
Received December 6, 2015, accepted December 23, 2015, date of publication January 4, 2016,
date of current version January 15, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2514398

Design Flow and Characterization Methodology
for Dual Mode Logic
VIACHESLAV YUZHANINOV, ITAMAR LEVI, AND ALEXANDER FISH
Emerging Nanoscale Integrated Circuits and Systems Labs, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel

Corresponding author: V. Yuzhaninov (yuzhans@biu.ac.il)

ABSTRACT Recently, the dual mode logic (DML) family was introduced as a superior energy-delay
alternative to CMOS. DML gates utilize two different modes of operation, dynamic and static, to selectively
achieve either high-performance or low-energy operation. Custom designs of DML circuits have been shown
to be very efficient. However, implementing DML circuits using the standard design flow and Electronic
Design Automation (EDA) tools is very challenging, since DML gates operate in two different modes, each
with its own characteristics and operating mechanisms. This paper shows, for the first time, that DML logic
can be compatible with the standard design flow and optimized by various tools, such as synthesis and
physical design. A DML cell library characterization methodology is also proposed to support the design
flow. The methodology and flow were verified on a wide variety of benchmark designs with different gate
counts and logic depths, and show that DML design is efficient under the standard design flow restrictions.

INDEX TERMS Standard design flow, alternative logic family, dynamic logic, dual mode logic (DML).

I. INTRODUCTION
Digital logic families have been extensively researched; since
the late 70’s a variety of static [1], [2] and dynamic [3]–[5]
logic families have been introduced. Research efforts have
mainly targeted tradeoff analyses between different logic
styles in terms of design metrics such as energy, performance,
area utilization, robustness and standard-flow compatibility.
While performance is usually regarded as the gold standard
for dynamic approaches (trading off the rest), static logic
(especially CMOS) is slower, but more robust, easily appli-
cable and compatible with standard flow and tools.

Standard static-logic compatible Computer Aided
Design (CAD) flows have been researched for almost
30 years. Diverse algorithms and heuristics have been pro-
posed and implemented for each step and tool of the design
flow and many abstractions have been added to reduce
complexity [6]–[8]. These CAD tools have reached a high
level of integrity, yielding cross-verified quality results and
short time-to-market. However, fundamental design chal-
lenges arise when the logic under the scope of the automation
tools is dynamic-based [9]–[13].

The recently proposed Dual Mode Logic (DML) provides
a hybrid (dynamic and static) functionality at the gate level, as
reported in [14]–[17]. DML shows superior robustness, high
noise immunity and low leakage in nano-scaled technologies.
In addition, DML performs faster than CMOS if operated
dynamically, and consumes less power in the static mode.
DML is based on a static core gate, preferably CMOS, and

has a single clocked transistor to enable its high performance
dynamic mode. The complementary network (which usually
does not present in standard dynamic logic) endows DML
with superior robustness compared to the vulnerability of
pure dynamic logic families. Furthermore, the complemen-
tary network enables a functional (but slower than CMOS)
static mode of operation [16]. It is important to note that
DML gate transistors are uniquely sized to achieve all the
above [18].

In this paper we introduce a design flow for Dual Mode
Logic for the first time that also overcomes a few of the well-
known dynamic design challenges. This automation method
is implemented on a dedicated DML standard cell library
which was constructed and fully characterized for this study.
The DML-Flow offers fully automation-compatible steps,
innovative approaches and the use of standard tools, which
results in a flexible design in terms of energy-delay trade-
offs by utilizing the inherently different operational modes
of DML.

The contributions of this work consist of the:

i. Formulation of a DML standard-cell-library character-
ization methodology and an option to utilize it within a
design-flow.

ii. Adaptation of the standard-design-flow (STDF) to
DML, while utilizing well-known commercial Elec-
tronic Design Automation (EDA) tools to address the
unique needs of DML.

VOLUME 3, 2015
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3089



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

The structure of this paper is as follows: Section II
introduces Dual Mode Logic and presents the challenges
involved in its adaptation to the automated ASIC design flow.
Section III describes the digital design flow for DML, and
Section IV covers the DML library characterization method-
ology. SectionV summarizes the results of this DML standard
library characterization and EDA flow. Section VI concludes
the paper.

II. CHARACTERIZATION AND STANDARD
DESIGN FLOW CHALLENGES
This section provides a self-contained overview of DML and
presents some of the challenges that arise during DML library
characterization and digital flow integration as discussed in
Sections III and IV.

A. DML OVERVIEW
DML logic was proposed to allow controllable switching
between static and dynamic modes of operation. As was
presented in [14], this dual modularity offers greater perfor-
mance vs. energy tradeoff flexibility. This flexibility can be
tuned, as required, by system or input-driven control, or by
designer considerations. The dynamic mode enables higher
performance with moderate energy consumption, whereas
the static mode has very low static and dynamic energy
consumption with moderate performance. The two functional
modes of DML have different energy-delay (E-D) optimal
curves, whereas the ability to change modes on-the-fly makes
it possible to attain the E-D targets of their union, providing
extended optimization space [16], [19]. It has been shown in
a number of publications [14]–[17] that DML is fully func-
tional, robust and efficient at wide range of supply voltages.

This behavior is the result of the special structure and oper-
ation of a basic DML gate, as shown in Fig. 1. A static core
gate is supplemented with an additional pre-charge (or pre-
discharge) transistor M1, which enables dynamic operation.
A full swing (rail-to-rail or R2R) of the static logic core gate
is highly valuable; which is why a CMOS gate was chosen.
During static operation, the M1 transistor is disabled and the
DML gate operates like the static logic core gate.

Similar to other dynamic logic families, DML gates can be
implemented with or without a footer (or header) transistor.
Fig. 1 shows all the possible DML configurations: Type-
A with its pre-charge operation and Type-B with its pre-
discharge operation. Hereafter, only the footless topology is
discussed, unless noted otherwise. Generally, footed gates
are rarely used because of their negative impact on gate
performance and area.

