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ABSTRACT In what sense is a city smart? There are established entities defining this rich area of
cross-disciplinary studies, and they refer to social, technical, economic, and political factors that keep
evolving, thus offering opportunities for constant refinement of the concept of smart city. The emerging
properties are mostly contextual, and affect urban data types and their capacity to form complex information
systems. A well-known problem in computational analysis is the integration of lot of generated data. The
heterogeneity and diversity of smart city data sources suggest that a system’s approach could be ideal to
assemble drivers of multiple forces and dynamics, suggesting adaptive solutions too. However, the nature of
such systems is quite unpredictable and chaotic, leading to the natural aim of stabilizing them. Studies have
proposed methods based on various criteria, say parametric, entropic, anthropic etc. As many factors and
variables underlie the system’s drivers, attractors derived from dynamical systems are proposed to describe
smart city contexts through the various interlinked big data and networks.

INDEX TERMS Smart cities, big data, networks, attractors.

I. INTRODUCTION: FROM SMART CITIES TO
SMART CITY NETWORKS
The systemic analysis of urban areas has gained centrality
with smart cities (SC), a concept presenting a diversity of
working definitions centered on a core of dimensions, here
summarized as society, institutions, and technology. SC are
stimulating cross-disciplinary research, as their contextual
analyses extend the several dimensions in many directions
ending up with a classification according to economy,
mobility, environment, people, living, governance [1]. Being
this classification one among other subjective ones, a main
question remains: in what sense is a city smart?

Simply speaking, only a non-universal answer exists. From
such contingency, solutions to make a city smarter should
be evaluated according to the associated complexity cost.
In particular, elucidating the network of interrelationships
between the six component entities is a key factor, as the
complexity levels can be quite naturally summarized into
network communities. The latter are the most important
representational characteristic in networks, and indicate
groups of nodes associated because of shared features. Once
such features refer to the 6 SC entities, the term SC net-
works (SCN) seems to us the most effective one in establish-
ing the reference methodological framework [2].

Owing to the fact that SC features are often measurable,
their association with data implies high volumes of both
analytical and computational work. First of all, a main contri-
bution from such data to the definition of ‘smartness’ operates
through a criterion of connectivity. Consequently, structural
linkages are likely present in such data, involving observable
patterns and also latent communication circuits that need
to be uncovered. In network language, synergies detectable
from modular configurations would play a key role, together
with contextual information. Notably, this type of information
partly explains the data relevance, and partly characterizes
the relationships between SC entities, but also offers rationale
for strategies and decisional processes designed to exploit the
reduction of data complexities.

Networks naturally refer to many possible contexts,
including social, media and communication ones, through
the same topological features [3], [4], for instance sparsity,
skewness, heavy-tailed distributions, short average path
lengths. Then, at either node or module scales, degree,
clustering coefficient, and centrality (among other network
properties) allow for further topological assessment.
Communities or modules present connectivity patterns
between their participant elements that are significant
(i.e. non-randomly), and also distinct, even if the informative

VOLUME 4, 2016
2169-3536 
 2015 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

41



N. Ianuale et al.: Reasoning From the Viewpoint of Attractors

contents of these aggregates depend on the so-called
resolution limit, with reference to the chosen granularity [5].
Therefore, a second important question is: to what degree
SC communities are relevant, and how can we measure
significance from 6 given entities?

There exists amultitude of relationships and corresponding
dynamics that can be targeted within a community map.
SCN imply the attempt of identifying possible drivers
influencing any observable characteristic. An advantage of
networks is that any configuration can be monitored during
its spatiotemporal evolution. A main goal is to infer the
governing rules of communities, whose nature can be
associative, interactive or regulative. An emerging inference
strategy is aimed to exploit the synergistic dynamics in
network communities, i.e. those not predictable from addi-
tive association of the individual components, and possibly
revealing causality. In the context of SCN, it seems natural
to parameterize the characterizing entities [6], for then deci-
phering them into measurable categories (communication,
transport, etc.). Consideration would go to all urban
activities regulating the interconnectivity maps, and deter-
mining effects which propagate system wide to multiple
scales, affecting human interaction dynamics through com-
munication and information diffusion.

