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ABSTRACT Aggregating fine-granular data measurements from smart meters presents an opportunity for
utility companies to learn about consumers’ power consumption patterns. Several research studies have
shown that power consumption patterns can reveal a range of information about consumers, such as how
many people are in the home, the types of appliances they use, their eating and sleeping routines, and even
the TV programs they watch. As we move toward liberalized energy markets, many different parties are
interested in gaining access to such data, which has enormous economical, societal, and environmental
benefits. However, the main concern is that many such beneficial uses of smart meter big data would be
severely curtailed if the data were excessively protected due to individuals’ privacy. In this paper, we propose
a game theoretic mechanism that balances between beneficial uses of data and individuals’ privacy in
deregulated smart grids. Our mechanism solves the problem of access control by fairly compensating
consumers for their participation in the data market based on the concept of differential privacy. The results
of our experiments show the importance of taking consumers’ attitudes toward privacy as a crucial element
in designing balanced markets for fair data sharing. Furthermore, the experiments provide a principled way
to choose reasonable values for privacy levels that are more relevant to real-world scenarios.

INDEX TERMS Smart metering, smart grid, big data, privacy, game theory.

I. INTRODUCTION
Reading fine-granular data measurements from smart meters
every 30 minutes transforms into 48 million readings for
every one million consumers resulting in a massive volume of
data [1]; i.e smart meters big data. Studying these big data not
only provide utility companies with consumption data, but
also allow them to derive a great deal of valuable details about
how consumers use energy. To protect consumers’ privacy,
current work, such as [2]–[4] and [5], focus on means to pro-
tect household’s power consumption information by various
security and privacy mechanisms. As we move towards lib-
eralized energy markets, many different parties are interested
in gaining access to consumers’ information (e.g. preferences
and behavior), derived from power consumption data. This
data has enormous economical, societal, and environmental
benefit [6], [7]. However, the main concern is that many
beneficial uses of smart meters big data would be severely
curtailed if the data is excessively protected to individuals’
privacy. Some of these benefits accrue directly to consumers,
who are able to save on their energy consumption by

understanding which devices and appliances consume the
most energy, or which times of the day they can schedule their
demand to reduce their energy bill [8]. Other benefits, such as
accurately forecasting energy demands to optimize the use of
green energy sources, are gained by the whole society [8].
Individuals recognize that many complex challenges with
societal importance, such as environmental considerations,
market-research or political decision-making [9], may benefit
from accessing smart meters big data. Admittedly, however,
they also recognize that their privacy may be jeopardized
as several research studies show that personal information
such as an individual’s sleep-awake cycles, activities,
preferences, TV programs, and multimedia content can be
estimated with high accuracy from consumers power con-
sumption patterns [10]–[16].

In this paper, we address the following issues: First,
how to design mechanisms that balance between beneficial
uses of data and individuals’ privacy in deregulated smart
grids. On one hand, concerns over privacy issues may limit
the access to valuable information, which can dampen the
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data economy, innovation and productivity [8]. On the other
hand, it is particularly unacceptable to have the privacy door
widely open while at the same time individuals are deprived
of their opportunities to make decisions about their data, and
whether they want to be involved in certain data markets [17].
After all, consumers’ data has great commercial value in use
as well as in exchange. The World Economic Forum (WEF)
referred to consumers’ data as the ‘‘NewOil’’ of the 21st Cen-
tury [6]. Second, how to control access to data and guarantee
fairness for all players in deregulated smart grid markets?
Currently, several companies e.g. C3 Energy, Energy Savvy,
KWantera, WegoWise etc., have emerged and begun market-
ing their platforms for smart meters big data analysis. It is
important that we design mechanisms that accurately reflect
individuals’ incentives to participate in smart meters big data
markets [18].

The above challenging questions have served as motivation
behind our work. We envision a market for smart meters big
data, where data analysts are interested in obtaining access to
a certain subset of the data that corresponds to a representa-
tive subset of individuals. The data analysts work with third
party service providers who want to learn about consumers
behavior and preferences to offer them some services. Smart
meters big data is collected by the data aggregator (e.g. utility
company) who acts as the market maker. The data aggregator
engages in negotiation with the data analysts to strike a deal
that allow them to access the consumers’ data while consider-
ing the trade-off between privacy, the quality of data analysis
results, and consumers willingness-to-participate in the data
market.

