMM can have up to 16 chips, organized
into 1-4 ranks.

Each DRAM chip contains multiple banks (typically
8 banks nowadays), each of which contains multiple two-
dimensional memory arrays. The basic unit of storage in an
array is a simple capacitor representing a bit the DRAM cell.
Thus, in a ×8 DRAM chip, each bank has 8 arrays, each
of which produces/consumes one bit at a time. However,
each time an array is accessed, an entire multi-KB row is
transferred to a row buffer. This operation is called an acti-
vation or a row opening. Then, any column of the row can
be read/written over the channel in one burst. Because the
activation is destructive, the corresponding row eventually
needs to be pre-charged, that is, written back to the array.

2) OS MEMORY MANAGEMENT
Nowadays, Linux kernel’s memory management system uses
a buddy system to manage physical memory pages. In the
buddy system, the continuous 2order pages (called a block)
are organized in the free list with the corresponding order,
which ranges from 0 to a specific upper limit. When a
program accesses an unmapped virtual address, a page
fault occurs and OS kernel takes over the following exe-
cution wherein the buddy system identifies the right order
free list and allocates on block (2order physical pages) for

that program. Usually the first block of a free list is selected
but the corresponding physical pages are undetermined [19].

B. HMP-POSTED CHALLENGES
As HMP contains a few complex, large and high-power fast
cores and a number of simple, small and low-power slow
cores, and the core number keeps increasing, HMP architec-
ture poses three major challenges on shared resources:

1) LOW POWER EFFICIENCY
The advantage of the HMP is the higher performance per
watt. Therefore, it is the best way to leverage the effectiveness
of this architecture is to accelerate sequential CPU-bound
threads using fast cores, and to improve throughput of par-
allel memory-bound threads using slow cores. However, the
shared resources restrict its effectiveness. Normally, the fast
core needs the fast response from shared resources for pre-
venting waste of CPU time in order to accelerate sequential
CPU-bound threads; and the slow core is better to tolerate the
long time respond from shared resources. The fast core has
more cycles, which can run more instructions, in the same
time. Moreover, current shared resources, such as shared
cache and memory, don’t respond differently to different
cores. So the speed of the fast core is restricted by the shared
resources, then the power efficiency is limited. As shown
in figure 2, there is large disparity between PSO (accelerate
sequential CPU-bound threads using fast cores and improve
throughput of parallel memory-bound threads using slow
cores, but all threads share resources) and the optimal system
performance (thread runs alone). The results are from the
4-core platform with 1-fast core and 3-slow core, and the
workloads are demonstrated in experimental setup section.
Therefore, there is much potentiality in power efficiency for
HMP system through shared resources management.

FIGURE 2. Normalized power efficiency improvement.

2) INTERFERENCE
With the core number and thread number keep increasing in
the HMP system, one of major challenges is interference,
which contains cache interference, memory interference
and so on. Use memory interference as an example, usu-
ally a single thread’s memory requests have good locality
and can exhibit good row buffer hit rate. But the locality is
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significantly reduced in a multi-core system with running
many threads parallel. Therefore, row buffer hit rate decreases
sharply, leading to poor overall system performance.
Figure 3 demonstrates that the row buffer hit rate decreases
significantly with the thread number increased. The y-axis
shows the row buffer hit rate, and the x-axis presents the
increased parallel running threads. The interference mainly
derives from two aspects: the first one is that operating system
interfere threads. In order to get the service of the operating
system (OS), threads need to invoke system calls frequently
during their lifetime. To access OS’s address space, threads
have to switch to the kernel state. After the service finished,
the state returns back to the user state, which is the address
space of threads originally. For a simple system call, kernel
only uses a small part of a page, while it has to complete
the above steps, which may lead to two additional row-buffer
misses. Although OS invocations are usually short-lived, they
are invoked frequently [20], which leads to the frequently
switches between kernel state and user, intensifying inter-
ference. Figure 4 demonstrates row buffer misses proportion
caused by OS to different benchmarks. In the figure, we run
different benchmarks to count the misses proportion caused
by invoking system calls and other guest OS interference.
This figure has clearly shown OS contributes most row
buffer misses to threads; the other is that interference among

FIGURE 3. Row buffer hit ratio decreases significantly with the thread
number increased.