SCN decision processes face the emerging role of collec-
tive sensing and swarm intelligence as key drivers in social
media. These are determining an anthropic transformation
towards neo-ecosystems whose unstable structure justifies
conditions of non-equilibrium [7]. Data science [8] may
facilitate the understanding of the impacts of the social entity.
We cast in a network context particular inferential instru-
ments known as ‘attractors’, which allow for the analysis of
gravitational dynamics of flows across stable and unstable
network states. Networks are endowed with regulation and
control mechanisms that monitor a multitude of variables at
various scales. One of such scales is established by tech-
nological developments (sensors, information routers, etc.),
another scale is determined by the social context (media driv-
ing communication circuits), another scale is inherent to the
environment and its physical constraints (geographic,
logistic, etc.). Notably, such factors can be considered
subjected to mediation by so-called ‘anthropic sensors’ [9],
those enabled by people with actions and decisions
which ultimately define all urban characteristics, and
feed with information the available infrastructures (cloud
systems, etc.).

II. METHODS: ATTRACTORS
We propose to exploit the potential of attractors in the design
of SCN. After introducing them, we provide various repre-
sentations aimed to emphasize their multidimensionality and
utility in identifying multifunctional communities. The urban
features we look at include both physical flows and virtual
dynamics (social media), both to be considered generators
of multi-type transmission mechanisms at SCN level, and
capable of adapting to spatiotemporal changes.

Complex human interactions shape human systems
dynamics that involve a wide range of ever-changing pat-
terns of behavior at individual and group levels. Analytical
models can be derived from the nonlinear dynamical concept
of attractor patterns. Attractors are patterns characterizing
a deterministic chaotic system. Here, the overall behavior
seems random, but is instead complex and determined by a
small number of nonlinearly associated variables.

FIGURE 1. Attractor types. Image from http://wiki.hsdinstitute.org/
attractor_patterns.

Among the various types of attractors in a dynamical
system (see Figure 1), a strange attractor describes a pattern
of behavior characterized by bounds preventing the system
to move outside of the attractor, and allowing within the
bounds unpredictable behavior. Therefore, while at a given
time this behavior appears as random, observation of the
system across time indicates the presence of patterns that are
highly structured. The patterns of strange attractors appear at
various levels of scale, but not in predictable way. Attractors
are powerful inference tools of human systems considered as
complex adaptive ones. Being bounded, such systems have
limited variability, but with components appearing infinitely
varied and of identifiable shape. Thus, while no component
pair shows identical pattern, every component fits coherently
with the whole systems pattern.

Since the state of a network at each instant is the union of
all the states of the network nodes, observation for a certain
period of time allows to monitor whether these states reach
a stable configuration (equilibrium or stationarity). This may
also be defined in terms of singleton attractors [10] allowing
for the analysis of permanent changes in the network due to
perturbing events. Conversely, the lack of stability implies the
presence of non-singleton attractors, and only transient states
would be present in the network.

The attractor state is generally operating under condi-
tions which include proximity to a basin of attraction (BA).
Equivalently, BA means the presence of unstable states as
neighbors of attractors. Multiple attractors induce multi-
stability in the system, and network states are thus stable ones
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with the capacity of attracting trajectories from surrounding
non-stationary states (the region of BA). One problem is that
enumerating the state space components is NP-hard, and a
reduction of complexity is usually needed to determine the
attractors. For example, a decomposition of the network into
sub-networks or modules can help the analysis and allow
singleton attractors to cluster according to some specialized
functions, also establishing cross-linked modularity in
lower-dimensional state space.

