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ABSTRACT Extreme learning machine (ELM) is emerged as an effective, fast, and simple solution
for real-valued classification problems. Various variants of ELM were recently proposed to enhance the
performance of ELM. Circular complex-valued extreme learning machine (CC-ELM), a variant of ELM,
exploits the capabilities of complex-valued neuron to achieve better performance. Another variant of ELM,
weighted ELM (WELM) handles the class imbalance problem by minimizing a weighted least squares
error along with regularization. In this paper, a regularized weighted CC-ELM (RWCC-ELM) is proposed,
which incorporates the strength of both CC-ELM and WELM. Proposed RWCC-ELM is evaluated using
imbalanced data sets taken from Keel repository. RWCC-ELM outperforms CC-ELM and WELM for most

of the evaluated data sets.

INDEX TERMS Real valued classification, class imbalance problem, weighted least squares error,
regularization, extreme learning machine, complex valued neural network.

I. INTRODUCTION

Real valued classification is a popular decision making
problem, having wide practical application in various fields.
Extreme Learning Machine (ELM) proposed by [1], is an
effective machine learning technique for real valued clas-
sification. ELM is a single hidden layer feedforward net-
work in which the weights between input and hidden layer
are initialized randomly. ELM uses analytical approach to
compute weights between hidden and output layer [1], which
makes it faster compared to other gradient based classifiers.
Various variants of ELM were recently proposed, which
includes Incremental Extreme Learning Machine [2],
Kernelized Extreme Learning Machine [3], Weighted
Extreme Learning Machine (WELM) [4], Regularized
Extreme Learning Machine [5], Complex Extreme Learning
Machine [6], Circular Complex valued Extreme Learning
Machine(CC-ELM) [7] etc. This work presents an extension
of CC-ELM [7] and WELM [4].

CC-ELM [7] is a complex variant of ELM, which exploits
the capabilities of complex valued neuron and uses fully
complex activation function. Random feature mapping is
the key idea in ELM for achieving universal approximation.
CC-ELM uses random feature mapping while mapping the

data from real domain to complex domain using circular
transformation function. This complex valued data is further
mapped to feature space. CC-ELM has two levels of random
feature mapping. Random feature mapping [8] eliminates the
problem of overfitting. It has been shown in [9]-[11] that
complex valued neural network have better computational
power and generalization ability than real valued neural
network. Moreover, they have inherent orthogonal decision
boundaries. For example, EX-OR problem can be solved eas-
ily by using a single complex valued neuron [12]. As a result
of increase in the applications involving complex valued sig-
nals like telecommunication [13], [14], adaptive array signal
processing [15], [16], medical imaging signals [17], [18]
etc., many complex valued classifiers were developed.
Recently Complex valued classifiers were also proposed
and evaluated for real valued classification. It has been
shown that complex valued classifiers outperforms real
valued classifiers for real valued -classification prob-
lems. Fully Complex valued Radial Basis Function classi-
fier (FC-RBF) [19], [20], Fast Learning Complex-valued
Neural Classifier (FLCNC) [21], Multi Layered Multi
Valued Neural network (MLMVN) [22], Bilinear Branch-cut
Complex-valued Extreme Learning Machine (BB-CELM),
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FIGURE 1. Architecture of CC-ELM.

Phase Encoded Complex-valued Extreme Learning
Machine (PE-CELM) [23], CC-ELM [7] etc. are some of
the complex-valued classifiers designed for real valued clas-
sification problems. CC-ELM outperforms other complex
valued classifiers for real valued classification problems. It
also performs well, when the dataset is imbalanced.

