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ABSTRACT The smart grid mainly suffers from two types of cascading failures: 1) interdependence
cascading failure and 2) load propagation cascading failure. The former one happens due to the interdepen-
dence between power grid and communication networks. The latter one is caused by the load propagation in
the single power grid. A tiny failure leads to the simultaneous occurrence of these two cascading failures.
In this paper, we study the system robustness by considering the interdependence and load propagation.
First, we develop a mathematical tool to analyze the load propagation in single network. Then, a percolation-
based method is proposed to calculate the remaining fractions of survivals after the cascading failures stop.
We estimate the node tolerance parameter T (the ratio of capacity to initial workload) threshold T ′c, below
which the entire system may suffer from the cascading failure. The effect of interdependence on T ′c is
also studied, where lower T ′c is required for the less compact interdependence. We prove that the system
performance approaches to the upper bound once the tolerance parameter T → ∞. Our analysis indicates
that the fraction of survivals in the power grid is always greater than that in communication network, although
the initial failure occurs in the power grid. The extensive simulations validate our mathematical analysis,
and demonstrate that the relation between the number of initial failures and tolerance parameter threshold is
super-linear.

INDEX TERMS Smart grids, load propagation, interdependence cascading, percolation theory.

I. INTRODUCTION
As one of the emerging technologies, smart grid has been
studied extensively in recent days. This new technology
brings together three facets of a power grid, namely power
generation, real-time monitoring and estimation of electric-
ity consumption. Different technologies and resources are
integrated in a smart power grid. There are two networks,
a power grid and a communication/control network, which
are strongly coupled. That is, the communication network
functions depending on the electricity from the power grid.
On the other hand, the power grid has to be controlled by
the communication/control network, thus making these
two networks interconnected and mutually dependent.

However, this growing interdependence leads to a more
fragile smart grid than the conventional power grid [1]. A big
issue the smart grid suffers from is that of cascading failure.
The malfunction of a node may lead to sequential failures in
the entire system. To address this issue, first we roughly
classify cascading failures in smart grid into two types:
interdependence cascading failure and load propagation

cascading failure. The former is caused due to the
interdependent nature of the relation between the power grid
and the communication network [2], and an initial tiny failure
in one network results in failures on the other network, which
recursively lead to more failures back on the initial network.
The latter type of cascading failure is caused due to the
overloading of power node and the load propagation from
node to node within the single power grid [9]. It is important
that we understand these two different cascading failures.

Interdependence cascading failure is well studied recently
by [2]–[5] and [17], where most of them are focusing
on extracting interdependence models from real-world
smart grid and estimating the robustness of their models.
Buldyrev et al. [2] proposed a ‘one-to-one’ interdependence
model and a percolation-based mathematical tool to calcu-
late the fraction of survivals. Huang et al. [17] pointed out
the different roles of nodes, and indicated a multiple-to-
multiple interdependence model. Dong et al. [5] studied the
robustness of n interdependent networks, with partial
interdependence relationship. Random failure was applied
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in the works mentioned above, while a targeted attack was
studied in [4]. Meanwhile, the work on load propagation
cascading failures can be found in [8]–[11]. Hines et al. [10]
introduced the backgrounds of power node overload cascad-
ing failures. Some load propagation schemes are proposed
and discussed in [11]. Chen et al. [15] developed a new
vulnerability assessment by combining attack methodology
with DC flow.

The existing works on interdependence cascading failure
have been performed using pure topological methods, which
do not represent the real world smart grid properly, due to
the lack of consideration of electricity characteristics [12].
Furthermore, the studies conducted on load propagation
cascading failure, are restricted to the single power grid,
and thus cannot be applied to smart grid because the key
feature of interdependence is missing. More importantly, the
two cascading failures occur simultaneously and affect each
other.

In this article, by taking into account both the topological
method and electricity characteristics, we aim to study the
joint effect of the two cascading failures to be more closer to
the real-world smart grid. We use the load propagation model
in [11] where the workload of a removed node is equally
redistributed among its neighbors. For the interdependence
relation, we apply our previous ‘k-n’ model [17]. But, due
to the capacity limit, the number of inter links each power
node has, is restricted. So we propose a new modified
Balls and Bins allocation scheme for the ‘k-n’ model.
Assuming that both the power grid and the communication
network are scale-free [16], in terms of random initial failure,
we develop a method to estimate the node tolerance
parameter threshold Tc (the ratio of capacity to initial
workload) in single power grid, below which the grid suffers
from load propagation cascading. A mathematical tool is
proposed to calculate the fraction of survivals in power grid
after the load propagation failure stops.