The definition of attractors in SCN involves all their
characterizing features, a variety that can in turn be associated
with the communities, creating conditions of either stability
or instability. The latter may ormay not be properly governed,
but it contributes to the degree of attraction of each compo-
nent entity in the system. Therefore, attractor states identify
conditions under which a city is smart, while the surrounding
instability represents residual entropy induced by endogenous
and exogenous forces. The system representation is displayed
in Figure 2.

FIGURE 2. SCN context, with attractors dynamics. An attractor is a set of
states (points in the phase space), invariant under the dynamics, towards
which neighboring states in a given BA asymptotically approach in the
course of dynamic evolution. An attractor can be briefly defined as the
smallest unit which cannot be itself decomposed into two or more
attractors with distinct BA. Source: http://mathworld.wolfram.com/
Attractor.html. The dynamics can be characterized by gradient descent in
an energy landscape thus yielding a space partition into basins of
attraction [24].

In discrete-time dynamical systems consisting of a locally
compact metric space X called the phase space, an attracting
set represents a closed subset A of its phase space. The phase
spaceX can be a smoothmanifold, for instance an open subset
of Euclidean space in which sets of measure zero and sets
of positive measure are distinct. Note that it is reasonable to
ignore any behavior which occurs only on a set of measure
zero, because not observable in any real world application.

The system will evolve towards A from multiple possible
initial points, and attractors are minimal entities that cannot
be further partitioned. Therefore, what will be described is
the asymptotic behavior of typical dense orbits whose union
converging towards A is called the basin of attraction B(A).

The concept of attracting set can be defined in different but
equivalent ways. Ruelle and Takens [11] and Ruelle [12] have
defined strange attractors in the presence of chaotic dynamics
and dependence on initial conditions. Strange attractors are
also examples of fractals, whose structure appears compli-
cated at any point and scale of magnification.

III. RESULTS
Figure 2 illustrates an abstract configuration of attractors in
a space that we assign to SC. We can think about examples
of application, therefore. Notably, these maps might recall in
stylized form the geography of an urban context. In particular,
one might be interested in studying traffic congestion to
identify locations affected by this phenomenon and evaluate
the effects exerted by the spatial structure. Recently, an inter-
esting study was proposed in [13] on multiplex networks in
the context of metropolitan areas.

A common topological property, betweenness centrality, is
a good proxy informing about traffic, thus usable to identify
congested spots. Interestingly, the introduction of an under-
ground system revealed quite disruptive in spatial distribution
effects, determining a shift from internal to peripheral spots
of the underground networks. However, a mismatch between
the urban areas and the underground networks implies that
congestion can be created in sub-optimal locations. In our
view, attractors could be the hotspots which parallel the
identified congested locations, as these latter are points in
which dynamics aggregate together eventually, leaving to
other spots more transient and unstable behaviors.

Another possible example involves the spatial analysis of
communities within cities [14]. In particular, it is interesting
to investigate how connected components emerge with refer-
ence to the distance in urban social networks. In this case, the
network property we need to look at is called searchability,
which establishes relationships between geographic
proximity and social distance. The structure that allows
this property to take place has not been tested yet in large
social networks, and it is quite natural to identify the main
bottleneck in the lack of a suitable metric for the assessment
of social distance.

Since network communities are associated to dense
sub-networks, andmany algorithms exist to detect them, once
again attractors offer a dynamic view of the same problem,
as they represent density regions in the space characterized
elsewhere by sparsity, or in any case by structures that do not
reach sufficient mass to create dense regions, thus remaining
subject to fluctuations and instability.