It has been observed that many practical classification
problems have imbalanced data sets [24], [25]. If we classify
such data most of the classifiers favors the majority class,
due to which most of the instances belonging to minor-
ity class are misclassified. To deal with such dataset,
various sampling approaches [26] as well as algorithmic
approaches [4], [27], [28] have been developed. Sampling
approaches include oversampling and undersampling
techniques. Oversampling replicates a fraction of minority
samples while undersampling approach reduces a fraction
of majority samples to make dataset balanced. But there
is problem with sampling approaches. Oversampling [29]
increases redundancy of data and undersampling results in
loss of information. In algorithmic approach, classifier design
encompasses the measures to handle class imbalance. Most
of the neural network based classifiers like FCRBEF,
CC-ELM [7], [19], [20] minimizes least square error to find
optimal weights. Recently proposed WELM [4] minimizes
weighted least square error function along with regualrization
to find optimal weights between hidden and output layer.
In this classifier, instances belonging to minority class are
assigned more weights compared to instances of majority
class. This increases the impact of minority samples. Finding
optimal weighting scheme is a challenging task. WELM
is evaluated using two generalized weighting schemes for
assigning weights to the instances. Several variants of ELM
employing regularization like [30] and [31] have been devel-
oped. A variant of regularized Extreme Learning Machine is
proposed in [30] which is incremental. Regularized variants
of ELM have been used for action recognition [32], large
scale media content analysis [33], regression with missing
values [34], face recognition [35] etc.

In this paper, Regularized Weighted Circular Complex
Valued Extreme Learning Machine (RWCC-ELM) is
proposed, which is an extension of CC-ELM and WELM.
It differs from WELM as it is a complex valued classifier

VOLUME 3, 2015

whereas, WELM is a real valued classifier. As RWCC-ELM
is a complex valued classifier, this paper presents an extended
derivation of the expression to find the weights between
hidden and output layer in complex domain. RWCC-ELM
differs from CC-ELM as it uses weighted least square error
function along with regularization to find weights between
hidden and output layer. RWCC-ELM assigns more weight to
instances of minority class compared to that of majority class.
This strengthens the relative impact of minority class, thereby
increasing the overall performance. To remove the problem of
overfitting, RWCC-ELM uses regularization. Some popular
regularization methods are lasso (L1), ridge regression (L2),
elastic net (combination of L1 and L2) etc. In our proposed
classifier, ridge regression is used for regularization.

The rest of paper is organized as follows. Section II
briefly describes related work. Section III presents pro-
posed RWCC-ELM learning algorithm. Section IV gives
details of data sets used, performance evaluation metrics, the
results of the proposed learning algorithms and their analysis.
Section V concludes the paper and outlines the future work.

Il. RELATED WORK
A. CIRCULAR COMPLEX VALUED EXTREME
LEARNING MACHINE (CC-ELM)
This section gives a brief description of CC-ELM [7], which
is the foundation of our proposed algorithm. CC-ELM is
a single hidden layer complex valued neural network with
m input neurons, L hidden neurons and C output neurons.
Number of input and output neurons is equal to the number
of input features and number of classes respectively. It has
nonlinear input, nonlinear hidden layer and linear output
layer. Fig. 1 shows the architecture of CC-ELM. All weights
in CC-ELM are complex valued. Given N observations
[(x1, 11)(X2, 82) ... (Xp, &) - . . (XN, In)], where X, € R™ refers
to m-dimensional input feature and #, refers to class label of
p'™ instance. CC-ELM maps the input data from real domain
to complex domain uniformly with the help of following
circular transformation function.
7y = sin(ax; + ibx; + o), t=1,2,...,m D
where, (0 < a, b < 1) are scaling terms and (0 < @ < 27)
are rotational bias term. Their values are chosen randomly
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and input features are normalized between [—1, 1]. Features
are mapped to different quadrants by choosing different
values of circular transformation parameter, «;. The trans-
formed input sample x; is represented by z;. Target of xp
i.e., 1, is coded as vector ty, [£y1 - - - fyg - - - tyc]! . Target output
matrix, T (N x C) for all instances in the training dataset is
designed using the following class coding scheme.

i N VR fe
T
t1 . . .
T=|:|=t1 -t 1ty )
T . . .
tN
tNl ...tNk... tNC
ift,=k Ly =1+ 1i,
Here, else tok = —1 —1i,

p=1..Nk=1...C

Vector T, [t1x, 12k, - - - » Ik 1T is used to represent the target
output of k” neuron. The neurons in the hidden layer
employ fully complex sech activation function [20].
The response of j” hidden neuron for the transformed
input z, h;(z) is given by:

hj(z) = sech(u;"z — v;) 3)