We devise a percolation-based mathematical method to
simulate the process of interdependence cascading failure in
the smart grid and obtain a set of transcendental function for
the fractions of survivals in both power grid and communi-
cation network. Similar to the single power grid, we find a
method to estimate the tolerance parameter threshold T ′c for
smart grid. Our analysis demonstrates that given the same
network topologies and initial removals, T ′c > Tc. We also
find that the relation between T ′c and ‘k-n’ interdependence,
is such that higher k indicates lower T ′c. The system robust-
ness approaches the upper bound once tolerance parameter
T → ∞. We prove that this upper bound is the perfor-
mance when the system suffers only from interdependence
cascading failure.

The extensive simulations determine the values of T ′c and
validate our mathematical analysis. In addition, we observe
a super linear relation between the initial removals with
T ′c in the specific system. Also, the system robustness of
single power grid is better than smart grid, given the same
parameters. The interesting finding is that, in smart grid,

although the initial failure occurs in power grid, the fraction
of survivals in power grid is always greater than that in
communication network.

This paper is organized as follows: The background and
related work are discussed in Section II. We introduce the
load propagation model in Section III. The new Section
Balls and Bins allocation scheme is proposed in Section IV.
We developmathematical tools as well as proofs in SectionV.
Extensive simulation results and comparisons are discussed
in Section VI. Section VII deals with conclusions.

II. RELATED WORK
The recent studies on interdependent networks are focusing
on building models and studying the transition phenomena.
Percolation theory is widely used to reconstruct the process
of the cascading failures due to the interdependence between
networks. The authors presented a ‘one-to-one’ interdepen-
dencemodel with bidirectional inter relationship in [2], where
each node operates relying on the unique node in the other
network. Yagan et al. proposed the ‘multiple-to-multiple’
model in [3], where they proved that allocating each node
with the same number of inter links is the optimal choice
against random failures. Our previous study [17] pointed
out that the nodes in the network may have different roles.
We indicated an ‘k-n’model for smart power grid, and studied
the relation between the system robustness and control cost.
As different types of nodes take on different responsibilities,
the interdependence is also different for each node.

Similarly, Dong et al. [5] studied the system of n interde-
pendent networks with partial interdependence relationship.
A case of random failure is applied to the above work,
whereas in [4], the authors focused on targeted attack on a
network of networks (NON). Further, they investigated the
system robustness of both fully interdependent and partially
interdependent networks. Nguyen et al. [1] proposed an algo-
rithm to identify the critical nodes, the removal of which,
could lead to fatal destruction of the networks.

There are extensive works on studying the vulnerability of
power grid. An introduction of power cascading failure can be
found in [10], where the authors also described two schemes
to reduce the cost of blackout. Zio and Sansavini [11]
analyzed three different cascading models, differing in load
distribution schemes: equal redistribution among neighbors
or redistribution based on the shortest paths. In [9], the
authors proposed an extended topological model while taking
into account the specific features of power systems, such
as electrical distance and line flow limits. They developed
two metrics extended betweenness and net ability to rank the
criticality of network components. A new approach of vulner-
ability assessment for power grid was proposed in [15], where
the authors combined a DC flow model with a traditional
attack methodology.

Zhao et al. [8] investigated the phase transition
phenomenon in terms of node capacity. They proved that
for the capacity below the transition threshold, the system
degrades due to the cascading failure. In [13], the authors
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tried to address the problem of how large of a capacity could
make the network immune to cascading breakdowns.

III. LOAD PROPAGATION MODEL
We denote the single power grid by Gp = (Vp,Ep), where
Vp denotes the set of vertices and Ep denotes the set of
edges. According to the previous studies [13]–[15], Gp is
assumed to follow the scale-free network characteristics.
Specifically, we denote the probability distribution of node
degree by Pd(z), and assume that Pd(z) ∝ z−λ, where z is
node degree. The electricity is propogated from node to node
through the power lines. The breakdown of few nodes may
cause the load dynamic redistribution, and consequently lead
to the breakdown of the remaining nodes. To study this
cascading process, we introduce a load propagation model,
as follows.

For a node i in scale-free network, assuming its initial
workload is the function of its degree z, we have

Li(z) = α · zη, (1)

where α and η are the pre-defined constants. It is reasonable
to assume that each node has the limit of load, called capacity,
which is proportional to the initial load

Ci(z) = T · Li(z), T ≥ 1 (2)

where constant T is the Tolerance parameter [8], [13] that
controls the tolerance of the power grid.

The breakdown or removal of a single node iwould transfer
its initial load to the remaining network. To simplify our
study, this load is uniformly distributed to the neighbors.
Therefore, the load of a neighbor j of the removed node i
equals to the sum of its initial load plus the incremental
load transferred from the removed node. The work load for
node j is

Lj(z) = Lj(z)+
Li(z)
z
. (3)

Node j would be overloaded and out of work when
Lj(z) > Cj(z). Then the load redistribution process might
continue to the neighbors of j. The overload cascading stops
if one of the following situations is satisfied,
• The workload is less than the capacity for all of the
remaining nodes,

• The entire nodes in Vp are removed.