Operating the DML gate in the static mode is highly intu-
itive, in that the pre-charge transistors need to be disabled: the
CLKA port is set at HIGH and the CLKB set at LOW. As a
result, the gate retains the functionality of its static core gate,
except for an extra negligible parasitic capacitance due to the
additional transistor.

The DML full R2R property is highly desirable given its
lower leakage power and superior robustness compared to

FIGURE 1. Basic DML gates topologies: (a) Type-A footless. (b) Type-B
footless. (c) Type-A footed. (d) Type-B footed. pe traces represent the
evaluation paths for each topology.

standard dynamic logic. A DML dedicated transistor sizing
methodology was introduced in [18] that dealt with
CMOS-based gates. This unique sizing scheme results in
a substantial performance gain during the dynamic mode
relative to its CMOS counterpart. It presents moderate energy
consumption during the static mode (i.e. the optimal dynamic
mode sizing for performance meets the semi-optimal static
mode sizing for energy minimization). Similarly, sizing opti-
mization for high performance can be done on any other static
logic family (typically by trading off energy).

As shown in [18] (in particular for CMOS based gates)
the most efficient DML gates are typically the ones with
a pre-charge (or pre-discharge) transistor connected in par-
allel to a group of serially stacked transistors, which are
minimally sized (whether pull-up or pull-down). Therefore,
the evaluation network is usually dominated by parallel
paths, which contribute to a very fast evaluation period
(small evaluation path resistance and reduced output capac-
itance). In general, the designer is not obliged to use these
guidelines and the pre-charge transistor can be placed in
parallel to a parallel paths network, but this will result
in relatively slow DML gates (compared to the opposite
type). Hence, in order to fully exploit the DML advan-
tages, specific gates are better utilized in certain types.
Fig. 2 illustrates this principle, where a DML Type-A
NOR2 gate is very fast in comparison to a DML Type-B
NOR2 gate. The reader is referred to [18] for more detailed
information.

B. STANDARD DESIGN FLOW CHALLENGES
WITH RESPECT TO DML
This sub-section reviews the STDF challenges with respect
to DML structure and standard design tool capabilities.

3090 VOLUME 3, 2015



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

FIGURE 2. DML NOR2 (a) Type-A (b) Type-B.

Automated ASIC design-flows have been governed since
their early days by the CMOS digital logic-family for a
variety of reasons, including superior robustness and noise
margins, rail-to-rail logic levels, one-way directivity and low
leakage. Nowadays, the main virtue of static CMOS is its
correct-by-design compatibility with EDA tools, which have
evolved greatly over the years since changes in the logic
family can lead to unexpected and deteriorated results from
EDA tools. When using CMOS, only a small set of design
rules need to be applied for successful EDA integration. This
simplifies the automation tool complexity. Needless to say,
the majority of standard EDA tools nowadays are also com-
pletely oriented to static CMOS designs. The ASIC industry
adheres to a well-defined and tested STDF throughout the
entire design cycle, starting with the product specification
definition up to submission of production files to the foundry.
A typical flow fragment of the design phase (verification
excluded) is shown in Fig. 3 [8]:

FIGURE 3. Simplified ASIC Standard Design Flow.

The key STDF stages are:

i. RTL Synthesis – conversion of RTL to generic gates and
registers, while optimizing the logic efficiency and then

mapping it to a real library of characterized cells by
revamping it for best design metrics.

ii. Standard Cell Library – a library of real, laid-out and
characterized logic gates for the use of the synthesizer
mapping process. These include geometric, timing and
power metric data.

iii. Static Timing Analysis (STA) – Evaluation of all tim-
ing paths within the logic networks of the design and
monitoring any timing constraint violations.

For simplicity, a DML gate can be depicted as a static
CMOS gate that is able to operate dynamically when an
active clock is applied to it. On the other hand, an inactive
clock signal will degenerate the DML gate to its CMOS
counterpart. This abstraction could be exploited as a starting
point for a static STDF adaptation. However:

i. DML operates statically or dynamically, so the design
flow must distinguish between these two substantially
different cases.

ii. As introduced in sub-section II.C.1), the composition
of dynamic logic networks is subject to the bipartite
criterion; hence, not all statically valid designs are
dynamically credible.

C. DYNAMIC OPERATION MODE DESIGN CHALLENGES
In this sub-section, we highlight the main challenges of
designing in DML’s dynamic mode (note that typically,
standard dynamic logic challenges are a subset of these
obstacles). We present the challenges as a foundation for
Sections III and IV, in which the proposed approach for char-
acterization and design flow (DF) integration tackles these
challenges.

1) NON-UNATE BOOLEAN FUNCTIONS
According to [6], a function is unate in all its variables if and
only if it is either monotonically increasing or monotonically
decreasing for all of its variables.

Monotonicity in variable x1 described as:

finc (0, x2 . . . , xn) ≤ finc (1, x2 . . . , xn), ∀ (x2, . . . , xn)

fdec (0, x2 . . . , xn) ≥ fdec (1, x2 . . . , xn), ∀ (x2, . . . , xn)

Thus, the unateness and monotonicity terms are interchange-
able throughout this article.

The non-unate functions are of great importance for
dynamic logic based designs because implementing them can
imply an area increase and the addition of logically redun-
dant gates. In what follows, we clarify this point: dynamic
logic takes advantage of absent or degraded complementary
evaluation networks [3]–[5], and thus propagates faster than
CMOS (Complementary MOS) logic. All dynamic logic
styles must apply a proper cascading policy of evaluation
networks to ensure correct data propagation [1]. Fig. 4(a)
illustrates an example of improper cascading of dynamic
gates and the subsequent corruption of the propagating
data. The example shows that right after the pre-charge
(start of evaluation) of serially connected nMOS evaluation

VOLUME 3, 2015 3091



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

FIGURE 4. Color classification of dynamic logic cells. (a) Improper
dynamic cascading link. (b) np-CMOS (NORA) cascading link.
(c) n-Domino cascading link. (d) Generic dynamic cascading link.

network based dynamic gates, the second gate will start dis-
charging regardless of the actual output to be evaluated at the
output of the first gate.