Here,j = 1,2...L, uj € C™ is the complex-valued weight
vector and vj; € C™ is the complex-valued center of the
7™ hidden neuron. The superscript T represents the matrix
transpose operator. Scaling factors u;j and v; are selected ran-
domly. The hidden layer output can be represented by a row
vector h(z), [h1(z), h2(z) . . . hy(z)] where z is the transformed
input sample. The hidden layer response for all N training
samples can be presented by the following (N x L) matrix, H.

h(z1)
H=| : @)
h(zx)

Bij is the output weight connecting j™ hidden neuron and
k™ output neuron. B%, [Bi1, Bra, ..., By - - - BT is the
weight vector of k” output neuron. (L x C) is the matrix of
all weights connecting neurons of the hidden layer and output
layer.

B =1B'8%.... B )

The neurons in the output layer employ a linear activation
function. Therefore, target, T = HB. The weights between
the hidden and output layer, 8 are evaluated as follows:

HYT = HYHB
HH
p= (HHH)T
B=H'T (6)

Here, H" is generalized Moore-Penrose inverse which
provides unique least squares solution with minimum
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norm [36]. The predicted output, y* of k”* output neuron for
an instance X is given by:

¥ = h(z)B,

The predicted output of all the output neurons for an
instance X, can be represented as [yl, y2, el yC]. The pre-
dicted class label, c of a given test sample x, is the index
number of the output node, whose real part of the output is
maximum.

k=1,2...C 7

¢ = arg(max(Real(yr))), k=1,2...C (8)

The predicted output of all output neurons for all training
instances, Y is given by following equation:

Y = HB. &)

B. WEIGHTED EXTREME LEARNING MACHINE (WELM)
WELM [4] is a variant of ELM, which minimizes weighted
least square error along with regularization to find the optimal
weights between hidden and output layer. In WELM all the
weights and bias are real valued. In [4] two generalized
weighting schemes were proposed and evaluated. These gen-
eralized weighting scheme assign weights to the instances
as per their class distribution. The two weighting schemes
proposed by WELM are:
First Weighting Approach W1:

k=1, iel,2...N
kel 2...C (10)

w; = 1/qr Here,

Second Weighting Approach W2:

C
Qavg = Z qr/C
k=1

wi=1/qr, If (gx <= Qavg)
0.618/qk, if (qk > avg)

Wi

Weight, w; is assigned to the i instances. Here, gy is the total
number of instances belonging to k” class. Instances belong-
ing to minority class will be assigned weights equal to 1/g;
in both the weighting schemes. Second weighting scheme
assigns less weight to majority class instances compared to
first weighting scheme. In WELM the problem of finding
output layer weights is formulated as follows.

N
. 1 1 2
Minimize : 3 ||[3||2 + XWE ; ”51”

Subject to: h(x)B =1t/ — &I, i=1,...,N (1)

The first term of the objective function is regularization
term, also known as structural risk || [|> and the second
term is weighted least square error, also known as empiri-
cal risk [|&]|%. Structural risk depends on margin separating
classes [5]. The regularization parameter, A is used to control
the trade off between the two risks. W is an N x N diagonal
matrix whose diagonal elements are w;. On solving the above
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quadratic optimization problem [4] has derived the following
equations to find the weight between hidden and output layer.
For the case, when the number of training samples is less
than the number of hidden neurons

g =H"(1/% + WHH") 'WT (12)

For the case, when the number of training samples is
greater than the number of hidden neurons

B = (/A + HTWH) '"HTWT., (13)