IV. INTERDEPENDENT NETWORKS
We denote the communication network by Gc = (Vc,Ec).
In smart power grid, Gp and Gc are mutually dependent
and connected. Several interdependence models have been
studied in previous work. In this article, to study how inter-
dependence affects the network robustness, we apply our
‘k-n’ model [17], where we briefly introduce as follows:
• The nodes in Gc are roughly divided into two based
on their roles: information relay node and control node.
The control node, or the operation center, is responsible

for monitoring and operating the nodes in Gp. The con-
trol messages are transmitted through the information
relay nodes, on the other hand, the nodes in Vp provide
electricity to the nodes in Gc. To improve the system
robustness, we let each node in Vp be under the control
of k control nodes in Vc, which at the same time, could
monitor all n nodes in Vp.

• Control-Dependency links (CD Link) and Energy-
Dependency links (ED link), together form the inter
links. Each control node has n Control-Dependency
links to operate n nodes in Gp. While each node of
Gp is under the control of k operation centers, and thus
contains k Control-Dependency links. A Balls and Bins
allocation procedure is applied to assign the Energy-
Dependency links so that each node in Vc could obtain
the energy from Gp.

Fig. 1 gives a sketch of ‘k-n’ interdependence model.

FIGURE 1. Each power node provides electricity to multiple
communication nodes. 3 communication nodes are chosen as the
operation centers (deep blue), where each of them operate 2 power
nodes, thus n = 2. Each power station is controlled by 1 operation center,
thus k = 1. ED link is from Gp to Gc , CD link is the opposite.

A. MODIFIED BALLS AND BINS ALLOCATION
After taking the initial workload and capacity into account,
we believe there is a limit on the number of Vc nodes that a
power node can support. Thus, the previous Balls and Bins
allocation is no longer accurate, since it is based on the
assumption that all power nodes are equal and have unlimited
capacities.

For a power node i, we assume that the maximum number
of communication nodes it can support is proportional to its
initial load, thus we have

Ni(z) = β · α · zη. (4)

The mean maximum number is given by

〈Ni(z)〉 =
∞∑
z=0

Pd(z) · Ni(z) = β · α
∞∑
z=0

Pd(z) · zη. (5)

We consider the nodes in Gp are bins and the nodes in Gc
are balls. Assuming the sizes of Gp and Gc are Sp and Sc
respectively, the total positions a ball can choose is Sp·〈Ni(z)〉.
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Therefore, the probability for a ball to be allocated into the
bins with initial load of α · zη equals

p =
Pd(z) · z
Sp · 〈Ni(z)〉

. (6)

Define the number of balls in a bin with initial load of α · zη

as a random variable ξz. Therefore, it holds that

P(ξz = t) =
(
z
t

)(
Sc
t

)
· pt · (1− p)Sc−t , t ≤ z (7)

Furthermore, define the number of balls in a bin as a random
variable ξ . It follows that

P(ξ = t) =
∞∑
z=0

P(ξz = t) · Pd(z), (8)

where Pd(z) is the degree distribution.

V. MATHEMATICAL ANALYSIS
In this section, we estimate the robustness of interdependent
smart power grid by calculating the size of functioning giant
component, and discuss how the ‘k-n’ interdependencemodel
and load propagation affect the system. We study the system
robustness by applying a random failure of fraction of 1− φ
on Gp. The definitions and notations are listed in Table 1.

TABLE 1. Notations for the analysis.

A. CALCULATION OF GIANT COMPONENT
We introduce a notation F(φ,Gp) [17] to denote the expected
fraction of giant component in the subnetwork which occu-
pies the proportion φ of nodes in network Gp. Accordingly,
F(φ,Gc) is for network Gc. F(φ,Gp) is estimated by [7].
That is, {

F(φ,Gp) = 1−
∑
∞

0 Pd(z) · uz,
u =

∑
∞

0 Q(z) · (1− φ + φ · uz),
(9)

where Q(z) is the number of edges connected with the node
other than the edge we arrived with, called excess degree

distribution [7], [17], and given by

Q(z) =
(z+ 1) · Pd(z+ 1)

〈z〉
, (10)

where 〈z〉 =
∑
∞

0 Pd(z) · z.

B. THRESHOLD Tc IN SINGLE POWER GRID Gp
Once 1 − φ of Gp is removed, the proportion of remaining
functioning network is approximated by φ · F(φ,Gp) [17].
After the removal, the load of removed nodes is distributed to
the remaining part of the network. The total load that need to
be shifted R is the summation of initial load of the removed
nodes, which is given by

∑Sp(1−φ·F(φ,Gp))
i=1 Li(z). As far as

Sp→∞, we simplify it to

R = Sp · (1− φ · F(φ,Gp)) ·
∞∑
z=0

Pd(z) · α · zη. (11)

To avoid the load cascading failure, the shifted load R can
not exceed the remaining volume of the network. Therefore,

R ≤
Sp∑

i=Sp(1−φ·F(φ,Gp))

(Ci(z)− Li(z))

should be satisfied. The threshold Tc is obtained when both
sides are exactly equal. That is

R = Sp · φ · F(φ,Gp) · (Tc − 1) ·
∞∑
0

Pd(z) · α · zη. (12)

Applying Eq. (11), we have

1− φ · F(φ,Gp) = φ · F(φ,Gp) · (Tc − 1),

1 = Tc · φ · F(φ,Gp),

Tc =
1

φ · F(φ,Gp)
. (13)

Smaller T would more likely cause load cascading failures
in the entire network.