Our approach of tackling the technical challenges is as
follows: First, we use the concept of Activities in Daily
Living (ADL) [19] to produce ontology of classes of activ-
ities from power consumption big data. This will allow the
data aggregator and the consumer to identify which type
of private information may potentially be derived from the
activity. and which is the potential privacy risk depending on
the sensitivity level of the private information. This modular
ontology of classifying power consumption data will be used
to define a privacy risk matrix, taking into account the value
of data usage against the potential risks to privacy. We also
propose a mechanism that aims at determining the privacy
risk value which will be used to determine the user’s payoff
once the user decides to reveal the data to third party service
providers. Second, we propose a game theoretic negotiation
mechanism to investigate fairness among the consumers, the
data aggregator and the third parties. The goal of each player
involved in the game is to maximize the utility. The consumer
wants to maximize his reward from allowing access to power
consumption data, the data aggregator generally prefers to
receivemoremoney from third parties and provide less incen-
tives to consumers, and finally third parties prefer to pay less
for data and get higher quality and higher cardinality. To our
knowledge, no other work has tried to assess mechanisms
of sharing power consumption data among market players
in deregulated smart grids, or how, in general, to engage

energy consumers in such markets to commercially benefit
from the amount and nature of extractable information from
smart meters big data.

The rest of the paper is organized as follows: Next section
presents the related work followed by the model description
in section III. In section IV, we provide analysis of the nego-
tiation game and the players utilities. Section V presents the
experimental evaluation. Finally, in section VI we conclude
the paper and provide our plan for future work.

II. RELATED WORKS
Smart meters big data has great societal importance that can
be achieved by mechanisms that balance between consumers
privacy and the benefit of sharing data. Similar mechanisms
are currently being used for personal information markets
in the online world (e.g. [20]–[24]). These markets have
evolved such that users make choices in which they surrender
a certain degree of privacy in exchange for benefits such
as price discounts, money, improved qualities of service,
customized offers, specials, etc. These benefits are perceived
by the user to be worth the risk of information disclosure.
The design of these mechanisms involves privacy, negotiation
mechanisms, game theoretic and data market models. In this
section, we review some of the existing studies, the technical
approaches, and the research work on data sharing. Although
some of these studies are not directly used in the context of
smart meters big data, they are fairly applicable to the general
concept of data sharing.

Research on smart meters big data is growing due to the
valuable information that can be extracted from the collected
datasets [25], [26]. For example, the work in [25] discussed
the possibilities of data forensic on smart meters big data for
detecting attacks implemented by compromised appliances
at residential premises. Results of forensic analysis can then
be shared with law enforcement agencies. The main issue
is that privacy of individuals may be breached if there is
no clear consent from the consumer. In this regard, many
existing mechanisms can be leveraged to balance between
the privacy trade-off and the usage of power consumption
data. For example, third parties can purchase access to users’
information [28], [29] by compensating them for the release
of their data. The main idea of these approaches is to inte-
grate transactional privacy in a privacy preserving systems
and forming a market of personal information that can be
managed by a trusted third party. The work in [27] argues that
over protection of data limits the operational capabilities of
the smart grid system. The study proposes methods to balance
between privacy requirements and operational requirements
in a smart grid system.

Providing incentives for consumers to share their data has
been studied in [30]–[32]. In [30], the authors consider the
case when a data analyst wishes to buy information from
individuals in order to derive some statistical estimates. The
objective of the data analyst is to minimize his costs while
having an accurate estimate. The data owners experience
some cost for their loss of privacy, and therefore must be
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compensated for this loss. This is confirmed by [31] which
also that consumers are concerned about their privacy, and
experience some cost as a function of their privacy loss.
Consumers are willing to participate in a survey if they
receive an incentive (e.g. payment) at least equivalent to
their privacy cost. The cost valuation of the privacy loss is
assumed to be private. However, individuals are assumed to
be rational, but in reality they may lie about their privacy
cost valuation if it leads to best outcome. The work in [32]
proposes mechanisms for modeling privacy in players’ utility
functions following thework presented by [33]. The proposed
work in [32] measures privacy cost as mutual information
between a player’s type and the outcome of the mechanism.
The difficulty is that it can only incentivize truthfulness by
giving players an influence on the outcome, but such an
influence also leads to privacy costs, which may incentivize
lying.