This concept can be generalized even further. If a logic
gate with a favored nMOS evaluation network is referred
to as an Amber vertex (Type-A in DML terminology), and
a gate with a pMOS evaluation network is referred to as
a Blue vertex (Type-B in DML terminology), then a correct
dynamic logic cascading exists if every vertex has comple-
mentary colored predecessor and successor vertices. This
concept has its analogy in graph theory and is known as
a two-colored graph or bipartite [20]. Fig. 4 depicts the
color classification of the (b) np-CMOS, (c) n-Domino logic
families and (d) generic dynamic style.

The output logic level of a non-unate Boolean function
fnu
(
Ex
)
= fnu (x1, . . . , xi . . . , xn) will evaluate to logical

‘0’ or ‘1’ depending on the change of xi and the status of
the other inputs xj 6=i [21]. This implies a re-convergence of
paths with unbalanced odd and even numbers of logic stages
prior to the non-unate stage (gate of re-convergence), Gf .
See Fig. 5, where G0,G1, . . . ,Gn represent logic levels from
the primary inputs to the output fnu

(
Ex
)
. A non-unate function

can always be represented as in Fig. 5, where the difference of
logic levels between two re-convergent branchesmust be odd.

FIGURE 5. Typical network fraction of non-unate Boolean function.

As depicted in Fig. 5, a logic network of a non-unate
Boolean function must have at least two re-convergent paths
with an odd difference of logic-depths. This conflicts with

the cascading policy detailed above, and none of the CMOS
based dynamic logic styles is able to implement these func-
tions as is. Unfortunately, among these directly inapplicable
sets of non-unate Boolean functions are a few vital functions
such as XOR orMUX. The only conventional generic method
to deal with this restriction, unless a clock signal is also used
to control the data flow, dictates duplication of the logic cones
prior to the non-unate function node, thus transforming its
logic cone into a monotonic network [6], [22].

Logic duplication is also closely related to the ‘‘trapped
inverter’’ problem in Domino logic [13], where both polar-
ities of the input signals are required simultaneously, while
stand-alone inverters are not available. This method is
assisted by recursive unate transformations (bubble pushing)
before the duplication so as to push the trapped inversion
stages down the logic path to the primary inputs (PI), thus
preserving the unateness. The primary inputs of a particular
dynamic logic domain are defined as its input ports adjacent
to other logic domains. Fig. 6(a) shows a general logic struc-
ture of a non-unate function and Fig. 6(b) shows the same
function after duplication and bubble pushing, where the ∗
symbol denotes the unate transformed logic, and3 stands for
a logical cone.

FIGURE 6. Logic cones duplication and bubble pushing. (a) Before.
(b) After.

2) DYNAMIC OPERATION CHARACTERIZATION CHALLENGES
In this sub-section, we briefly present the main characteriza-
tion challenges of a DML standard cell library (.lib).

a: CHARACTERIZATION OF ASYMMETRIC BEHAVIOR
As mentioned, DML is capable of operating the gates in the
dynamic mode, which runs with synchronization to the clock
signal. Hence, some adjustments to the standard static char-
acterization are essential. In contrast to static CMOS logic,
the evaluation of data throughout a dynamic logic network
is asymmetric (i.e. always performs only one high-to-low or
low-to-high transition); thus the assessment of propagation
delay, input capacitance and dynamic power must be tailored
to differentiate and capture only the specific transitions of
logic cells (typically the evaluation path under every input
transition and gate-topology).

b: INTER-DATA TIMING RELATIONS
Typically, the timing closure provided by static synthesis
tools for combinational cells does not incorporate informa-
tion on how to handle a synchronizing input (clock signal)
to the gates. Dynamic-mode DML characterization requires
a definition of new inter-data timing relationships to address
this point, as will be elaborated in Section IV.

3092 VOLUME 3, 2015



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

FIGURE 7. Proposed DML standard design flow chart.

III. PROPOSED DESIGN FLOW STEPS FOR DML
This section covers the proposed dynamic DML flow
step by step, and then details and explains the ratio-
nale for each according to the design flow chart pre-
sented in Fig. 7, which summarizes the entire workflow,
including partitioning into characterization and design flow.
Sub-section III-A explains the rationale behind the use of a
dummy pseudo-static library during synthesis and mapping.

Sub-section III-B details the synthesis andmapping of theDF,
including its associated complexities, whereas III-C and III-D
conclude the DML DF with few netlist adaptations and STA,
respectively.

A. PSEUDO-STATIC LIBRARY AND MULTI-LIBRARY
REPRESENTATION
As explained in sub-section II-B, both of the DML’s func-
tional modes must be verified separately; thus each of the
modes requires its own library (with same gates) describing
the characteristics induced by the operating mechanism of
the mode. A static library is almost identical to a standard
CMOS library, whereas a dynamic library is more complex,
as it also contains the timing relationships of synchronizing
clock signal vs. the data pins.
As noted, the standard synthesis tools are static, but the

dynamic mode of DML involves clock synchronization.
Assertion of a clock signal, which is used to bring the
dynamic logic to a pre-defined initial condition, is called
a pre-charge (or pre-discharge) value. This preset phase is
followed by a logic evaluation phase during which the clock
is inactive and the logic state is determined only by data pins.
Recall that an inactive clock degenerates the DML to its static
form; therefore, a dynamic DML gate acts the same way as a
static gate in terms of data propagation during the evaluation
phase. The data start their propagation from a pre-defined
state, and are recurrently pulled up and down by evaluation
networks of the gates throughout the logic path (see Fig. 8).

FIGURE 8. DML data propagation during the dynamic evaluation phase.