C. FAILURE DUE TO LOAD REDISTRIBUTION
For an arbitrary node i, we define two random variables and
an event as follows.
• Random Variable Zi: the number of node i’s neighbors.
• RandomVariable Xi: the number of neighbors that could
destroy node i by shifting their load.

• Event Oi: node i is destroyed due to the excessive load
shifted from its neighbors.

From the homogeneity of the distribution of node degrees,
we denote the sequences of Zi, Xi, and Oi by Z , X , and O,
without the loss of generality.

For a node, to compute P(O|Z = z), we need to know
P(O|X = x), which is the probability that the shifted load
from x neighbors is greater than the remaining volume of the
node. Thus, applying Eqs. (1) and (3), we have

P(O|X = x) = P

{
x ·
∞∑
z=1

α · zη

z
+ α · zη > T · α · zη

}
(14)
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As x, z, α, η and T are constants here, the distribution of
P(O|X = x) is

P(O|X = x) =

1, x >
(T − 1) · α · zη∑

∞

0
α·zη
z

,

0, Otherwise.
(15)

The probability to choose x neighbors among total z neigh-
bors P(X = x|Z = z) is given by

P(X = x|Z = z) =
(
z
x

)/
2z .

Therefore, P(O|Z = z) could be calculated by

P(O|Z = z) =
z∑

x=0

P(O|X = x) · P(X = x|Z = z),

=

z∑
(T−1)·α·zη∑
∞
0

α·zη
z

(z
x

)
2z
. (16)

D. LOAD PROPAGATION IN Gp

We denote u is the probability that a node cannot reach the
giant component through a specific neighbor. After the initial
removal of fraction 1− φ, for a node i with degree of z, there
are three possible ways not belonging to the giant component
• It is removed
• Or it is present but not a member of the giant component
• Or the shifted load from neighbors destroys itself, i.e., i
is overloaded.

The first case happens with probability of 1− φ. The second
case happens if i can not reach to giant component through
all its neighbors. The probability that none of the neighbors
connects to giant component is φ · uz. P(O|Z = z) is the
probability of the third case, given the number of neighbors
is z. Thus,

P(E(φ)) = 1− φ + φ · (uz + (1− uz) · P(O|Z = z)), (17)

where E(φ) is the event that the considered node disconnects
with the giant component.

The probability that the vertex does belong to the giant
component after the removal of fraction 1− φ is

∞∑
0

Pd(z) · (1− P(E(φ))).

In other words, this is the expected fraction of remaining
giant component. We define a new notation J(φ,Gp) which
represents the expected fraction of giant component of the
subnetwork which occupies the fraction φ of the original
entire network Gp, given by

J(φ,Gp) =
∑
∞

0 Pd(z) · (1− P(E(φ)))
φ

,

=

∞∑
0

Pd(z) · (1− uz)(1− P(O|Z = z)). (18)

The probability that i does not connect to giant compo-
nent through a specific neighbor j equals to the probability
that j does not connect to the giant component through its
remaining neighbors, i.e., except i. Therefore, we obtain the
following equation

u =
∞∑
z=0

Q(z) · (1− φ + φ · (uz + (1− uz) · P(O|Z = z))),

(19)

recall Q(z) is the excess degree distribution.
Combining Eqs. (16) and (19), we can obtain the value of u.

Then applying it to Eq. (17) and (18), finally we can calculate
the remaining fraction of network after the random removal
1− φ, with the load cascading taken into account.