In the context of data sharing and control, [34] presented
a MultiParty Access Control (MPAC) model to identify and
resolve privacy conflicts for collaborative data sharing.
Parties involved in accessing consumers’ data aim to
maximize their own benefit. The model is formulated as a
multiparty control game and show the existence of unique
Nash Equilibrium (NE). Similarly, [35] studied the problem
of sharing data in digital repositories. The authors addressed
the issues of participation of consumers in data analytical
projects using a game-theoretic model in which individuals
take control over participation in data analytics. The main
idea is that individuals can contribute data at a self-chosen
level of precision and they can decide whether they want
to contribute or not. The study also investigated the options
of the analyst to set requirements for data precision, so that
individuals are still willing to contribute to the project, and
the quality of the estimation improves. Another work [38] has
also considered data markets where data analysts can access
unbiased samples of private data by appropriately compensat-
ing the individuals to whom the data corresponds according
to their privacy attitudes. Similar to [38] and [36] studied the
problem of a data analyst who may purchase an unbiased
estimate of some statistic from multiple data providers. The
analyst is provided with a menu of options with estimate
variance levels, where each level has a cost associated with
it. These estimates are reported by the data owner. The study
solves an optimization problem by combining the purchased
estimators into an aggregate estimator that has a variance of
at most equal to some fixed desired level. In such a setting,
the analysts are willing to compensate the data providers in
order to truthfully report their costs to the mechanism.

Our work falls under the same auspice of the above
mentioned studies. These studies assume that for a certain
mechanism (negotiation, mechanism design, game theoretic),
data subjects individually decide on the degree of data accu-
racy given a trade-off between their privacy and the revelation
of their data. Our negotiation game is similar to the work
presented in [37]. As in [37], we believe that it is not fea-
sible for an individual consumer to negotiate directly with

data analysts. The data aggregator is the entity that collects
information and has the means to influence the level of pre-
cision of the released data, i.e., adding noise according to the
agreed upon privacy level. By so doing, the consumer has
prior knowledge about the privacy level and can opt in or opt
out according to the estimation of the privacy loss cost.

III. MODEL DESCRIPTION
In this section, we provide an overview of the deregulated
smart grid market model. We describe the role of the involved
players in this market. We also discuss our proposed model
of data classification using Activities in Daily Living (ADL).

FIGURE 1. Market players in deregulated smart grids.

A. MARKET MODEL
In deregulated smart grids, data aggregators harvest terabytes
of fine granular energy consumption measurements from
smart meters installed at households. Third party service
providers are interested to obtain a certain subset of the
data. We envision that a data aggregator, acting on behalf of
energy consumers, involves in the negotiation with third party
service providers (represented by data analysts) as shown in
figure 1. There are many services that can be offered from
third parties by having access to power consumption profiles
of households [12]–[14], [16], [25]. For example, a company
that offers targeted energy-saving products may want to sell
its services to consumers with high-energy consumption. The
offered service could be a tool that enables consumers to
analyze their energy usage and create a personalized energy-
saving plan. By getting access to energy consumption pat-
terns of consumers, such companies can build compelling
campaigns that quickly and easily deliver personalized ser-
vices to customers. Furthermore, advertisement companies
want to know what type of equipment the house is using,
so they can target their advertisement to maximize con-
sumers’ attention to their products. From energy consumption
data they can identify the type of equipment in the house [14]
and its usage frequency, as well as its brand [16]. This infor-
mation helps advertisement companies to move from large,
broad-based, inefficient marketing programs to smaller, more
agile, and higher-yield campaigns. Other examples of offered
services may include dynamic billing, insurance deals, health
care premiums etc. Such services generate lucrative amounts
of money, which would be ‘‘unfair’’ for the rightful owner of
the data not to receive any.