Ill. PROPOSED RWCC-ELM

RWCC-ELM is a regularized weighted version of CC-ELM
which incorporates the strength of both CC-ELM and
WELM. The main features of this classifier are: (1) Deals
with imbalanced data set. (2) Minimize overfitting prob-
lem using regularization. (3) Generalized weight matrix, so
dataset specific tuning of weights, to be assigned to instances
is not required. (4) Capable of both binary and multiclass
classification. (5) Complex valued classifier with orthogonal
decision boundary. The classification problem is defined in
the same way as that of CC-ELM. The notations used in
following section are same as that of section 2. To handle
class imbalance problem, RWCC-ELM minimizes weighted
least square error function. In RWCC-ELM the instances
belonging to different classes are assigned different weights
using equation (10). Instances belonging to minority class
are assigned more weight compared to instances belonging to
majority class. This enables minority class to have significant
contribution in weighted least square error. This reduces the
misclassification of minority class samples and results in
overall increase in performance of classifier. Weighted least
square error is given by:

w1 0 0
C N 0 Wy e 0
W.E2 = Zzwiéikz = :
k=1 i=1 .
0 0 wWN
En)? o En)? ¢i10)?
En)? Ep)? pc)?
En1)?  Ew)? (Enc)?

Here, weight matrix, W is an N x N diagonal matrix, where,
N is number of instances. Diagonal element, w; is the weight
assigned to i instance and & 1s the error of i instance for
k™ class. §k = [&ix .. .éNk]T is the vector used to represent
error of all the instances corresponding to k™ class. Smaller
values of weights lead to more generalized solution. For this,
RWCC-ELM uses ridge regression. RWCC-ELM is different
from CC-ELM as it minimizes weighted least square error
function along with regularization to obtain optimal weights.
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WELM is a real valued classifier which minimizes
weighted least squares error along with regularization.
WELM formulates this as optimization problem which is
given in equation (11). The proposed classifier also mini-
mizes weighted least square error along with regularization.
But the proposed classifier is a complex valued classifier
which has complex values weights, bias and input. The
formulation given by equation (11) is not valid for com-
plex valued weight and input. The proposed RWCCELM
formulates the equivalent optimization function in complex
domain which is given in equation (14). The architecture
of RWCC-ELM is same as CC-ELM. RWCC-ELM uses
circularly complex transformation function (1) to map data
to complex domain. It uses fully complex, sech activation
function (3) same as that of CC-ELM. RWCC-ELM differs
from CC-ELM only in the way to compute weights between
the hidden and output neurons. The objective function, to find
the weights between the hidden and the output neurons of
RWCC-ELM, is formulated as follows:

Minimize - (ﬁk)Hﬁk + )»(§k)HW§k
Subject to : h(z)B* =ty — &k, i=1,...N.kel,...C
(14)

Here, superscript H indicates complex conjugate transpose.
The first term of the objective function is regularization
term, also known as structural risk (ﬂk )H ,Bk and the second
term is weighted least square error, also known as empirical

risk W (¥ )HE k. Structural risk depends on margin separating
class [5]. These risks are to be minimized. The regulariza-
tion parameter, A is used to control the trade off between
the two risks. The above optimization problem has a real
valued objective function with N complex valued equality
constraints. The Lagrangian function for the above opti-
mization problem can be formulated as per guidelines given
in [37] and [38].

The Lagrangian function for the above optimization
problem, Lrwccery is as follows:

LrwcceLm = (ﬂk)Hﬂk + A k)HWE K

N
~2Real ) _ i(h(z)B* — tix + Eie)
i=1
= (BB + 2ceM) wek
N
= > aith(z)B" — 1y + En)
i=1
N *
=Y @ @B — i + &)

I=1

The Karush-Kuhn-Tucker (KKT) optimality conditions are
obtained by taking partial derivative with respect to variables
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,Bk, &k, ; and equating them to zero.

N
8/8B% = (B! =) aih(z)
i=1

(ﬂk)H — OCTH
Bk = @) = HHa*  (15a)
8/8&ik = aj = Awi(&i)*
a = AW(ES'
a* = AWEK (15b)
£ = o /AW (15¢)
8/8c; = Eix = tix — h(z;)B*
gk = T% — Hgk (15d)

Different solutions to the aforementioned KKT conditions
can be obtained. Using (15), we have

« For the case, where number of training samples is less
than number of hidden neurons:
Substituting (15a) and (15c) in (15d), we have
o* /AW = TK — HH ¢ *
T* = «*[I/AW + HHY]

Tk
k
af = ——— (16)
I/AW + HHH
Substituting value of a* from (16) into (15a), we have