E. INTERDEPENDENCE CASCADING FAILURES
First of all, we would like to estimate the threshold T ′c below
which the interdependent networks would suffer a cascading
failure due to load redistribution. After the random removal
of a fraction 1−φ of nodes inGp, the proportion of remaining
network equals to µ′p1 = φ. We assume that the nodes
belong to giant component could operate properly. Thus, the
remaining functioning fraction µp1 in Gp is given by

µp1 = µ
′
p1 · F(µ

′
p1 ,Gp). (20)

After the fragmentation in network Gp, the Energy-
Dependency inter links connected with these removed nodes
are removed. The corresponding nodes in network Gc lose
the inter links and thus stop operate. The number of removed
Energy-Dependency inter links is

∑(1−µp1 )·Sp
0 ti, where ti rep-

resents the number of Energy-Dependency inter links the
node i connects with. As far as Sp goes infinite, it could be
approximated to

(1− µp1 ) · Sp · 〈t〉,

where 〈t〉 is the mean value, given by

〈t〉 =
∞∑
0

P(ξ = t) · t,

recall P(ξ = t) is given by Eq. (8).
As the total number of ED inter links is 〈t〉 · Sp, the

probability for one energy inter link to be removed is 1−µp1 .
Consequently, the fraction of nodes inGc that has the ED inter
link is approximate to µp1 . Thus, we have µ′c2 = µp1 . The
operating giant component in Gc is calculated by

µc2 = µ
′
c2 · F(µ

′
c2 ,Gc). (21)

Roughly, the fraction 1−µc2 of control nodes are removed,
given the network size Sc is large enough. As a result, this
fragmentation may lead to further failures in Gp. The proba-
bility for each Control-Dependency inter link to be removed
is approximated to 1 − µc2 , because each control node has
the same ability to operate n nodes. With this in mind, the
probability for a node in Gp loses all its k control links
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is (1 − µc2 )
k . The remaining fraction of nodes in Gp with

at least one CD inter link is

µ′p3 = (1− (1− µc2 )
k ) · µp1 .

By the transformation idea in [2] and [17], to calculate
the giant component, we consider the effect of removing the
fraction of 1 − µp3 of nodes in µp1 has the same effect as
taking out the same fraction size from µ′p1 . Thereby, from
initial network Gp to µ′p3 , we have the following equivalent
removing process:

1− φ + φ · (1− µc2 )
k
= 1− (φ − φ · (1− µc2 )

k ).

Thus, the equivalent µ′p3 = φ · (1− (1−µc2 )
k ). The fraction

of functioning giant component is

µp3 = µ
′
p3 · F(µ

′
p3 ,Gp). (22)

Following the above steps and progressing, we can observe
the pattern of these equations as follows:

µ′p1 = φ,

µp1 = µ
′
p1 · F(µ

′
p1 ,Gp),

µ′p3 = φ · (1− (1− µc2 )
k ),

µp3 = µ
′
p3 · F(µ

′
p3 ,Gp),

· · · , · · ·

µ′p2j+1 = φ · (1− (1− µc2j )
k ),

µp2j+1 = µ
′
p2j+1 · F(µ

′
p2j+1 ,Gp),

and

µ′c2 = µp1 ,

µc2 = µ
′
c2 · F(µ

′
c2 ,Gc),

µ′c4 = µp3 ,

µc4 = µ
′
c4 · F(µ

′
c4 ,Gc),

· · · , · · ·

µ′c2j = µp2j−1 ,

µc2j = µ
′
c2j · F(µ

′
c2j ,Gc).

Once the cascading failures stop, at the final steady state,
the following equations hold

µ′p2j+1 = µ
′
p2j+3 = µ

′
p2j−1 ,

µ′c2j = µ
′
c2j+2 = µ

′
c2j−2 .

We let γ = µ′p2j+1 = µ′p2j+3 = µ′p2j−1 and δ = µ′c2j =

µ′c2j+2 = µ
′
c2j−2 , then we obtain the transcendental equations:{
γ = φ · (1− (1− δ · F(δ,Gc))k ),
δ = γ · F(γ,Gp).

(23)

Thus, the fractions of operating giant components in the
final steady state are given by{

limj→∞ µpj = µp∞ = γ · F(γ,Gp),
limj→∞ µcj = µc∞ = δ · F(δ,Gc).

(24)

F. LOAD PROPAGATION IN INTERDEPENDENT NETWORKS
Eq. (24) gives the estimated result on the size of functioning
fractions of networks. It only considers the effect of interde-
pendence cascading failures. While, to avoid the cascading
failure of overload, the redistributed load R can not exceed
the remaining volume of the network. The threshold T ′c is
obtained when both sides are exactly equal, where we get

1− γ · F(γ,Gp) = γ · F(γ,Gp) · (T ′c − 1),

T ′c =
1

γ · F(γ,Gp)
=

1
δ
. (25)

That is the threshold below which the entire system
would suffer from the cascading failure caused by load
redistribution.
Lemma 1: For a given power law exponent λp and initial

removal 1− φ, T ′c > Tc.
Proof: Combining Eqs. (13) and (25), we have

T ′c
Tc
=
φ · F(φ,Gp)
γ · F(γ,Gp)

. (26)

According to Eq. (23), if γ and δ are nonzero,
F(γ,Gp) and F(δ,Gp) are nonzero too. Consequently,
(1− (1− δ · F(δ,Gc))k ) < 1. Thus, we have φ > γ .
It is shown that the F(φ,Gp) is a monotone increasing

function [7], thus F(γ,Gp) < F(φ,Gp). We have

T ′c
Tc
=
φ · F(φ,Gp)
γ · F(γ,Gp)

> 1,

which completes the proof. �
Lemma 2: Recall a node in Gp is under the control of k

nodes in Gc. For a given φ, for two different values of k = k1
and k = k2, where k1 < k2, the threshold T ′c|k=k1 > T ′c|k=k2 .