The aggregator collects energy consumption data and
works on behalf of consumers. The aggregator uses the
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ADL concept to identify which type of private information
may potentially be derived from the activity and the potential
privacy risk depending on the sensitivity level of the private
information. This step is critical because it helps the con-
sumer to identify the privacy risk level based on data subsets,
which are included in the analysts query. The aggregator
receives offers from data analysts, and based on their needs
and the expected cardinality of the dataset announces a pri-
vacy level and some rewards to individual consumers. Then,
the consumer decides to opt-in or opt-out of the deal. Once an
agreement is concluded the aggregator protects the data of the
consumers at the agreed level of privacy and provides the data
analyst access to the data. In this model, we assume that the
consumers are aware of the fact that their private information
and preferences can be derived from power consumption
data. We also assume that consumers are informed of the
data market and they are willing to share their information
for a certain benefit that is proportional to loss of privacy.
Their cost valuation of their privacy loss can be as diverse as
their privacy concerns. There are many reasons that justify
their concern, for example, some individuals may perceive
the release and use of their data as an intrusion on their
personal sphere, or as a violation of their right. In addition,
they may fear that the data is used for social and economical
discrimination.

Next, we illustrate the ADL concept, which is used to
produce ontology of classes of activities from power con-
sumption big data.

B. DATA CLASSIFICATION MODEL
The concept of Activities in Daily Living (ADL) is used to
classify activities and tasks mainly inside a house. The con-
cept of ADL is widely used to measure the ability of people to
maintain their regular life in the field of medical care for high
risk patients and elderly. Among the traditional assessment
of everyday functions, ADL includes basic ADL (BADL),
instrumental ADL (IADL), extended ADL (EADL), and
advanced ADL (AADL). The BADL includes basic activities
for independent living functions, such as bathing, using the
toilet, and eating. The IADL includes activities with instru-
ments, such as using a telephone, food preparation, cleaning
the home, and doing the laundry. EADL and AADL are
references for measuring the activities of independent living.
To capture the essence of modern activities, [19] added com-
plex ADL (CADL) and quality ADL (QADL) which are used
as a reference to match the operation of appliances inside the
house. In our model, we use ADL to classify smart meters
data and categorize power consumption patterns, which
represent the operation of appliances inside the house. The
operation of appliances are in fact directly related to users’
tasks that can be used to infer preference and behavior.

The ability of measuring the power consumption of indi-
vidual appliances throughout the course of each day can pro-
vide a detailed portrait of an individual ADL at home. In our
study, the data aggregator uses the ADL concept as a classifi-
cation reference to identify which type of private information

FIGURE 2. An example of ADL classification.

may potentially be derived from the activity and the potential
privacy risk associated with the combination of private data.
Figure 2 shows an example of ADL classification. This mod-
ular ontology of classifying power consumption data will be
used to define a privacy risk matrix, taking into account the
value of different uses of data against the potential risks to
individual privacy. For example, a data analyst for a health
insurance company wants to learn about unusual behaviors
that might indicate illness of an individual before negotiating
a health care premium. The insurance companymight want to
know if the individual cooks at home, which is an indication
of healthy eating and if this individual exercise regularly
or watches TV for extended hours. Combining these infor-
mation together gives the analyst a possibility matrix about
the health risk of this particular individual. By analyzing
the power consumption pattern of cooking appliances
(e.g. stove, oven, microwave), entertainment appliances
(e.g. TV), and exercising equipment (e.g. treadmill, stationary
bike), the analyst will be able to draw a good picture about the
potential health risk of an individual. If the individual does
not cook at home and watches TV for extended period of
times, meaning higher probability of eating unhealthy and not
exercising regularly, then this individual is at risk of develop-
ing illness. When aggregating data from different subsets of
ADL classification, the data analyst will have better insight
about the individual behavior. For the consumer, it means
higher risk of exposure to privacy loss.