Lastly, a third example is inspired by studies on intercon-
nections in complex networks [15], and the crucial role of a
few gateway nodes, or influencers, that regulate the spread
of information to the rest of the network. Clearly enough,
once this core of nodes is identified and immunized, the
consequences would be relevant for the control of phenomena
such as diffusion of large scale epidemic or mitigation of
other cascade dynamics that might occur (power networks,
for instance). Interestingly, this problem can be mapped onto
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an optimal percolation problem providing the mathematical
framework in which the goal is finding the minimal number
of nodes which, once removed, would break the connectivity
structure of the network. Attractors visibly respond to such
logic, even if probably represent a local representation of the
phenomenon that the influencers aim to regulate at a global
scale.

As a final observation regarding Figure 2, a traditional
aspect debated with networks is the probing of dynamics
through perturbation experiments affecting the steady-state
activity at the overall network scale. The problem remains
how to measure the effects, linearly or nonlinearly, for then
establishing measures such as impact, stability, propagation
and cascades as in [16]. These same measures, as it is imme-
diate to notice, fit within the domain of attractors.

Links between community detection, controllability and
stability-propagation studies can be easily seen as part of
a continuum. Limitations occur too, naturally enough.
One is that communities can only provide a coarse view
of the network configuration and organization. Depending
on the methods we choose to compute these properties, the
correlative dynamics that discriminate between the retained
internal nodes and the retained external nodes with respect
to a community, a dense region, an influencing set, or an
attractor, can be different, and thus not allow direct compar-
ative evaluations [17]. However, with attractors we expect
to face systems that are highly non-linear, which implies
to study them with control parameters that need to vary in
order interpret the occurrence of non-equilibrium, critical
transitions between unstable and stable points, and the early-
warning signals for such transitions or tipping points [18].

Figure 3 is the synthesis of our methodological proposal,
implementing the principles displayed in Figure 2 in a
distributed way across identified data source classes. The
six canonical entities of smartness are centered on data-
driven analysis of economic activity, resource consumption,
mobility patterns, etc. Other entities such as technology
bursting innovation, organization to manage technology, and
policy making to create the context enabling the organization
to work, are collapsed into the selected entities.

At the top of Figure 3 we have reported an additional
entity, the social one, indeed a meta-entity. Its influence is
exerted i) Directly on the system, i.e. at the SC level, and
therefore can be regarded as measurable; ii) Indirectly on the
system, through the influences exerted on the other canonical
entities, which remains difficult to measure. Instrumental
to such direct and indirect influence are populations and
their inherent relationships, then environmental changes and
their human interaction dynamics, socioeconomic vulnera-
bilities and the adaptation and resilience present at the social
dimension. Notably, the social pervasive impact works across
all the previous entities. Recent contributions have intensified
the reasoning on the concept of virtual dimension, which
relates to the anthropic system component [19], [20] a driver
influenced by collective sensing [21], [22]. A synthesis could
be derived by merging technological sensitivity, aimed at

FIGURE 3. Multidimensionality of attractor-driven SCN context. Top
Panel. SCN in attractor’s view. Outer circle includes the smart entities;
Inner circle lists the data types. SC are represented by the main bubbles,
while the unlabeled smaller bubbles represent system’s instabilities.
Central Panel. Lateral view of top panel to appreciate the height of the
smart entities addressing relevance and volumes, this in terms of each
data type. Bottom Panel. The three SC are set in relation with the
instabilities, again in a magnified view compared to the nexus of the top
panel. Therefore, three attractors are in communication with each other,
and appear as separated from residual instability.

systemic innovations (intelligent sensing), with social
sensitivity, aimed at system’s functional changes in interac-
tion and communication dynamics (smart sensing).

Table 1 summarizes a taxonomy-based knowledge
representation referred to such entities and indicators.
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TABLE 1. Smart cities taxonomy.

In their construction [9], [23], SC are complex systems
consisting of connected components, say physical, func-
tional and anthropic. The smartness refers to the states of
such components, and their capacity of self-regulation under
the constant influence of technological innovation. Urban
activities and functions belong to both physical and virtual
dimensions, and this dichotomy is not just perceived, but also
measurable owing to the emerging role of crowdsourced and
sentiment analysis data.