Proof: By excluding δ in Eq. (23), we obtain

φ =
γ

1− (1− γ · F(γ,Gp) · F(γ · F(γ,Gp),Gc))k
.

The growth of k from k1 to k2 leads to the increase of
denominator of the right side. As φ is fixed, γ is required
to be improved to hold the equation. Once φ starts increas-
ing, F(γ,Gp) grows since it is a monotonically increasing
function. Applying Eq. (25), we have T ′c|k=k1 > T ′c|k=k2 .
Notice n is not involved in the equations, thus has no effect
on T ′c. �

G. JOINT EFFECT OF INTERDEPENDENCE
AND LOAD CASCADING
Now we estimate the system robustness by taking into
account, the joint effect of interdependence and load propa-
gation cascading failures. In power grid Gp, J(φ,Gp) should
be applied to replace F(φ,Gp), while in the communi-
cation network Gc, F(φ,Gc) is retained. Therefore, the
Eqs. (23) and (24) come to{

γ = φ · (1− (1− δ · F(δ,Gc))k ),
δ = γ · J(γ,Gp),

(27)
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and the final fractions of functioning sizes are{
µp∞ = γ · J(γ,Gp),
µc∞ = δ · F(δ,Gc).

(28)

Theoretically, once solving γ and δ in Eq. (27), we can
obtain the results. While, no analytical theory is yet available
to give the closed-forms of F(·) and J(·).
Lemma 3: Although the initial removal is upon Gp, the

remaining fraction of survivals in Gp is still greater than that
in Gc. That is, µp∞ ≥ µc∞ .

Proof: Applying δ = γ ·J(γ,Gp) in Eq. (27) to Eq. (28),
we get {

µp∞ = δ,

µc∞ = µp∞ · F(δ,Gc).
(29)

Since F(δ,Gc) is not greater than 1, we have
µp∞ ≥ µc∞ . �

H. INFINITE TOLERANCE PARAMETER
Empirically, infinite value of tolerance parameter T means
each power station has the infinite capacity, and thus never
suffer from overload propagation failure. For neither a single
power grid or interdependent smart grid, whether a node is to
be removed or not depends completely on the topology effect.
In other words, infinite T is equivalent to studying the
cascading failures caused by the topology and interdepen-
dence.
Lemma 4: As the tolerance parameter increasing to

infinite, i.e., T → ∞, the fractions of survivals in both
Gp and Gc meet the upper bounds, which are the results of
pure ‘k-n’ interdependence model effect.

Proof: Recall that P(O|Z = z) is the probability that
a node i with degree z is destroyed by its neighbors the load
shift. As the growing of T , we notice Eq. (16) is monoton-
ically decreasing, which leads to the reduction of the right
side of Eq. (19). A smaller u is required to hold this equation.
Therefore, Eq. (18) is monotonically increasing.
Once tolerance parameter approaches infinity, Eq. (15) is

always equal to 0, which consequently let Eq. (16) be 0. Thus
Eq. (17) comes to

P(E(φ)) = 1− φ + φ · uz. (30)

The probability that the vertex does belong to the giant
component J(φ,Gp) is

J(φ,Gp) =
∞∑
0

Pd(z) · (1− uz),

= 1−
∞∑
0

Pd(z) · uz. (31)

Eq. (19) now can be simplified to

u =
∞∑
0

Q(z) · (1− φ + φ · uz). (32)

Combining Eqs. (31) and (32), and comparing with Eq. (9),
we obtain

J(φ,Gp) = F(φ,Gp). (33)

Now, Eq. (24) and Eq. (28) are exactly the same. The upper
bound exists for J(φ,Gp), when the tolerance parameter T
approaches infinity. �

VI. SIMULATION AND ANALYSIS
In this section, we couple two synthetic networks using
‘k-n’ interdependence model and apply the overload cascad-
ing model uponGp. We evaluate how the system robustness is
affected by these models and parameters. In all experiments
the fraction 1− φ of nodes in Gp is removed randomly.