FIGURE 4. Row buffer misses proportion caused by OS.

parallel running threads. Threads running concurrently con-
tend shared memory in HMP systems. Therefore, memory
streams of different threads are interleaved and interfere with
each other at DRAM memory and virtual memory address
space respectively. The results of figure 5 have proven the
interference among threads. Moreover, as the threads number
increased, from one thread to 16 threads, the row buffer miss
rate decreases seriously. Interference among threads needs to
alleviate for memory performance improvement.

FIGURE 5. Row buffer misses proportion caused by other threads.

3) UNFAIRNESS
A good HMP system needs to guarantee that no single thread,
especially the thread running on fast core, should be dis-
proportionately slowed down. Unfortunately, threads running
on current HMP system are disproportionately slowed down
normalized to running alone, especially the thread running on
fast core. Figure 6 demonstrates the decreased performance of
each thread after running on 4-core HMP system normalized
to running alone. From the figure, it’s clear to see threads
of parallel running decrease their performance disproportion-
ately, moreover, the thread’s performance running on fast core
is slowed down more seriously, which is unbearable. In the
figure, each workload, mix0, mix1 and mix2, has four threads
running parallel. The first thread of the workload runs on the
fast core for its more cpu-bound, and the other three threads
run on the slow core. The reason of the thread running on
fast core havingworse performance is mainly two aspects: the

FIGURE 6. The normalized performance of each thread after running on
4-core HMP system.
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first one is that the fast core thread has less memory requests
for more cpu-bound, so the respond time from memory is
longer. Because the mainly memory scheduling policies are
FCFS-like (first come first service); the other is that the
fast core is better in CPU frequency, so the CPU waiting
cycles for memory respond is much more. Therefore, there is
much potentiality in fairness for HMP system through shared
resources management.

C. ANALYSIS OF THESE CHALLENGES
All the above three challenges are mainly from two reasons:

1) SHARE
The most important reason is sharing the resources. All par-
allel running threads share cache, memory, bandwidth, and
so on. Therefore, every thread requests shard resources will
interfere other threads, which is the root of above three chal-
lenges. If we want to address all the three challenges, we need
to prevent sharing. However, in the multi-core, the hardware
is expensive for every core having private all resources, and
also is waste. So, the core problem is how to prevent sharing
among parallel running threads in the shared environment.

2) UNLIMITED
The second reason is unlimited using shared resources from
every thread. Therefore, a thread of stream application will
occupy most of the shared resources, which will decrease all
other threads. So, we can limit every thread occupying the
amount of shared resources according to its requirement, no
single will be disproportionately slowed down. But the core
problem is how to estimate every thread’s requirement for the
shared resources. Moreover, it’s not just determined by the
characteristic of the thread, but also by the core performance
the thread running on.

D. OUR INSIGHTS BASE ON THE ANALYSIS
1) LIMITED MEMORY BANK REQUIREMENT
Although memory bank can improve parallelism, the neces-
sary amount of memory banks one thread requires is limited.
Usually, a thread is unable to generate enough concurrent
memory requests due to the combination of many factors
such as memory dependency, high cache hit rate and limited
number of MSHRs [21]. However, most modern systems
always spread all threads’ memory banks across the whole
memory for accessing all banks to take advantages of bank-
level parallelism, which is only excess and suffering memory
interference. Therefore, we can prevent sharing among paral-
lel running threads in the shared environment through par-
titioning memory banks for each thread, which eliminates
inter-thread bank conflicts. Moreover, as the technique of OS
page-coloring is well-known for cache partitioning [22], the
technique can also be used to partition memory banks. So we
can partition both cache and memory banks simultaneously
adopting page-coloring technique to prevent sharing among
parallel running threads in the shared environment.

2) THREAD’S REQUIREMENT FOR SHARED RESOURCES
In order to estimate the shared resources requirements for
every thread, we need to analyze the characteristic of both
thread and core. Firstly, we define a thread’s characteristic
using three components: memory intensity [23], row-buffer
locality [24], and bank level parallelism [25]. Memory inten-
sity is the frequency that a thread generates memory requests
or misses in the last-level cache. Row-buffer locality is the
locality that a thread hits the row-buffer. Bank-level par-
allelism is parallelism that a thread independent accesses
to different banks in parallel. Secondly, we define a core’s
characteristic using three components: CPU frequency, cache
size, and out-of-order window size. Therefore, we use the
six components to estimate the shared resources requirements
for every thread. Based on the estimation, we can allocate
resources to prevent unfairness.