'Bk — gH T*

I/AW + HHH
'Bk —_gH WTk

I/» + WHHH

g% — HH(1/5 + WHHH) 'wTk (17)

The above equation can be rewritten in the following
form:

8 = HU1/5 + WHHY) 'WT (18)

o For the case, where number of training samples is
greater than number of hidden neurons:
If the number of training data is very large, for example,
it is much larger than the dimensionality of the fea-
ture space, N > L, we have an alternative solution.
From (15a) and (15b), we have

gk = HH wek

Substituting the value of £k from (15d), we have

ﬂk — HH)\.W[Tk _ Hkﬁk]

g* = HhHwtk — HH ) wHK gk

Bg* = HHHWTk /(1 + HHAWHK)

B* = HEWTX /[1/1 + HEWHK)

BX = (1/5 + HAWH) 'HEWTK (19)
The above equation can be rewritten as

B = (I/x + HAWH) "HEWT (20)
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Both (18) and (20) can be used to find f. Solution of a
system of linear equations having singular coefficient matrix
can lead to inaccurate results. So here, it is preferable to use
generalized Moore-Penrose inverse which will give fast and
accurate result. The algorithm of RWCC-ELM is described
in Algorithm 1.

Algorithm 1 Regularized Weighted Circular Complex
Valued Extreme Learning Machine

Input:

Training Set S, having N observations [(xq, 1)
(x2,1)..(Xp, ) ...(XN, ty)], where xp € R" refers to
m-dimensional input feature and ¢, refers to class label of P
instance, t, € 1,2.......... C.

Training Phase

Step 1: Map the real valued data to complex domain using
equation (1).

Step 2: Compute the target matrix, T using the class coding
scheme (2).

Step 3: Choose number of neurons, L as per complexity of
problem. Also choose a reasonable value of regularization
parameter, A. We have performed a grid search on
L = [10,20,..1000] and 2 = [2718,2716.250] o
achieve optimal results.

Step 4: Initialize the weights between input layer and hidden
layer, u; and centers of 7™ neuron, v; with complex numbers
randomly.

Step 5: Compute
H using (3) and (4).
Step 6: Compute weight matrix, W using equation (10).
Step 7: Calculate weights between hidden and output layer,
B using either equation (18) or (20).

Output: RWCC-ELM model which consist of a, b, o, L,
U,V,Wand

Testing Phase

Inp/ut:/TestiIllg s/et, S1 having R observations [(x/l, ti)(x/z, té)
- (Xp, 1,)-..(Xg, )], where Xp € R™ refers to m-dimensional

hidden layer output matrix,

input feature and tz; refers to class label of p' instance,

Step 1: Map the testing data to complex domain using
circularly complex mapping function given in (1). Use
values of a, b and o which were obtained as output of
training phase.

Step 2: Compute hidden layer output matrix, H using values
of L,U, V, W obtained as output of training phase.

Step 3: Calculate the predicted output,Y as follows:

Y =HB (21)

Step 4: Determine the predicted class label using (8).
Step 5: Evaluate testing performance using predicted class
label and the known, actual class label.

IV. PERFORMANCE EVALUATION

In the following section, the proposed RWCC-ELM is com-
pared with CC-ELM and WELM for various real valued
classification problems. All experiments are carried out using
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TABLE 1. Specification of datasets.

Number Number Number Number
Imbalance
Datasets of of of of Ratio
Attributes  Classes  Train Instances  Test Instances

abalone19 8 2 3339 835 128.87
abalone9_18 8 2 584 147 16.68
ecolil 7 2 268 68 3.36
ecoli2 7 2 268 68 5.46
ecoli3 7 2 268 68 8.19
ecoli4 7 2 268 68 13.84
glassO 9 2 173 43 2.06
glassl 9 2 171 43 1.82
glass2 9 2 171 43 10.39
glass4 9 2 171 43 15.47
glassS 9 2 171 43 22.81
glass6 9 2 171 43 6.38
haberman 3 2 244 62 2.68