The arrival evaluation delay at the destination logic OUT
node is bounded by the summation value of all transitions on
the path (see the left hand term of the next equation):

tev,OUT ≤
Nn∑
i

t{n}ev,i +
Np∑
j

t{p}ev,j

∣∣∣∣∣∣{ t{n}ev = t{p}ev = tev
Nn + Np = N

}=
N∑
i

tev,i

tev – evaluation delay
N – logic depth of data propagation path
n, p indices – denote PDN and PUN respectively

Standard synthesis and timing tools are incapable of com-
puting this evaluation delay. An intuitive way we propose
here to manipulate the automatic tool is to duplicate the
evaluation network delay (pull up or down transition) values
to the complementary transition of the same gate, which will

VOLUME 3, 2015 3093



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

make the tool take on the correct value regardless of transition
direction (as though the gate were static), thus simplifying the
timing analysis. For example: a Type-A gate always evalu-
ates from high-to-low; therefore the characterized (simulated)
high-to-low delay will be copied to the low-to-high delay
tables despite the fact that this transition is not possible in
dynamic operation. Hence, this type of library characteriza-
tion is entitled pseudo-static. This form of characterization
can be treated as an enforced symmetric

(
t{n}ev = t{p}ev

)
dummy

pseudo-static .lib library of DML cells (as shown in the
previous equation). This library is used for dynamic synthesis
while using a static tool. This yields an initial candidate
design which is post processed later on by two additional
libraries for complete timing checks of the static and dynamic
modes. The details on the construction of these libraries can
be found in sub-section III-B.

B. PSEUDO-STATIC SYNTHESIS AND LIBRARY MAPPING
As introduced above, dynamic logic networks must apply
a set of rules to ensure their functionality. This set of
connection constraints is applied by reading the pseudo-
static .lib content and setting the Synopsys LIBERTY’s
connection_class attribute [23] on each of the library
cell’s data pins. The attribute is considered a design rule and
should be followed by the synthesis tool duringmapping, oth-
erwise connection_class violations are reported. The
mapping process can be enforced to apply these connections.
The connection rules of ordinary DML cells defined accord-
ing to Fig. 9 ensure correct cascading.

FIGURE 9. DML regular footless cell connection classes. (a) Type-A cell.
(b) Type-B cell.

It should be noted that the LIBERTY connection_
class attribute support is neglected by the Synopsys Design
Compiler, which was initially utilized for voltage island
design. However, it is part of the LIBERTY gate-level
library modeling industry standard, which is compatible
with all EDA mapping tools if they choose to use it. The
connection_class is one way to abide by the connec-
tion restrictions. However, clearly, designers can implement it
differently. Each pin of each library cell is explicitly attributed
to a single valid connection_class before the mapping,
since it is a hard task for the tool to abide by all the constraints
simultaneously if they were loosely specified. For this pur-
pose, several dummy cells are defined to separate different
valid connection scenarios, whereas all the connection classes
are defined distinctly on the cell level.

All primary inputs should be imposed with footed
cells; otherwise, functionality might be lost. This distinc-
tion of PIs is made by the assignment of a dedicated

PI connection_class. All the input pins of cells that are
authorized to link to these primary inputs are assigned to the
PI class. Cells that are valid to link to primary inputs are all
footed or semi-footed. Semi-footed refers to a cell that has a
serial stack of transistors in the evaluation path; if so, then
one of its inputs might also directly interact with the primary
inputs (as long as the other input can cut off the evaluation
network at the beginning of evaluation phase).

As noted in II.C.1, not all Boolean functions can be realized
with a bipartite network; thus the workflow should be capable
of generating correct designs for a) monotonic and b) non-
unate functions as well.

1) MONOTONIC (UNATE) NETWORK MAPPING
In the case of a monotonic logic network, the mapping pro-
cess is trivial since no color conflicts are observed, and results
in a clean report of connection_class violations and
valid logic network structures.

2) NON-UNATE NETWORKS MAPPING
Not all logic networks can be classified as monotonic; there-
fore color conflicts are inevitable in the case of a non-unate
Boolean function realization. There are two strategies to cope
with non-monotonic networks: making it monotonic [13]
and a multi-phased clocking scheme [13], [24]. The latter
method is not evaluated in this work, since it complicates
the design and its clock trees considerably. The monotonic
transformation of the logic network is considered only an
alternative solution if the following attempts (in order) fail
to construct a feasible and valid design.

The report of connection_class violations is used
to locate the color conflicting nodes of the non-unate logic
network. This includes violating the pin_name of the con-
flicting gates and their cell_name, which is parsed and
serves for the automatic resolution by replacement procedure,
where possible.

Before demonstrating the removal procedure of
connection_class violations, we introduce the cell-
naming nomenclature. The output class of the cell is denoted
by a capital A or B letter prefix. The class of each INi input
of the cell is denoted by lowercase a (amber) or b (blue)
letters reflected by appending the cell_name with suffix
letters by their order of appearance. For example, a Type-A
NAND2 cell is abbreviated A_ND2_bb, and a Type-A
crossed NAND2 cell written A_ND2_ab describes IN1 that
should be driven by a Type-A cell, whereas IN2 should be
driven by a Type-B cell. The input connectivity suffix of
ordinary DML cells can be omitted, as all the inputs have
the opposite connection class of the cell’s output. In contrast,
crossed cells have a combination of input classes, so more
information is required.

Fig. 10 illustrates an example of a connection_class
violation removal procedure, where the conflicting NAND2
cell is replaced by its crossed dummy version.

Resolvable conflicting sites are repaired by replacing the
conflicting cells with their dummy crossed cell clones. On the

3094 VOLUME 3, 2015



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

FIGURE 10. Resolvable color conflicts by crossed cells. (a) Resolvable
color conflict at IN1. (b) Resolvable color conflict at IN2.

other hand, unresolvable color conflicts require a monotonic
transformation.