The data aggregator classifies the data using ADL
as follows: Consider we have M different categories
(C1,C2, . . . ,CM ), such as BADL, IADL, EADL, AADL etc.
In every category Cj, data is further divided into subsets Sj,k
for k = 1, 2, . . . based on the data ontology that applies to the
dataset. For example, in figure 2, IADL category is divided
into two subsets, Laundry and Cleaning. The aggregator
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takes into consideration the following: first, data in different
categories may have different privacy risk level. Therefore,
the composition of the data may have different implications
on the level of privacy. Second, the substitution of different
private data in the same subset is constant; i.e., assuming that
one of the data has been revealed; revealing the rest of the
data in the same subset will only increase the privacy risk by a
small margin. For instance, in the Laundry category revealing
consumption data about the washing machine and dryer at the
same time has little implication on the consumers’ privacy.
The data analyst can improve his knowledge of consumer’s
Laundry behavior by a small fraction. Third, data in different
subsets are not substitutable, revealing any one of them will
increase the privacy risk.

LetQj be the cardinality of Cj (i.e.Qj = |Cj|). We perform
normalization over the whole data set. The normalized data
size Qj reflects the ratio of each category in a consumer’s
privacy.

Qj =
Qj∑M
k=1Qk

(1)

where M is the number of the data categories.
Every consumer i of type t has a privacy risk

value PRi,t (privacy risk and consumer types are discussed
in subsection IV.B) for private data in each category, the
aggregator calculates the weighted privacy risk, as in (2), and
then normalizes it, as in (3). The value in (3) reflects the risk
of revealing all data in category j.

�j = Qj.PRi,t (2)

�j =
�j∑j
g=1�g

(3)

The privacy risk revealing αj subsets from category j is
calculated as in (4).

�j =
αj

Qj
.�j (4)

The privacy risk value in (4) will be used to determine the
compensation value that the consumer should receive given
the privacy risks that are involved. Intuitively, we want to
associate high benefit/compensation with �j that allow for
greater revelation of consumers private data. In this manner,
the compensation paid to the consumer is justified, at least in
part, from the damages that might occur to his privacy.

IV. NEGOTIATION GAME AND PLAYERS UTILITY
In this section, we introduce the details of the negotiation
game and the players’ utility. Specifically, we discuss the
negotiation offers and the responses from the data aggregator
to balance the negotiation framework.

A. NEGOTIATION GAME
The negotiation model in our study is adopted from [37].
The negotiation between the data aggregator and the data
analyst is modeled as a game with perfect and complete
information. This means, the players have full knowledge
of the strategic moves and payoff functions of each other.

More specifically, both players know the consumer behav-
ior model, but not necessarily the privacy/reward trade-off
functions of each consumer because an individual consumer
is not directly modeled as a player in the negotiation. The
outcome of the negotiation game is affected by the chosen
privacy level. The data aggregator employs anonymization
techniques such as [39]–[41], which provide data privacy at
the cost of losing some information. All these techniques have
one common privacy parameter denoted by ρ, which indi-
cates the level of privacy protection. In general ρ affects the
valuation cost of the data loss in the sense that the higher ρ,
the lower the cost of privacy loss.

The game starts with an offer from the data analyst to the
data aggregator. In this framework, the data analyst wishes
to propose a privacy level that corresponds to some data
precision requirements, so that individuals are still willing
to contribute to the dataset, and the cost for accessing the
dataset is minimized. The analyst proposes a privacy param-
eter (precision of the anonymization technique) for which
he is willing to purchase access to the data. In the offer,
the required value for privacy parameter ρ and the price γ
(per each record) must be specified. We denote an offer by
offer = 〈ρ, γ 〉. Once the data aggregator receives the offer he
can either reject or accept it. In case of a rejection, the game
terminates with payoff zero to both the analyst and the data
aggregator. If the data aggregator decides to accept then he
needs to announce an incentive in exchange for allowing the
data analyst to access consumers’ data. Here, we assume that
r represents monetary value of the incentive and its domain
is in R+. The outcomes of the game are either an accepted
offer 〈Offer,Accept〉 or a rejected offer 〈Offer,Reject〉. The
number of consumers who will opt-in is determined by each
consumer utility function (discussed in VI.B). Consequently,
preferences of the data analyst and the data aggregator are
determined based the number of records in the dataset and
values ρ, γ , and r .