irisO 4 2 120 30 2
new-thyroid1 5 2 172 43 5.14
new-thyroid2 5 2 172 43 4.92
balance 4 3 500 125 5.88
contraceptive 9 3 1178 295 1.89
ecoli 7 8 269 67 71.5
hayes-roth 4 3 106 26 1.7
newthyroid 5 3 172 43 4.84
thyroid 21 3 576 144 36.94
yeast 8 10 1187 297 23.15
bupa 6 2 276 69 1.38
glass 9 7 171 43 8.44
ionosphere 33 2 280 71 1.8
pima 8 2 614 154 1.87
segment 19 7 1848 462 1

vehicle 18 4 676 170 1.10
wisconsin 9 2 546 137 1.86

Matlab 7.1 running on PC with Intel core i5 processor,
3.20 GHz CPU and 2 GB RAM. The averaged results evalu-
ated by running proposed algorithm for 10 independent trials
are presented in this section.

A. DATA SPECIFICATION
To demonstrate the performance of RWCC-ELM, exper-
iments were conducted on 20 binary and 10 multiclass
imbalanced datasets of varying Imbalance Ratio (IR). These
datasets with five fold cross validation, are downloaded from
Keel dataset repository [39]. The specifications of datasets
used are shown in Table 1. IR is evaluated as follows.

~ max(qr)

min(gy)

The attributes of all datasets are normalized in the
range [—1, 1].

Here,k=1,2...,C (22)

B. PERFORMANCE EVALUATION METRICS
The result of binary classification can be categorized into
four categories: True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN). Overall accu-
racy, oy is defined as:
TP + TN
TP + FP+TN + FN
Number of correctly classified samples

= (23)
Total number of samples

Nova =

For a binary classification problem having 98 instances
belonging to negative class and 2 instances belonging to
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positive class, a classifier which classifies all the instances
to negative class would achieve 98 percent accuracy.
Overall accuracy is not an effective measure to deal with
class imbalance problem. G-mean, which is a function of
sensitivity and specificity, is an effective measure to deal with
the class imbalance problem. Sensitivity and specificity are
recall of the positive and negative class respectively. They are
defined as follows:

Sensitivity = TP/(TP + FN) 24)
Specificity = TN /(TN + FP) (25)
G-mean = \/ Sensitivity x Specificity (26)
G-mean for multiclass problem is defined as follows:
c N4
G-mean = ( 1_[ Rk> 27
k=1

Here Ry, represents the recall of k™ class.

C. PARAMETER SETTING

For both RWCC-ELM and CC-ELM, the parameters of
circular complex transformation function (1) are chosen
randomly. In order to achieve optimal results, a grid search
on number of hidden neurons, L on [10, 20, ...990, 1000]
and regularization parameter, A on [2-18 2-16  2501igcon-
ducted for RWCC-ELM. The effect of these parameters on
the performance of classifier is shown in Fig. 2. For CC-ELM,
optimal number of hidden neurons is searched by varying L
on [10, 20...1000].
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G-mean %