Resolvable color conflicts are resolved by reinitiating
an additional incremental synthesis run, whereas the entire
logic network other than connection_class violators is
frozen for changes (the dont_touch attribute is set). This
way, the logic structure remains intact except for insertion
of crossed dummy cells and delay balancing buffers to meet
data-to-data timing constraints. The operation of the crossed
cells is described in the next paragraph.

a: CROSSED (STACKED) GATES
Some logic gates have the ability to absorb two conflicting
colors if a particular input condition is met. The basic idea
behind these crossed cells takes advantage of a serial transis-
tor stack inside the evaluation path. This serial stack allows
for a mixture of two signals with opposite pre-charged states,
as one of them cuts off the evaluation path and prevents the
gate’s false evaluation. Unfortunately, this solution depends
on the data-to-data timing interdependence of the gate’s
inputs. To see this case, refer to Fig. 11, which illustrates the
case of a Type-A (Amber) NAND2 gate.
Fig. 11 (b) and (c) waveforms show two cases of a cell’s

correct and false response, respectively. The correct response

FIGURE 11. NAND2 crossed cell example. (a) Crossed Type-A NAND2 cell.
(b) Correct evaluation response. (b) Correct evaluation response.

does not include a transient glitch of output node Z unlike
in the failed response, since the input signals do not have
a HIGH level overlap. A failed response of the Z output
node is observed when both the A and B signals are HIGH
and trigger an erroneous evaluation. This input data timing
criterion imposed by the mapping tool with respect to the
data-to-data timing constraints is defined in the pseudo-static
.lib. In the case of a Type-A crossed cell, the earliest rise
min {trise (B)} of the Type-B input should occur later than the
latest fall max

{
tfall (A)

}
of the Type-A input. If this condition

is fulfilled, the crossed cell behaves as expected.
Note that a failed response is transient and necessar-

ily converges to its correct value after the arrival of both
inputs. However, this incurs a false pull-down and then a
pull-up evaluation, which propagates through the rest of
the logic nodes and forces them to evaluate the data via
their degraded complementary networks, resulting in a much
slower response. This behavior is unacceptable, as it deviates
from the modeled timing frame of the entire design while
consuming unnecessary power.

b: DELAY BALANCING
The delay-balancing step assesses the feasibility of meet-
ing the crossed cell input data-arrival timing constraint at a
reasonable cost (detailed at the end of the paragraph). For
instance, the automatic insertion of a number of buffers to
meet crossed cell inter-data timingmight be far more efficient
than duplication of the entire preceding logic cone. If this
solution is classified as infeasible, the netlist is recovered in
its initial state (no crossed cells or delay balancing). In this
work, a criterion of a maximum 10% gate count increase was
used. Note that this arbitrary threshold parameter is up to the
designer, based on the design specifications.

c: MONOTONIC TRANSFORMATION
Impractical crossed cell color conflict removal leads to
the somewhat costly solution of a monotonic transfor-
mation of part of the logic network. In contrast to the
widespread dynamic Domino logic design style [3], there is
no need for recursive bubble pushing due to trapped inver-
sion stages [13], since the proposed DML flow is based
on discrete inverting logic stages. Therefore, the monotonic
transformation only consists of preceding logic cone dupli-
cation at conflicting nodes. Logic duplication is done with a
monotonic_transform script that parses the gate-level
netlist and replicates the sub-networks prior to the splitting
points of the connection_class violated cells and re-
colors (swap of types) them complementarily (as introduced
by Fig. 6(b)). The duplication script has the ability to mini-
mize logic redundancy by constantly updating and re-using
already cloned sub-networks, hence saving energy and area.

C. POST-SYNTHESIS NETLIST ADAPTATION
At this point, the pseudo-static gate-level netlist is clear of
connection rule violations and is ready to be associated with

VOLUME 3, 2015 3095



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

real DML libraries. This is easily done by several procedural
steps:

i. CLKA and CLKB signals are added to the global mod-
ule port list.

ii. CLKA and CLKB signals are added to the port
list of each DML gate locally, and globally propa-
gated to the higher hierarchy via the port list of the
module.

This way the full structural DML netlist is ready to be
analyzed for timing with a standard STA tool.

D. STATIC TIMING ANALYSIS (STA)
As detailed in sub-sectionV-A, the dynamic .lib contains vari-
ous clock related timing constraints, which should be verified
for proper dynamic functionality. The clock affinity is absent
in standard STA tools; hence the clock port of each DML
cell is defined as a dummy data-port. These inter-data timing
relationships are reminiscent of the conventional setup and
hold constraints during the characterization of sequential ele-
ments. These timing constraints are satisfied just like standard
timing constraints by relaxing the operation frequency and
delay corrections which can be fixed with proactive buffering
or Place & Route tools. The STA of a static library has no
timing issues by default as long as the operating frequency
is met.

IV. PROPOSED CHARACTERIZATION OF DML LIBRARIES
This section focuses on the construction of the multiple stan-
dard cell DML libraries required for the proposed DF, as
summarized in Fig. 7.

The implemented cascading topology of the DML network
was chosen to be similar to np-CMOS [5] (see Fig. 4(b)),
which utilizes both types (colors) of gates, providing more
optimization space for the synthesis tool. For simplicity and
a proof-of-concept, only a small, but universal set of logic
gates was constructed. This set was comprised of NAND2,
NOR2 gates and inverters of both the A and B types; each
had several flavors as detailed below.

Beyond color-coding, the DML cells were divided into
three additional sub-categories:

i. Footless cells – ordinary logic cells, extensively applied
unless a particular condition is encountered.

ii. Footed or semi-footed cells – logic cells that have
a clock controllable evaluation path. These cells are
required for interfacing other non-DML logic domains.
Semi-footed cells have one controllable evaluation path
and another ordinary footless evaluation branch; this
structure provides an additional degree of delay opti-
mization during the mapping process.

iii. Dummy cells – auxiliary cells, logically identical to
other footless cells and used to force the mapping tool
to abide with inter-cell connection rules (see Type-A
NAND2 example in Fig. 10).

Table 1 lists the entire set of implemented cells character-
ized throughout the flow.