A. JOINT EFFECT OF INTERDEPENDENCE AND
OVERLOAD CASCADING
First of all, we study the smart grid system on differ-
ent network topologies by assigning different λp and λc.
Fig. 2(a) and 2(b) illustrate the joint effect of interdependence
and overload cascading. The system is fragile to random
failures, where approximate 11% initial failure leads to the
entire collapse when λp = λc = 2.5. As the number of
removals increase, i.e., increasing of 1 − φ, the fractions of
survivals µp∞ and µc∞ in both networks slightly decrease,
followed by a rapid decline to zero. This performance drop
is theoretically proved to be first-order discontinuous tran-
sition [18]. While in [17], we pointed out that in real life
network and simulation, there exists a small transition interval
due to the non-infinite sizes of networks. The system perfor-
mance is heavily depending on the network topologies, where
about 19% initial failure can destroy the system, given the
power low exponents are 2.2 for both. Therefore, on the attack
perspective, higher 1−φ is required to knock down the system
for lower λp and λc.

Fig. 2(c) and 2(d) show how system performs for various
values of tolerance parameter. Accordingly, given the fixed
removal, µp∞ and µc∞ grow once the tolerance parameter
is increasing. The reason behind this phenomena is that the
higher tolerance ability results in each power node having
more vacant volume to adopt the shifted load from its
neighbors, and thus becomes stronger in terms of overload
propagation.

Comparing Fig. 2(a), 2(b), 2(c) and 2(d), we observe
µp∞ ≥ µc∞ , implying that the fraction of survivals in Gp is
greater than that in Gc. This validates our Lemma 3.
Another finding from Fig. 2(e) and 2(f) is that the system

robustness finally reaches to the upper bound as the grow-
ing of tolerance parameter. Given the initial failure of 0.05
(100 nodes out of 2000), µp∞ keeps stable on 0.91 when
tolerance parameter exceeds 1.8. Same thing happens for the
curve ‘150 removals’. We believe this upper bound is the
system performance of single interdependence effect, where
the load cascading effect is eliminated due to the huge vacant
volume in power grid. Fig. 3 proves our finding, where it is the
experiment that sets up T to infinite and only considers
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FIGURE 2. The initial size of Gp and Gc are 2000 and 7000 respectively. Random failure is applied on Gp. Both load propagation model and
‘k-n’ interdependence model are applied in the simulation. k = 2,n = 5. (a) and (b) compare the number of nodes left in different network
topologies, with T = 2. In (c), (d), (e) and (f), we set up λP = λc = 2.5 and show how the system be affected by different tolerance
parameter values and initial failures. Generally, a higher tolerance parameter T gives system a better performance,
which reaches the upper bound once T keeps growing.

interdependence effect. For λp = λc = 2.5 and initial
removal equals 100, µp∞ and µc∞ are 0.91 and 0.89 respec-
tively, which are exactly the same values of upper bounds
shown in Fig. 2(e) and 2(f). This validates our mathematical
proof of Lemma 4.

We compare the tolerance threshold T ′c of various systems,
as shown in Fig. 4. The value of T ′c for the system with
lower λp and λc is also lower. To elaborate this, we firstly
know that the scale-free network with power law of 2.2 has
a longer fat tail than the network with power law of 2.5.
The former one possesses more hubs, which, according to

Eqs. (1) and (2), have more vacant space to absorb the
shifted load from neighbors. Therefore, the network is firm
to the load propagation. We also observe that the curve of
λp = λc = 2.5 is cut out at the point that the number
of removals is 200, where the curve is approaching to the
interdependence threshold 1 − φc, as illustrated in Fig. 2(a).
No matter how big the T ′c is, the system breaks down when it
approaches to 1− φc. Therefore, we conclude that the smart
grid robustness depends on both T and 1− φ. The system is
totally knocked down whenever either T ′c or 1−φc is reached
first.
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FIGURE 3. The number of survivals in the system which only considers
‘k-n’ interdependence, with k = 2,n = 5. Gp and Gc have
2000 and 7000 nodes respectively. Compared with Fig. 2(e) and 2(f),
we observe the performance of only considering ‘k-n’ interdependence
effect is the upper bound.

FIGURE 4. Tolerance threshold T ′
c . Gp = 2000 and Gc = 7000,

k = 2,n = 5. The super linear relation between the initial removal
and T ′

c is demonstrated.

Another observation from Fig. 4 is that the relation
between the number of initial removals and tolerance param-
eter threshold is super linear.

FIGURE 5. System robustness versus k and n. Gp = 2000,
Gc = 7000, T = 2. Higher k indicates higher robustness,
while n only has limited effects.