III. DYNAMIC RESOURCE PARTITIONING (DRP)
A. OVERVIEW OF DRP
To maximize the effectiveness of the HMP system,
we propose Dynamic Resource Partitioning (DRP). It con-
tains four parts of the DRP. First, to estimate threads’ needs
for shared resources, mainly shared caches, memory banks
and memory bandwidth, thread’s characteristic profiling
is to profile threads’ three components, memory intensity,
row-buffer locality and bank level parallelism. Second, to
estimate cores’ needs for shared resources in HMP, core’s
characteristic profiling is to profile cores’ three compo-
nents, CPU frequency, cache size, and out-of-order window
size. Through the six components, we can estimate the
shared resources requirements for every thread running on
different core. Third, to take advantages of heterogeneous
performance cores, based on the estimation of both thread
and core characteristic, dynamic partition shared resources
to prevent interfering to realize accelerating sequential
CPU-bound threads using fast cores, and improving
throughput of parallel memory-bound threads using
slow cores. Final, to improve fairness, we combine memory
scheduling police into our DRP, which can improve through-
put and fairness simultaneously to maximize effectiveness of
the HMP. Figure 7 demonstrates our DRP framework.

B. PROFILING THREAD’S CHARACTERISTIC
We define a thread’s characteristic using three compo-
nents: memory intensity, row-buffer locality and bank level
parallelism.

Memory intensity, the frequency of a thread misses in the
last-level cache or generates memory requests, is used to
distinguish between low memory intensity and high memory
intensity. In this paper, we use last-level cache misses per
thousand instructions (MPKI) to represent memory intensity.
The more MPKI, the thread is higher in memory inten-
sity. Threads with low memory intensity show almost no
performance changes after allocating more memory banks.
The interval time between two requests from these threads
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FIGURE 7. The framework of DRP.

is long for seldom generating memory requests. Therefore,
bank level parallelism is useless. However, threads with low
memory intensity are more sensitive to the respond time,
which will reduce serious performance if waiting times is
longer. In order to grantee fairness and improve system per-
formance, we should give priority of memory scheduling
for these threads. Threads with high memory intensity will
have two mainly characteristics, row buffer locality and bank
level parallelism. High memory intensity threads with low
row buffer locality are sensitive to the number of banks.
Memory banks can hide memory access latency to improve
performance through bank level parallelism for these threads.
But highmemory intensity threads with high row buffer local-
ity are more possible to interfere threads of parallel running.
So, partition unique memory for these threads is effective.

Row buffer locality, the hit ratio of a thread accesses
the row buffer, which provides temporary data storage of a
DRAM row. We use average row buffer hit rate (RBH) to
represent row-buffer locality in this paper. The necessary of
the required bank level parallelism for one thread is limited.
For lowmemory intensity threads, 4 or 8, even less is enough;
for high memory intensity threads with low row buffer
locality, 16 or 32 is enough; and for high memory intensity
threads with high row buffer locality, mostly 16 is enough.
More than necessary, the performance hardly improved for all
threads. Therefore, we can allocate memory banks according
to threads’ characteristic.

Bank level parallelism, the parallelism of a thread accesses
multiple and independent memory banks, which overlaps
long memory access latency and improves DRAM through-
put. Based on both memory intensity and row buffer locality,
we determine the bank number for each thread to exploit its
bank level parallelism.

C. PROFILING CORE’S CHARACTERISTIC
We define a core’s characteristic using three components:
CPU frequency, cache size, and out-of-order window size.

CPU frequency, the operating frequency of CPU’s core, is
one of most important metrics for the processor performance.
The higher the frequency is for a given CPU family, the faster
the processor is.

Cache size, mainly the private cache size for the core,
is actually to the size of the data store, where the memory
elements are actually stored. The more cache the system has,
the more likely it is to register a hit on a memory access,
because fewer memory locations are forced to share the same
cache line.

Out-of-order window size, refers to the set of instructions
which can execute out-of-order in an out-of-order specu-
lative CPU. The instruction window has a finite size, and
new instructions can enter the window only when other
instructions leave the window. Instructions enter and leave
the instruction window in program order, and an instruction
can only leave the window when it is the oldest instruction
in the window and it has been completed. Hence, the instruc-
tion window can be seen as a sliding window in which the
instructions can become out-of-order. All execution within
the window is speculative until it is committed.

D. PROCESS OF THE DYNAMIC CLOUD
RESOURCE PARTITIONING
In this paper, we mainly partition three shared resources:
memory banks, shared cache and memory bandwidth.