The aggregator is trusted by both the data analyst and
data owners. He collects data from the owners and sells it
in the form of queries or data access. When a data analyst
decides to purchase a query, the aggregator collects payment,
computes the answer to the query, adds noise (anonymiza-
tion) as appropriate, returns the result to the analyst, and
finally distributes individual payments to the data owners.
The aggregator retains a fraction of the price as profit at
least to cover basic cost of data maintenance. The interaction
between the parties is captured in figure 3. In order for the
framework to be balanced [42], each consumer must be fairly
rewarded whenever the answer to some query results in some
privacy loss, and the data analyst is charged to cover all
these payments. This definition involves three quantities: the
payment that the data analyst needs to pay the market maker,
a measure of the privacy loss of data item, and a payment
by which the market maker compensates the data owner for
this privacy loss. In the following subsection, we provide the
details of these quantities when we discuss the utility of each
player.
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FIGURE 3. Negotiation among data analyst and data aggregator.

B. ENERGY CONSUMER UTILITY
As discussed above, individuals’ decision to provide or deny
access to their power consumption data depends on the
offered level of privacy and the offered reward. We suppose
that each consumer i ∈ N , such that N = {1, . . . , n}, has a
privacy risk valuation depending on his type t ∈ T , where
T is the set of consumer types. The type of the consumer is
determined by the consumer’s preference to protect his pri-
vate information. In real life, individuals are categorized into
three types [20]marginally not concerned individuals who are
willing to accept lower offers to allow others to access their
information, pragmatic individuals who expect offers that are
worth the risk of privacy exposure, and privacy fundamen-
talists who are strictly conscious about privacy exposure; but
willing to allow access to their personal informationwith high
assurance provisions and payoff. The privacy preferences are
modeled by λi,t ∈ [λ, λ]. For instance, λ = 0 models a
consumer who is willing to surrender his privacy in exchange
for a deal. On the other hand, λ = 1 models a consumer
who is fundamentalist and in favor of maximizing his privacy.
Values of λi,t between λ and λ represent various degrees of
pragmatism with respect to privacy preferences.

The privacy risk PRi,t (α) of an individual consumer i of
type t over a data item α ∈ Ai, where Ai is the set of private
data, is given as follows:

PRi,t (α) = PC(α).SL(α) ∀α ∈ Ai,∀i ∈ N ,∀t ∈ T (5)

where PC(α) denotes the general privacy concern of a con-
sumer i (0 ≤ PC(α) ≤ 1), and SL(α) denotes the sensitivity
level of private data (0 ≤ SL(α) ≤ 1). Equation (5) explicitly
represents the privacy attitude of the consumer for a specific
piece of data. The privacy risk PRi,t (α) in this regard does
not take into consideration the combination of multiple data
items as discussed in Subsection (III.B). The data aggregator
derives the over all privacy risk value�j from PRi,t (α). Each
consumer is described by a privacy risk value as well as
a nondecreasing cost functions vi,t (α) : R+ → R+ that
measures the consumers dis-utility for having his private data
revealed. Therefore, there is a mapping l between the privacy
risk and the cost of privacy loss such that l = [∀α ∈ Ai :

�j(α) → vi,t (α)]. The cost valuation of privacy loss vi,t (α)

is private to the consumer and represents the ‘‘pure cost’’ of
revealing his private data without any anonymization. The
data aggregator who is working on behalf of the consumers
considers only those who are interested in both privacy and
reward. Consumers weigh their decision based on the follow-
ing model:

N ′ ⊆ N = af1(ρ, vi,t )+ bf2(r) (6)

where N ′ is the number of individuals who accept the offer,
f1 and f2 are functions of ρ, vi,t and r , and a and b are
the intercept and marginal effects of f1(ρ, vi,t ) and f2(r) on
individual’s decision to participate in the market. The func-
tions f1(ρ, vi,t ) and f2(r) are two non-decreasing functions.
In equation (6), we assume that consumers cannot increase
their privacy cost valuation by lying about their true privacy
concerns. Hence, individual rationality is implied. Further-
more, we assume that privacy costs have known bounded
support, that is, vi,t ∈ [vmin, vmax].