We identified 4 data types: Big, Open, Linked and Sensing.
Common characteristics are identified in the degrees of scale,
complexity and completeness. The derived systems may
be oriented to one type, but often present a mix of them.
In particular, incremental knowledge can be extracted by

linked data, i.e. using the Web to connect related data and
information which currently appear separately, or also linked
but without exploiting the Semantic Web.

Sensing reported as a data type naturally interfaces with the
others when information is organized according to common
standards such as RDF (Resource Description Framework),
allowing the interconnectivity between data clouds in dis-
tributed fashion. Challenges, apart from reliability, security
and privacy aspects, include fusion of multi-type sensors
within decision support systems and interoperability of their
user-friendly communication interfaces.

A few examples are now provided in the form of use cases
in order to appreciate how the logic of attractors can naturally
adapt to SCN contexts.
Use Case 1 (Community Affiliation): We might ask what

makes a network community a sort of immune body with
respect to various kinds of influences, rather than an inte-
grable unit, i.e. something destined to become part of some-
thing else. In general, nodes that cluster together may do so
non-exclusively, thus belonging to multiple communities at
the same time. In turn, they share multiple dynamics. The
effect of this so-called community affiliation [25] is some-
thing which characterizes many real-world phenomena. It is
believed that higher densities are more likely observed in
well separated communities, while their overlapping regions
remain sparse. However, changes in the overall community
structure may occur such that it becomes difficult to distin-
guish densities of separate communities and of their shared
space. Interestingly, dynamics may induce dense single com-
munities to become sparser, or vice versa overlapping regions
to gradually densify.

In terms of attractors, both types of network dynam-
ics – sparsification and densification – influence the network
states with regard to their capacity of attracting nodes and
forming communities. The overlapping community regions
may include marginally relevant or transient dynamics,
i.e. those destined to prevent attractors to form, and remaining
instead subject to instability. However, novel community-
driven dynamics or external factors may often act as effectors,
transforming the network states. When a switch occurs in
terms of relative densities, such that community overlaps get
higher densities than single communities, this dynamic can
eventually lead to an attractor state.
Use Case 2 (Information Diffusion): Information diffuses

in networks due to exchange between nodes through links.
Internal drivers or external influences can induce the diffusion
of information at network scale [26]. Typically, it is important
to study systems subject to viral attacks. The information
flow which is expected to change due to the presence of
external entities, may diffuse at rates that depend on the
mutual interaction between external and internal entities with
regard to the reference system. A dangerous scenario is one
in which the equilibrium present in the system is disrupted
and, due to the dominance of external perturbing agents,
a new attractor state appears. Conversely, internal entities
can also re-establish an attractor state, when the perturbation
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is neutralized. These two possible attractors determine
opposite effects in terms of system’s equilibrium, but
similarly and inherently embody dynamics leading to stable
(low-entropy) states or unstable ones (high entropy).
Moreover, the perturbation (external force) and propagation
(internal force) dynamics may interact differently in time
and in space. Viral dynamics ate mostly self-sustained, and
propagate by escaping any possible control until a stationary
condition is reached, and a stable network configuration is
achieved. Before such endpoint, the system remains unstable,
likewise an attractor remains a latent state.
Use Case 3 (Pulsatility or Intermittency): Network com-

munication is possibly subject to intermittency, or pulsatile
behavior. This generate bursts in the signal dynamics, which
in networks are visible through the presence of many decen-
tralized hubs (i.e. highly connected nodes) inducing clustered
sub-networks. More importantly, intermittency is hypothe-
sized as the consequence of intertwining between stationary
and non-stationary states. This may translate into multiple
attractors, due to switching regimes and frequent network
reconfiguration. For such reasons, these dynamics may char-
acterize bi-stability (say, with two attractors). Notably, the
identification of inflection points related to particular events
is a key factor, something which refers also to so-called
‘tipping points’. Social phenomena behind such critical pat-
terns can be analyzed in structural or contextual terms. Event
pulse dynamics can typically characterize social media and
broadcast news, and the focus naturally goes to how words
may provide causal reasoning.