1) MEMORY BANK PARTITION
We partition all parallel running threads into three types, low
memory intensive thread type, high memory intensive with
low row buffer locality thread type, and high memory inten-
sive with high row buffer locality thread type respectively,
which accords to the five metrics, MPKI and RBH from
thread, CPU frequency, cache size, and out-of-order window
size from core.

In the symmetric multi-core processors (SMPs), based
on MPKI and RBH, threads can be partitioned into three
types. But in the HMPs, the different core characteristics
the thread running on will influence the thread’s character-
istic. Therefore, we combine the thread’s characteristic with
core’s characteristics. In this paper, we assume n threads are
running parallel. MPKIi and RBHi represent the threadi’s
characteristic, 0 < i < n. We use Fi, Ci, Wi to represent
CPU frequency, cache size, and out-of-order window size of
the core i. Define two parameters of T1 and T2, 0 < T1,
T2 < 1, and T1 + T2 = 1. In order to quantize the
influence of the core’s characteristic, use T1

∗Fi + T2
∗Ci as

the memory intensive factor, and use Wi as the row buffer
locality factor. After combining core’s characteristic, the
thread’s memory intensive characteristic stands MPKIi by
MPKIi∗(T1

∗Fi + T2
∗Ci)/6(T1

∗Fk + T∗2Ck ) and row buffer
locality characteristic stands RBHi by RBHi

∗Wi/6Wk .
We define two threshold parameters MPKIt and RBHt for

classification types. If the combined MPKI < MPKIt , the
thread is partitioned into low memory intensive type; else if
combined RBH < RBHt , the thread is partitioned into high
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Algorithm 1 Our Memory Bank Partition Algorithm
Definition:
N: the total cores in the processor
M: the total memory banks in the server
NL: the number of low memory intensive threads
NHL: the number of high memory intensive with low row
buffer locality threads
NHH: the number of high memory intensive with high row
buffer locality threads
N: the total cores in the cloud computing
Our memory bank partition:
If NL==N

Allocate M/N banks for every thread;
Else if NL==0

Allocate M/(NHL+NHH) banks for every threads in high
memory intensive with high row buffer locality type;

If M/(NHL+NHH) <16
Each two threads in high memory intensive with low

row buffer locality type sharing M/(NHL+NHH)*2 banks;
Else

Allocate M/(NHL+NHH) banks for every thread in
high memory intensive with low row buffer locality type;
Else

Allocate M/(NHL+NHH) banks for every thread in high
memory intensive with high row buffer locality type;

Threads in low memory intensive type can access all banks
allocated for high memory intensive with high row buffer
locality threads;

If M/(NHL+NHH)<16
Each two threads in high memory intensive with low

row buffer locality type sharing M/(NHL+NHH)*2 banks;
Else

Allocate M/(NHL+NHH) banks for every thread in
high memory intensive with low row buffer locality type;

memory intensive with low row buffer locality type; else, the
thread is partitioned into high memory intensive with high
row buffer locality type.

Based on the classified types, partition memory banks
to reduce interference. So, in this paper, allocate unique
16 memory banks for each thread in high memory intensive
threads with high row buffer locality group; allocates one
16 banks group for some threads in high memory intensive
threads with low row buffer locality group sharing; allocate
all banks allocated for high memory intensive threads with
low row buffer locality group to low memory intensity group.
Algorithm 1 shows the pseudo code of our memory bank
partition.

2) SHARED CACHE PARTITIONING
Figure 8 shows the address mapping policy of the 32 bits
system. A physical address contains several common bits,
which denote both OS page index and bank index, so these
bits are referred to as bank color bits. In this figure, there

FIGURE 8. Address mapping policy.

are 5 bank color bits, bit 13 15 and 21 22, which contains
32 colors and each color represents 1 memory bank. Each
OS page index (bit 12 31) also contains 5 bank color bits
which designate one color, thus each physical page belongs
to one bank color.

Moreover, as a shared 8MB 16-way associative last level
cache, the bit 6 18 are used to choose cache set. So the
bit 12 18 are cache coloring. Therefore, the shared bit 13 15
are used for both bank coloring and cache coloring. The
shared last level cache is partitioned into 8 groups. Through
this way, we can partition memory banks and last level cache
simultaneously.