B. COMPARISON OF k AND n
The sub-linear relation between k and the fraction of survivals
was demonstrated in our previous paper [17]. However,
we would like to evaluate how the system robustness is
affected by k and n in this new model by taking the
load propagation into account. According to Fig. 5(a), both
µp∞ and 1−φc grow for the increasing k . With fixed T = 2,
for k = 4, n = 5, the threshold 1 − φc is 0.21, which is
almost two times the curve k = 2, n = 5. The performance
incremental quantity from k = 2 to k = 3 is much greater
than that from k = 3 to k = 4. This validates our previous
conclusion that the relation between k and robustness is sub-
linear. Fig. 5(b) tells us another story that n has no effect
on the system. It validates our Eqs. (27) and (28), where
n is not involved. In other words, the system performance
is independent from n. However, we notice that tiny fluctu-
ations occur around threshold 1− φc. Recall n is the number
of power stations that each operation center could operate.
Given fixed size of Sp and k , the number of operation cen-
ters is inversely proportional to n [17]. Therefore, for each
simulation, whether the initial random removal is upon these
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FIGURE 6. Tolerance threshold T ′
c versus k,n. The fluctuations occur

around the start points of k = 4,n = 5,10,20. The reason is that higher n
indicates fewer operation centers [17]. For each single simulation,
whether the initial random removal is upon these operation centers or
not leads to quite different results.

operation centers or not leads to quite different results.
To weaken the fluctuation, we believe it is reasonable to
repeat the simulation for a massive number of times.

Fig. 6 shows that T ′c also heavily depends on k rather than
on n. For a given 1 − φ, the tolerance threshold grows with
the decreasing of k . For the case of n = 5, 1 − φ = 0.1,
T ′c equals 1.83, 1.66, 1.63, respectively for k = 2, 3, 4. This
validates our Lemma 2. The reason could be explained as
the following: higher k indicates higher system robustness in
terms of topology failure. Thus, the system has more nodes
survived, consequently has more vacant space to deal with
the load propagation. The pressure of adopting shifted load
on each individual node is therefore reduced.

For the case of fixed k , our mathematical Eq. (25) indicates
that the threshold is not affected by n. While in our simula-
tion, the change of n does affect T ′c limitedly. Generally, the
three curves in Fig. 6 for n = 5, n = 10 and n = 20 are very
close to each other. While, given the initial removal is 50,
the values of T ′c for n = 10 and 20 are obviously greater
than n = 5. We believe the reason is similar with Fig. 5(b),
that whether the initial removal upon the operation centers or
not causes quite different consequences. The mean results of
simulation of these three curves would be almost the same
once we enlarge the number of samples.

C. SINGLE POWER GRID VERSUS
INTERDEPENDENT NETWORKS
We compare the systems of single power grid and interde-
pendent smart grid. Fig. 7 indicates how different tolerance
parameter affects the single power grid. Comparing Fig. 7(a)
with Fig. 2(e), we observe that given the same 1 − φ and
network topology, the tolerance threshold for interdependent
smart grid is higher than that for single power grid, e.g.,
T ′c = 1.9 and Tc = 1.6 if the initial removal is 200 nodes.
Meanwhile, µp∞ in Fig. 7(a) is higher than that in Fig. 2(e),
implying that the single power grid is stronger against random
failures. Therefore, we conclude that the interdependence

FIGURE 7. The system robustness and tolerance parameter in single
power grid, with Gp = 2000. Similar to interdependent networks, growing
k also leads to a upper bound performance, as shown in (a). Comparing
(b) with Fig. 2(c), the number of survivals in single power grid is greater.
(c) illustrates a super linear relation between initial removal and Tc .

between the two networks decreases the system robustness
dramatically. The comparison between Fig. 7(b) and Fig. 2(c)
tells the same story that the number of survivals in single
power grid is greater than that in coupled smart grid, thus the
former one is much more reliable. We also notice that with
the growth of T , the system performance is approaching the
upper bound in Fig. 7(a).

Fig. 7(c) draws the values of Tc of different network
topologies. Generally, Tc grows with the increase of initial
failures. We notice that the growth rate is increasing, e.g., for
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the curve of λ = 2.2, Tc increases from 1.35 to 1.6 when
initial removal goes from 100 to 300, but expands from 2.0 to
2.37 when the removal grows from 600 to 800. This illustrates
a super linear relation between initial removal and Tc.

According to Fig. 4, the T ′c for interdependent smart grid
is 1.76 when λp = λc = 2.2 and initial removal is 300.
Comparing with Fig. 7(c), Tc = 1.6 in the single power grid
with same parameters. This validates our Lemma 1 that the
required tolerance parameter for interdependent network is
higher than that of a single power grid.

VII. CONCLUSIONS
In this paper, we classify two types of cascading failures
that may occur in smart grid. Our aim is to study the joint
effect of these two cascading failures to make the analysis
be more closer to the real world smart grid. Furhtermore,
mathematical tools are proposed to estimate the tolerance
threshold, below which the entire system suffers from the
load propagation cascading. A percolation-based method is
devised to calculate the fractions of survivals in both power
grid and communication network. We prove that even if the
initial failure is on the power grid, the remaining part in
it is still greater than that in the communication network.
Using both mathematical methods and experimental analysis,
we find the upper bound of system robustness. The simula-
tion validates our analysis and demonstrates that the relation
between the number of initial removals and the tolerance
parameter threshold is super linear.

This work is helpful in understanding the cascading
failures in smart grid. Finding more practical load propaga-
tion model is one of our future directions.
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