G-mean %

100

| P -6 -A=-6
401 | e — = —r=0
| NS —+—1=20
20t ! & ° — =42
1000 7ol \ =50
% 100 200 300 400 5&)0 600 700 800 900 1000
(b)
FIGURE 2. Display of test G-mean of glass0 dataset for RWCC-ELM (a) when 1 and L varies. (b) when L varies.
TABLE 2. Testing accuracy in terms of G-mean.
Activation Function-> Sigmoid Gaussian Kernel Sech
DATA IR RWIELM RWIELM CC-ELM RWCC-ELM
G-mean% G-mean% G-mean% L G-mean % L A
abalonel9 128.87 77.19 74.47 0 10 85.49 10 44
abalone9-18  16.68 87.99 89.76 81.58 890 95.39 80 50
ecolil 3.36 90.69 91.04 89.24 40 91.72 130 14
ecoli2 5.46 93.91 94.09 93.05 760 94.7 50 42
ecoli3 8.19 90.17 89.6 81.04 380 92.1 100 6
ecoli4 13.84 97.83 98.24 93.26 240 98.88 250 16
glassO 2.06 81.17 85.65 80.4 100 84.63 50 42
glassl 1.82 78.31 80.35 77.28 130 78.23 110 40
glass2 10.39 80.33 82.59 74.05 210 87.85 160 48
glass4 15.47 91.34 91.17 94.41 900 98.74 30 40
glass5 22.81 95.99 96.51 99.26 70 99.51 110 40
glass6 6.38 95.72 94.04 97.99 80 97.99 90 42
haberman 2.68 65.11 66.26 54.88 160 69.85 20 8
irisO 2 100 100 100 10 100 10 6
new-thyroidl  5.14 99.44 99.72 98.31 50 100 20 8
newthyroid2  4.92 99.72 99.72 97.03 40 99.72 50 10
balance 5.88 66.05 83.82 27.2 890 80.04 300 30
contraceptive  1.89 50.85 55.53 53.61 90 57.11 100 48
ecoli 71.5 35.98 17.61 17.25 60 48.7 250 50
hayes-roth 1.7 81.4 85.08 88 20 87.43 840 38
new-thyroid 4.84 96.49 99.55 89.34 40 96.56 520 34
thyroid 36.94 72.46 72.02 72.63 340 79.81 250 40
yeast 23.15 0 48.77 0 10 46.99 10 46
bupa 1.38 70.54 71.63 72.05 40 73.10 60 46
glass 8.44 73.04 70.34 51.46 60 75.74 30 34
ionosphere 1.8 70.98 90.05 89.43 90 91.58 30 44
pima 1.87 74.92 75.96 73.06 30 75.43 70 32
segment 1 93.61 97.75 96.61 690 97.80 710 46
vehicle 1.10 79.92 84.64 84.24 280 85.06 310 40
wisconsin 1.86 97.25 97.61 97.80 20 97.96 70 30

D. EXPERIMENT RESULTS

1) CC-ELM vs RWCC-ELM

RWCC-ELM differs from CC-ELM only in the way to find
weights between hidden and output neuron. CC-ELM can
be considered as a special case of RWCC-ELM, when the
value of regularization parameter, A is equal to co and weight
matrix, W is replaced by an identity matix. It can be seen
from Table 2 that RWCC-ELM outperforms CC-ELM for all
the evaluated datasets.
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2) WELM vs RWCC-ELM

RWCC-ELM differs from WELM as it is a complex
valued classifier. RWCC-ELM uses equations 18 and 20 to
find B. These equations are reduced to equations 12 and 13
respectively, when complex conjugate transpose operator,
H is replaced by transpose operator, T'. For real valued data,
hermitian operator can be replaced by transpose operator.
WELM with weighting scheme given by (10) is represented
as RWI1ELM. The testing efficiencies of WELM for binary
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TABLE 3. Testing overall accuracy.

Activation Function-> Sigmoid Gaussian Kernel Sech
DATA RWIELM RWIELM CC-ELM RWCC-ELM
nova% nova% 7]01)0,% L 7701)0,% L A
abalonel9 93.56 98.8 99.23 10 99.23 10 -18
abalone9_18 93.68 95.72 97.12 130 94.53 20 4
ecolil 89.89 90.19 92.57 10 90.17 10 34
ecoli2 94.94 95.54 95.17 760 95.83 80 40
ecoli3 89.28 91.08 93.75 330 92.55 40 6
ecoli4 97.32 97.92 98.81 20 98.51 580 0
glassO 79.45 85.5 81.32 10 82.72 50 42
glassl 78.99 81.77 78.98 70 77.12 110 40
glass2 87.81 92.06 92.06 10 92.53 210 0
glass4 95.81 96.28 97.67 40 97.67 30 40
glass5 98.14 98.14 98.6 30 99.07 40 42
glass6 97.67 97.67 99.06 80 99.07 90 36
haberman 75.16 72.87 75.82 10 717.77 730 -2
new-thyroid1 99.04 99.54 98.6 30 100 20 8
new-thyroid2 99.54 99.54 99.07 40 99.54 10 14
pima 76.56 76.04 78.77 40 78.25 20 40
wisconsin 97.66 97.51 97.51 20 98.39 340 22
balance 92.16 87.36 93.6 50 87.2 10 30
contraceptive 56.55 54.85 57.36 50 57.03 220 44
ecoli 86.33 81.54 82.77 60 82.43 200 44
hayes-roth 81.82 85.58 87.86 20 87.09 840 38
new-thyroid 98.61 99.07 95.35 40 98.14 10 30
thyroid 92.64 94.03 93.75 80 92.92 170 0
bupa 70.96 72.17 74.78 40 73.25 60 44
glass 73.44 73.86 70.11 30 70.09 30 38
ionosphere 90.87 92.61 92.33 40 93.18 50 32
pima 75.58 75.78 79.29 10 76.14 70 32
segment 93.92 97.79 96.67 690 98.81 710 40
vehicle 81.57 85.70 84.87 280 86.05 310 46
wisconsin 97.18 97.66 97.65 20 97.70 50 44
TABLE 4. Wilcoxon test results.
RWIELM_Sigmoid RW1ELM_Gaussian CC-ELM
RWIELM_Sigmoid
RWI1ELM_Gaussian 0.0108
CC-ELM 0.1215 0.0018
RWCC-ELM 4.7123 x E-06 0.0044 5.2561 x E-06