TABLE 1. Implemented DML cells with connection classes.

As introduced in sub-section III-A, the DML flow requires
three different libraries of characterized cells:

i. Pseudo-static .lib – auxiliary library used for the con-
struction of valid logic networks.

ii. Dynamic and static .lib – real libraries, which char-
acterize the design metrics of DML cells in different
operational modes.

The entire set of DML gates was simulated, laid out,
extracted for parasitic elements and represented in the form
of a SPICE netlist for further characterization. The following
sub-sections go into the details of the characterization process
and reference its content to the proposed design automation
flow. Note that characterization of only one type (A) of DML
gates is described, since the other type is characterized along
the same lines as the general procedure.

A. PSEUDO-STATIC LIBRARY
The idea behind a pseudo-static library of standard cells is
to imitate the dynamic behavior of DML cells without clock
synchronizing. In addition, it is also subject to enforcement
of connection rules for the generation of dynamically com-
patible logic networks.

1) DESIGN METRIC CHARACTERISTICS
In order to resemble dynamic behavior, cells within the
library were characterized solely for relevant evaluation tran-
sitions; i.e., input capacitance, intrinsic propagation delay and
power consumption assessed during high-to-low (Type-A) or
low-to-high (Type-B) evaluation transitions. Complementary
dummy timing arcs artificially duplicated these characterized
metrics:

3096 VOLUME 3, 2015



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

FIGURE 12. Intrinsic high-to-low evaluation delay definition.

1. Intrinsic high-to-low evaluation delay, measured rela-
tive to the data IN port Fig. 12.

ids,n = Cload
dv
dt
⇒ t{n}ev =

∫ tpHL

0
dt

= Cload

∫ VDD
2

VDD

dvout
ids,n(vout )

2. Data input capacitance: CIN =
∫ T
0 iIN (t)dt
VDD

3. Power consumption: Ptotal = Pleak + Pdyn, where

a. Pdyn =
VDD
T

∫ T
0 iDD,dyn (t) dt

b. Pleak = VDD·IDD,leak
4. Area footprint was taken from the layout.
Part of these standard cell characteristics were simulated as

a function of a parametric two or one-dimensional grid of the
IN node transition slope and the capacitive load of the OUT
node. These simulations were arranged in tables that can be
linearly interpolated or extrapolated by the tool.

2) DATA-TO-DATA TIMING CONSTRAINTS
As introduced in sub-section II-C.2 data-to-data timing
constraints are required to generate valid dynamic non-
monotonic logic networks. These constraints are used to
apply a skew relationship between data pins. The definition
of inter-data timing constraints is once again shown with
a familiar example of a crossed NAND2 cell. As depicted
in Fig. 13, a skew must separate the arrival of two conflicting

FIGURE 13. Definition example of data-to-data timing constraint.
(a) Data-to-data timing constraint data path example. (b) Data-to-data
timing constraint waveforms example.

types to prevent a race of the Z node. This constraint is defined
by the timing_type group of non_seq_∗ parame-
ters of the Synopsys LIBERTY library modelling standard
format [23], [25].

In order to define the skew timing constraint between the
rise (evaluation) of the Type-B IN1input and the fall (eval-
uation) of the Type-A IN2 input, the non_seq_setup_
rising timing constraint was defined relative to the IN1 pin,
whereas the IN2 pin governed by the fall_constraint
parameter values was denoted as tsu,r−f in Fig. 13.
These timing parameters were simulated and derived with

the characterization tool according to appropriate criteria
such as OUT node voltage drop, excessive current drawn, etc.

B. DYNAMIC LIBRARY
The design characteristics described in pseudo-static .lib are
somewhat different from the dynamic .lib because of the
distinction between the data evaluation and pre-charge phases
that have completely different goals.

1) DESIGN METRIC CHARACTERISTICS
For the evaluation phase period in the clock cycle, the char-
acterization is identical to the pseudo-static .lib. On the other
hand, during the pre-charge phase there are some changes in
the design metric assessments:

1. The intrinsic pre-charge delay is measured relative to
the CLK edge and is irrelevant in terms of data prop-
agation, but only for propagation of the pre-charged
state Fig. 14:

FIGURE 14. Intrinsic pre-charge delay definition.

2. The data input capacitance CIN is also irrelevant, as its
discharge does not affect data propagation.

3. The CLK port input capacitance CCLK is averaged to

assess its switching: CCLK =
∫ T
0 iCLK (t)dt

VDD
4. Power consumption: Pav = Pleak + Pdyn, where

a. Pdyn =
VDD
T

∫ T
0 iDD,dyn (t) dt , where all the cur-

rent drawn is due to a transient short circuit
caused by non-imminent propagation of the pre-
charge state.

b. Pleak = VDD·IDD,leak , where no stable short
circuit condition is assumed.

2) TIMING CONSTRAINTS
The main focus of the dynamic DML library characterization
is to identify its cells’ timing constraints which are defined to
guide the tools for proper dynamic functionality. One group
of timing constraints has already been covered in the pseudo-
static library sub-section; namely the data-to-data constraints.

VOLUME 3, 2015 3097



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

Its characterization is identical. This group aims to enforce
the skew relationship between constrained data signals.

The other group of constraints can be classified as data-
to-clock, but is only an abstraction, since DML clock pins
are categorized as data pins as well. This group has various
timing constraints that are reminiscent of the classic setup
and hold constraints of sequential components. All of the
following timing constraint parameters are characterized to
be integrated into the Synopsys LIBERTY library modelling
standard format [23].
Setup/Hold parameters – Timing parameters preventing

data signal transitions within safety margins before/after
edges of CLKA, which are intended to isolate the evaluation
and pre-charge phases and avoid data corruption.

C. STATIC LIBRARY
The standard CMOS-like library characterizes the design
metrics of DML cells when gate clock signals are disabled.