Consider Twitter: the text structure is constrained in length,
thus communication by this media aims at clear sentences
with unequivocal meaning. However, it is likely that pulsatile
dynamics under some particular conditions (contexts) occur.
For instance, tweet-retweet dynamics can be transient or
persistent, depending on the particular topic which is the
object of the communication.
Use Case 4 (MEME Patterns): MEMEs are short phrases

(or other content types) that travel through the internet and
can mutate. Memes clusters are possible patterns indicating
repetitive changes, and identifying for example a specific type
of mutation prevailing over the other possible ones during
the meme’s path. A mutation which is more typical than
another one, can thus determine an attractor state, owing
to the tendency of the system to return to it (i.e. return to
stationarity) from different non-stationary conditions. These
patterns can be sorted in time according to their appearance
and importance, which can be assessed by the length of expo-
sure time of a certain topic and/or the achieved popularity
levels. Mutations can occur because of re-definitions and
re-interpretations, false perceptions, errors, error-correction
mechanisms, etc. Patterns may change unpredictably
(amplifying or flattening out). Finally, these dynamics can
substantially differ, depending on the context. When muta-
tions are cumulative along the transmission, several dynamics
can be observed, some smoothly deviating (say, gravitating
around a main concept) others diversified along the process,

and changing dramatically the initial meaning, and therefore
inducing convolutions. Only the former dynamics would lead
to an attractor state, quite evidently.

IV. CONCLUSION
We introduced the principle of attractors in SCN contexts as
a novel paradigm of dynamic adaptation operating in such
complex system, in light of the centrality of central aspects
such as stability and evolution. When translated into the
context of SCN, we have indicated possible sources of infor-
mation, including those deciphering virtualization, by virtue
of the principal role played by the social dimension, and
emphasized the perspective of its implementation in cloud
systems.

The initial state of attractors is typically determined by
input dynamics that change over time towards a different
configuration of states. Here, we represented the attractors’
potential of naturally modulating stability and instability
aspects typical of many SC contexts, involving especially
networks. Therefore, the attractor dynamics arise from the
interaction among the network nodes. In particular, instability
may refer to endogenous system’s adjustments affecting the
various entities (say, hidden economy, unofficial statistics,
inaccurate records of various kind), and may also refer to
exogenous factors, perturbations or shocks with the power
of determining structural changes (environmental or social
emergencies, financial crises, exceptional political events).

Data multitudes populate SCN and are modulated by the
attractor dynamics that take place in such systems, originating
from a amix of passive data types (marketing, retail, financial
services, electronic medical records, telecom, media etc.) and
active data types of social origin (crowdsourcing from blog,
tweet interactions and aimed to propel sales, products devel-
opment and customer services). The role of sensor-driven
data is likely becoming pervasive, and integrate the other
two data types in many urban contexts (traffic, pollution,
climate, etc.).

Finally, other relevant impacts are expected once predictive
models of connectivity between the data become available,
and can be measured in relation with urban services (from
planning to emergency control) in terms of the optimization
achieved in the usage of resources. In particular, the discovery
of significant patterns and signatures from collective traffic
data in many contexts will allow a separation between good
and bad types of data, and thus a better approximation of the
value and impact of collective sensing.

Especially social influences, those referred to decisions
and actions that starting from individuals can be replicated
at a larger community scale, represent a new human interac-
tion dimension. Both macro-influences (diffusion phenom-
ena such as epidemic) and micro-influences (in relation to
smaller assemblies) need to be investigated in depth to assess
transient and persistent effects, the relevance of novel interac-
tion dynamics between individuals, and early warning signals
enabling timely correction mechanisms.
Nihil est magnum somnianti: Cicero
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