datasets in Table 2 and Table 3 are reproduced from [4].
Testing efficiencies of WELM for multiclass datasets have
been obtained by experimentation using the same parameter
setting as in [4]. It can be seen from Table 2 that RWCC-ELM
surmounts both, RW1ELM using Sigmoid kernel function
and RW1ELM using Gaussian kernel function for most of the
datasets.

3) STATISTICAL TEST

For further comparision of the proposed classifier with
WELM and CC-ELM, Wilcoxon signed rank test is
conducted. For this test, the threshold value is set to 0.05.
The results of test are shown in Table 4. WELM clas-
sifier using weighting scheme (10) and sigmoid node is
referred as RWIELM_Sigmoid. WELM classifier using
weighting scheme (10) and Gaussain kernel is referred as
RWIELM_Gaussian. If the p-Value is less than 0.05, then
there is significant difference between the two algorithms.
The smaller the p-Value, the difference is more statistically
significant. Looking at results in Table 4, it is clear that
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RWCC-ELM surmounts CC-ELM and WELM using sigmoid
activation function and gaussian kernel.

4) PERFORMANCE IN TERMS OF OVERALL ACCURACY
Performance in terms of overall accuracy is shown in Table 3.
It can be seen from the table that CC-ELM outperforms
RWCC-ELM for 14 datasets out of 30 datasets in terms of
overall accuracy. For these 14 datasets, RWCC-ELM out-
performs CC-ELM in terms of G-mean at the cost of small
drop in overall accuracy. For the remaining 16 datasets,
RWCC-ELM outperforms both in terms of G-mean and
overall accuracy.

V. CONCLUSION

This paper proposes and evaluates RWCC-ELM, which is
single layer complex valued neural network designed for
imbalanced real valued classification problems. It incorpo-
rates the strength of both CC-ELM and WELM. It uses the
same circular transformation function as CC-ELM to map
the real valued data to complex domain. Like CC-ELM,
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it also has complex valued weight and bias. It also uses
fully complex sech activation function in the hidden layer.
It differs from CC-ELM in the way to compute the weights
between hidden and output layer. Like WELM it mini-
mizes weighted least square error along with regulariza-
tion term to find weights between hidden and output layer.
As RWCC-ELM is a complex valued classifier, this paper
presents an extended derivation of the expression to find the
weights between hidden and output layer in complex domain.

The performance of proposed RWCC-ELM is evaluated
on several Keel repository datasets and compared with
CC-ELM and WELM. RWCC-ELM superceeds all other
classifiers for most of the evaluated datasets. The superiority
of RWCC-ELM is also revealed by Wilcoxon signed-rank
test. As RWCC-ELM is a complex valued classifier, it can
also be used when the input is complex valued, by ommit-
ing the circular transformation phase. The future work may
include applying RWCC-ELM on real world applications
having complex valued input with large variation in class
distribution.
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