V. RESULTS
This section summarizes the results of the proposed DML
characterization methodology and its design flow.

A. CHARACTERIZATION
To estimate the quality of the results on a .lib cell level,
some fundamental design metrics of all the library cells were
compared to their CMOS counterparts with same technology
node.

1) PERFORMANCE
The evaluation delay data of the dynamic DML library was
compared to the CMOS propagation delays on top of a
two dimensional grid of transition slope vs. capacitive load
vectors. The Fig. 15, Fig. 16 and Fig. 17 speed-up results con-
solidate the early theoretical assessment of DML’s dynamic
performance superiority.

FIGURE 15. Speed-up of dynamic DML inverter vs. CMOS.

FIGURE 16. Speed-up of dynamic DML NAND2 vs. CMOS.

FIGURE 17. Speed-up of dynamic DML NOR2 vs. CMOS.

All the surface plots show a similar dynamic speed-
up pattern, where the most efficient type of DML
cell (Fig. 15-16) displays a significant performance boost,
whereas the least efficient type of cell exhibits at worst the
same speed as CMOS counterpart. For example, a NOR2
Type-A cell presents about a 25% performance gain for a
nominal capacitance of 2 [fF] and a rise time of 10 [psec].

2) AREA AND LEAKAGE
Area and leakage are usually closely related, as can be seen
in Fig. 18. It should be noted that the average leakage dur-
ing the dynamic mode of DML exhibited similar behavior,
but was assessed somewhat differently, since the pre-charge
combination has a more dominant weight over the rest, due
to its half cycle duration.

3) EQUIVALENT INPUT CAPACITANCE
Recall that switching energy is linearly related to the equiv-
alent capacitance

(
Esw ∝ αCeqV 2

DD

)
, which is dominated by

3098 VOLUME 3, 2015



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

FIGURE 18. Area and Leakage comparison of cells. (a) Area of cells.
(b) Leakage of cells.

the input DATA and CLK capacitances of the cells. Fig. 19
shows that DML cells are more efficient in terms of data
switching, but continuous (α = 1) clock toggling tips the
scales in favor of CMOS.

FIGURE 19. Input capacitance and switching energy of cells.

B. DESIGN FLOW
The evaluation of theDML automated design flow results was
based on the synthesis of various combinational RTL bench-
marks. These benchmarks included typical logic constructs
such multiplexers, decoders, comparators, adders, complex
Boolean logic functions with varying fan-in, etc. Two concur-
rent synthesis processes were executed on the basis of DML
vs. CMOS equivalent standard libraries. In order to prevent
a black box uncertainty regarding the commercial CMOS
library, it was independently laid out and re-characterized
with similar conventions. Both libraries included identical
minimal logic sets: NAND2, NOR2 and an inverter. The
results can be divided into two groups: those that include and
exclude non-unate logic. Table 2 and Table 3 summarize the
average design metrics of the evaluated unate and non-unate
benchmarks for several gate count ranges.

Unate logic benchmarks presented better performing
designs in terms of dynamic performance and slight power
savings compared to the CMOS counterparts while operated
statically. For example, the combinational barrel shifter pre-
sented in Table 4 dynamically sped up by 10%, with a power
shift of about 20% in the static mode, whereas its gate count

TABLE 2. Average metrics of unate designs vs. CMOS, segmented by gate
count ranges.

TABLE 3. Average metrics of non-unate designs vs. CMOS, segmented
by gate count ranges.

TABLE 4. Design metrics comparison vs. CMOS of unate designs.

TABLE 5. Design metrics comparison vs. CMOS of non-unate designs.

and area expanded only about 4%. In addition, 50 generic
combinational logic designs (with no particular functionality)
were simulated and showed an average dynamic speedup of
about 9%, a static power saving in the region of 20%, a similar
gate count and a minor area expansion of 8%.

On the other hand, non-unate benchmarks usually only had
a dynamic performance gain, while lagging behind in terms of
area and presenting similar power consumption in static mode
(due to timing constraints, which enforce delay insertion or
logic duplication). For example, the dual priority decoder pre-
sented in Table 5 had same static mode power consumption
as CMOS due to a logic redundancy of about 21%, but still
had a dynamic speedup of about 4%.

Fig. 20 presents the E-D plane of the typical DML bench-
marks relative to the static CMOS and graphically highlights
the minor performance gains (linear x-axis) of the dynamic

VOLUME 3, 2015 3099



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

FIGURE 20. E-D plane representation of typical benchmark designs.

mode, while consuming much more power (logarithmic
y-axis). The static mode exhibited much less drastic behav-
ior, and minor power savings at the expense of a moder-
ate slowdown. The striking power consumption increase of
dynamically operated DMLwas associated with a continuous
refreshing of the entire logic networks at CLK speeds. Thus,
the dynamic performance boost of DML designs should be
carefully optimized to prevent persistent loads.

VI. CONCLUSION
This work presents a novel DML design-flow supported by a
sophisticated and unique DML characterization methodology
of both DML modes. Despite the numerous challenges
of dynamic logic characterization and design, the auto-
mated flow generates timing compliant netlists and exhibits
improved results in terms of design metrics, as compared
to CMOS. Custom DML have been shown to be very effi-
cient. The results here indicate that DML design flow also
enables the exploitation of DML advantages while providing
a reasonably simple characterization and design flow. It is
noteworthy that by allowing voltage scaling on top of DML
mode controllability, an extended E-D range can be achieved.
The design of DML in conjunction with Dynamic Voltage
and Frequency Scaling (DVFS) can be performed in exactly
the same way as with standard CMOS. This means that the
DML library should be characterized for a desired number of
voltages and the physical implementation flow should be the
same.

REFERENCES
[1] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits, vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.
[2] A. Morgenshtein, I. Shwartz, and A. Fish, ‘‘Gate diffusion input (GDI)

logic in standard CMOS nanoscale process,’’ in Proc. IEEE 26th Conv.
Elect. Electron. Eng. Israel (IEEEI), Nov. 2010, pp. 1–5.