3) MEMORY BANDWIDTH PARTITIONING
After partitioning both memory banks and last level cache
for all parallel running threads, the mainly contention is
the bandwidth. If the bandwidth allocates to each parallel
running thread fairly, the unfairness problem can be
solved.

There are N parallel running VMs in the system, using
T1, T2, . . . ,TN represent each thread. And through perfor-
mance management unit (PMU), which is popular in current
processors. And use the PMU, we can count committed
instructions and access memory numbers/last level cache
misses of each thread, which represented by INi and Mi
respectively for thread i. B stands for the total bandwidth.
Therefore, we need to determine B1, B2, . . . ,BN for each
thread in order to fairly share.

If a thread belonged to low memory intensive type, it can
use bandwidth unlimitedly for its performance. Else threads
belonged to high memory intensive types, they need to use
bandwidth limitedly for fairly sharing.

Therefore, the performance degradation of each thread
belonged to high memory intensive types is (INi + Bi)/
(INi + Mi), where Bi is smaller than Mi for contending
bandwidth.

So, for random i and j which 1 < i, j < N and both
Ti and Tj belonged to high memory intensive types. They
must be

(INi + Bi)/(INi +Mi) = (INj + Bj)/(INj +Mj) (1)

(B1 + B2 + . . .+ BN ) = B (2)

Through (1) and (2), we can get each Bi, which allocates
for each thread. After that, the process of bandwidth partition
finishes.
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4) INTEGRATE MEMORY SCHEDULING INTO DRP
Although shared resources partition can reduce interference
and improve fairness, it can’t maximize the performance and
fairness for unable to speedup the low memory intensive
thread. Therefore, in order to maximize the effectiveness of
the HMP system, integrate memory scheduling into our DRP.

In our memory scheduling, priority schedule memory
accessing from low memory intensive threads, the Figure 9
demonstrates the example. Priority schedule memory access
from fast core, which can speed up that thread. If there are
more than 1 threads of low memory intensive type, priority
schedule row buffer hit memory accessing. Memory accesses
from high memory intensive threads are scheduled based on
both bandwidth partition and row buffer hit.

FIGURE 9. The example of the low memory intensive thread first memory
scheduling policy.

IV. EXPERIMENTAL SETUP
We useMARSSX86 [26] as the base full-system architectural
simulator to run Linux 2.6.31 and extend its memory part with
DRAMSim simulator to simulate DDRx DRAM systems in
the details. Table 1 shows the major simulation parameters of
the quad core with one memory controller, one is the fast and
powerful core for low memory intensive threads, three others
are power efficiency cores for high memory intensive threads
which one is for high row buffer locality and the other two for
low row buffer locality, and most parameters are the same of
the 8-core.

TABLE 1. Processor and memory configurations.

In order to evaluate our DRP, we simultaneously run differ-
ent combinations of selected from sysbench [27], SPEC2000
and SPEC2006. In table 2, the number-appname notation is
the number of threads of the application with the name of
appname for sysbench; for SPEC2000 and SPEC2006 work-
load, it is the number of copies of the application with the
name of appname. After conducting experiment to get each
benchmark’s memory access characteristic, we classify the

TABLE 2. Workload description.

benchmarks into different categories: memory-non-intensive,
memory-intensive with low row buffer locality and memory-
intensive with high row buffer locality.
Evaluation Metrics:We measure system throughput using

weighted speedup and fairness using maximum slowdown.
weighted_speedup and fairness using maximum_slowdown.

weighted_speedup =
∑
i

IPCshared
i

IPCalone
i

(3)

maximum_slowdown = max i
IPCalone

i

IPCshared
i

. (4)

V. EXPERIMENTAL RESULTS
A. PERFORMANCE ANALYSIS
We evaluate the impact of our DRP on system throughput
using weighted speedup. Figure 10 provides insight into
where the performance benefits of DRP and DRP-MS come
from. DRP-MS represents the DRP integrated with our mem-
ory scheduling. In the figure, DBP represents the method of
dynamic bank partition, TCM is one of the best previous
memory scheduling method for trading off between perfor-
mance and fairness in CMP, FCFS is the default memory
management method of first come first service.

FIGURE 10. System throughput.