[3] R. H. Krambeck, C. M. Lee, and H.-F. S. Law, ‘‘High-speed com-
pact circuits with CMOS,’’ IEEE J. Solid-State Circuits, vol. 17, no. 3,
pp. 614–619, Jun. 1982.

[4] T.Williams, ‘‘Dynamic logic: Clocked and asynchronous,’’ in Proc. IEEE
Int. Solid State Circuits Conf. Tuts., Feb. 1996, pp. 1–24.

[5] N. F. Goncalves and H. J. De Man, ‘‘NORA: A racefree dynamic CMOS
technique for pipelined logic structures,’’ IEEE J. Solid-State Circuits,
vol. 18, no. 3, pp. 261–266, Jun. 1983.

[6] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algo-
rithms. Heidelberg, Germany: Springer, 2006.

[7] M.-B. Lin, Introduction to VLSI Systems: A Logic, Circuit, and System
Perspective. Boca Raton, FL, USA: CRC Press, 2011.

[8] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective. Boston, MA, USA: Pearson Education, 2011.

[9] A. Pal and A. Mukherjee, ‘‘Synthesis of two-level dynamic CMOS
circuits,’’ in Proc. IEEE Comput. Soc. Workshop VLSI, Apr. 1999,
pp. 82–92.

[10] G. Yee and C. Sechen, ‘‘Dynamic logic synthesis,’’ in Proc. IEEE Custom
Integr. Circuits Conf., May 1997, pp. 345–348.

[11] M. Zhao and S. S. Sapatnekar, ‘‘Technology mapping for domino logic,’’
inProc. IEEE/ACM Int. Conf. Comput.-AidedDesign, 1998, pp. 248–251.

[12] T. J. Thorp, G. S. Yee, and C. M. Sechen, ‘‘Design and synthesis of
dynamic circuits,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 11, no. 1, pp. 141–149, Feb. 2003.

[13] R. Hossain, High Performance ASIC Design. Cambridge, U.K.:
Cambridge Univ. Press, 2008.

[14] I. Levi, O. Bass, A. Kaizerman, A. Belenky, andA. Fish, ‘‘High speed dual
mode logic carry look ahead adder,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2012, pp. 3037–3040.

[15] I. Levi, A. Kaizerman, and A. Fish, ‘‘Low voltage dual mode logic:Model
analysis and parameter extraction,’’ Microelectron. J., vol. 44, no. 6,
pp. 553–560, 2013.

[16] I. Levi and A. Fish, ‘‘Dual mode logic—Design for energy efficiency and
high performance,’’ IEEE Access, vol. 1, pp. 258–265, May 2013.

[17] I. Levi, A. Albeck, A. Fish, and S. Wimer, ‘‘A low energy and high
performance DM2 adder,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 61, no. 11, pp. 3175–3183, Nov. 2014.

[18] I. Levi, A. Belenky, and A. Fish, ‘‘Logical effort for CMOS-based dual
mode logic gates,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 22, no. 5, pp. 1042–1053, May 2014.

[19] J. Rabaey, Low Power Design Essentials. New York, NY, USA: Springer,
2009.

[20] G. Chartrand, Introduction to Graph Theory. New York, NY, USA:
McGraw-Hill, 2006.

[21] Y. Crama and P. L. Hammer, Boolean Functions: Theory, Algorithms, and
Applications. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[22] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, ‘‘Coping
with the variability of combinational logic delays,’’ in Proc. IEEE Int.
Conf. Comput. Design, VLSI Comput. Processors (ICCD), Oct. 2004,
pp. 505–508.

[23] Liberty User Guides and Reference Manual, Synopsys, Mountain View,
CA, USA, 2007.

[24] D. Harris and M. A. Horowitz, ‘‘Skew-tolerant domino circuits,’’ IEEE
J. Solid-State Circuits, vol. 32, no. 11, pp. 1702–1711, Nov. 1997.

[25] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs.
New York, NY, USA: Springer, 2009.

VIACHESLAV YUZHANINOV received the
B.Sc. degree in electrical engineering from
Ben-Gurion University, Israel, in 2012, and the
M.Sc. degree in electrical engineering from
Bar-Ilan University, Israel, in 2015. He was a
Research Assistant with the Low Power Circuits
and Systems Laboratory, VLSI Systems Center,
Ben-Gurion University, from 2011 to 2012.
Since 2014, he has served as a Design Engineer
of the SoC team with the Emerging Nano-Scaled

Intergraded Circuits and Systems Labs, Bar-Ilan University. His research
interests include efficient logic families and digital design automation.

3100 VOLUME 3, 2015



V. Yuzhaninov et al.: Design Flow and Characterization Methodology for DML

ITAMAR LEVI received the B.Sc. and
M.Sc. degrees in electrical and computer engineer-
ing as a part of a direct excellence student track
from Ben-Gurion University, in 2012 and 2013,
respectively. He is currently pursuing the
Ph.D. degree in electrical engineering with
Bar-Ilan University. His current research interests
are digital circuit design, hardware security, and
cryptography.

ALEXANDER FISH received the Ph.D. (summa
cum laude) degree in electro-optics from
Ben-Gurion University, in 2006. He is currently
an Associate Professor with the Faculty of Engi-
neering, Bar-Ilan University, and the Head of the
Nano-Electronics Track. In addition, he estab-
lished the new Emerging Nano-Scaled Integrated
Circuits and Systems Labs. He has authored over
100 scientific papers in journals and conferences.
His research interests include the development of

secured hardware, ultralow power embedded memory arrays, and high speed
and energy efficient design techniques. He is a member of the Sensory, VLSI
Systems and Applications and Bio-Medical Systems Technical Committees
of the IEEE Circuits and Systems Society. He serves as the Editor-in-Chief
of the MDPI Journal of Low Power Electronics and Applications and an
Associate Editor of the IEEE SENSORS, the IEEE ACCESS, Microelectronics
(Elseiver), and Integration, the VLSI Journal.

VOLUME 3, 2015 3101