As expected, both our DRP and DRP-MS outperform pre-
viousmethods by both speeding up the threads running on fast
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core and increasing fairness. In our workload, we partition
9 mixes into three groups, the group 1 of mix1 to mix3 is low
memory intensive, which mostly contains only low memory
intensive benchmarks, the group 2 of mix4 to mix6 is middle
memory intensive, which contains both low and highmemory
intensive benchmarks, and the group 3 of mix7 to mix9 is
high memory intensive, which mostly contains only high
memory intensive benchmarks. In the figure, we can see the
group 2 has the most improvement for all the methods, this
is because our experiment is based on the thread scheduling
of sequential CPU-bound threads using fast cores. Therefore,
all the methods behave the most effective in this group for
speeding up the sequential CPU-bound threads on fast cores,
which is through reducing interference. However, our DRP
and DRP-MS behave better than other methods obviously.
This performance improvement is mainly from speeding up
the sequential CPU-bound threads on fast cores further and
increasing fairness among parallel running threads.

FIGURE 11. The normalized performance of each thread in mix4 to run
solo.

Figure 11 provides the normalized performance of each
thread in mix4 to run solo. In the mix4, there are 8
benchmarks, which have different memory access behavior.
We place the more memory intensive benchmarks, sysbench
memory, gobmk, gromacs, h264ref, on the slow core, and
other 4 benchmarks on the fast core. From the figure, we can
see our DRP and DRP-MS are better than others, especially
the DRP-MS. This is mainly because our DRP and DRP-
MS can profile both the thread and core characteristic. But
other methods only can profile threads’ characteristic, and
the thread runs on different cores, its behavior will change.
The highly improvement of DRP-MS is also from the prior-
ity schedule memory accessing from low memory intensive
threads, therefore, the improvement of threads running on fast
core are high, and the performance of threads running on slow
core are not as well as other methods, but is almost the same.

B. FAIRNESS ANALYSIS
Figure 12 demonstrates the fairness evaluation, which is mea-
sured by maximum slowdown. DRP and DRP-MS are better
than others for speeding up the threads running on fast cores.

FIGURE 12. Maximum slowdown.

The maximum slowdown of other methods is derived from
the threads running on fast core, because their performance
decreases more seriously. DRP and DRP-MS can speed up
the performance of threads running on fast core without
decreasing other threads’ performance seriously, therefore,
we can improve fairness.

Moreover, both our shared cache partition policy and
memory bandwidth partition policy contribute the fairness
improvement. Figure 13 provides the shared cache hit ratio
of each thread in mix4. The shared cache hit ratio can be
improved especially for threads running on fast cores, which
can contribute both performance and fairness improvement.

For our memory bandwidth partition policy, we can limit
the memory access from memory intensive threads, which
can meet the request from threads running on fast core firstly.
This policy also can speed up the threads running on fast
cores, which improves both performance and fairness.

FIGURE 13. The shared cache hit ratio of each thread in mix4.

C. OVERHEAD ANALYSIS
Software Support. There are four parts which requires system
software support, shared cache partition, memory scheduling
policy, bandwidth partition and bank/rank partition. The four
parts integrate the profiling thread’s characteristic, profil-
ing core’s characteristic, memory bank partition algorithm,
shared cache partitioning algorithm, memory bandwidth
partitioning algorithm. All these processes need addition
computing.
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Performance Overhead. In order to evaluate the perfor-
mance overhead after adopting our DRP, we compare our
DRP with the default method, and the experimental results
show the overhead of our DRP is negligible, below 2.5%. The
result has shown our DRP behave well.

VI. CONCLUSION
In the future, the cloud computing will be the infrastructure
of the smart cities to cater more and better services
while cutting down the budget. So the cloud comput-
ing adopts the better single-ISA heterogeneous multi-core.
However, it needs properlymanagement to leverage the effec-
tiveness of the HMP. In this paper, we propose a dynamic
resource partitioning (DRP) for single-ISA heterogeneous
multi-core, which partitions shared resources according to
both threads’ requirements for shared resources and the
performance of their running cores. The key principle is
to profile both threads’ resource characteristics at run-time
and cores’ performance the threads running on to estimate
demands for resources. Then, use the estimation to direct our
resource partitioning. Moreover, we integrate our dynamic
resource partitioning with current memory scheduling
policies to improve system performance further for the two
methods being orthogonal. Experimental results show that the
proposed DRP improves system performance by 5.6% and
improves system fairness by 31% over memory partitioning
for symmetric multi-core. Compared to memory scheduling
policies, our integrated policies behaves well both in per-
formance and fairness. We conclude that our methods are
effective in improving both system throughput and fairness
for single-ISA heterogeneous multi-core.
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