C. DATA AGGREGATOR UTILITY
In our model, the data aggregator develops and maintains the
ontology of classes of activities which is produced from the
ADL. This will allow the data aggregator and the consumer to
identify which type of informationmay potentially be derived
from the activity and the potential privacy risk. Once the
data is categorized, the data aggregator receives offers from
the data analyst, and based on their needs and the expected
cardinality of the collected dataset provides reward and price
for both the consumers and the data analyst respectively. The
data aggregator, while being truthful, aims at maximizing his
benefits. The data aggregator receives a payment γ for each
data record γ . For N consumers’ records, the aggregator’s
revenue, R, is as follows:

R = γ.N (7)

The data aggregator incurs costs related to data categoriza-
tion, maintenance, storage, energy etc. we denote these costs
by β. In addition, the data aggregator must compensate con-
sumers with payment r . The total cost to the data aggregator
can be defined as:

T C = β + r .N (8)

The payoff to the data aggregator is therefore defined
as [37]:

Uag = R− T C = (γ − r).N − β (9)

D. DATA ANALYST UTILITY
A data analyst is an entity interested in accessing power
consumption information for some data analysis purposes.
The data analyst is equipped with a mechanism that offers
a menu specifying a discrete, finite range of possible levels
of anonymization 0 < ρ1 < ρ2 < . . . < ρm <∞ which are
associated with prices (γi)mi=1. The offer made by the data ana-
lyst specifies the amount of payment that the analyst is willing
to pay for a certain privacy parameter. Adding noise reduces
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the price. The data analyst prefers a dataset with higher
quality and a wider range of data records. The added noise
to the data set after anonymization will have impact on the
quality of the data as well as the number of consumers
opting in. If the consumers are privacy fundamentalists, this
will lead to higher anonymization, which in ternmeans higher
cost of accessing the data. The data analyst starts by submit-
ting a request which specifies the query of accessing the data.
In this request the data analyst includes the price γ for each
data record and the noise level that he is willing to accept
for the offered price. Obviously, the data analyst specifies
the price that maximize his benefit. He prefers to access a
wider range of data items and pay the minimum cost per
record. However, the wider the range of the dataset, the higher
the privacy risk for the consumer. Let ϑ denote the abso-
lute worth of the data record before any added noise. If the
number of data records acquired from the data aggregator is
denoted by N , then the analyst’s revenue is defined as ϑ.N .
However, after adding noise the benefit of data decreases. Let
η; (0 ≤ η ≤ 1), be the parameter that captures the level
variance of precision. The revenue Ida of the data analyst is
then given as follows [37]:

Ida = ϑ.N .η (10)

The main factor that affects the precision function is the
level of noise agreed between the data aggregator and the
analyst. In this regard, for any number of data records N ,
η is a decreasing function of ρ. If the analyst pays price γ
per record, his cost is γ.N , and therefore his utility Uda, is as
follows [37]:

Uda = N (ϑ.η − γ ) (11)

There are several methods to introduce noise to a dataset
to minimize privacy loss. One of these methods is known as
ε-differential privacy [41]. In the next section, we provide the
equilibrium strategies for the players when ε-differential pri-
vacy is used as a means of introducing noise to data records.

V. EQUILIBRIUM STRATEGIES WITH
ε-DIFFERENTIAL PRIVACY
In this section we provide details about the equilibrium strate-
gies of the negotiation game. Specifically, we discuss the
stages needed to reach the game’s equilibria. We start by
giving a brief summary about the ε-differential privacy and
the notion of privacy loss.

A. ε-DIFFERENTIAL PRIVACY AND PRIVACY LOSS
The main objective of differential privacy is to provide a
privacy-preserving model that can be satisfied by a given
mechanism of data analysis. The basic idea of differential
privacy is captured in the following known definition [41]:
‘‘A randomized function k gives ε-differential privacy if for
all data set D1 and D2 differing on at most one element, and
all S ≤ Range(k)’’

Pr[k(D1) ∈ S] ≤ exp(ε).Pr[k(D2) ∈ S] (12)

where ε is a parameter used to define the strength of the
privacy. In this sense, ε is set by the mechanism depending on
the probability of an event happening that affects the leakage
of the information. Therefore, any mechanism satisfying this
definition addresses concerns that any participant might have
about the leakage of his personal information. In our setup,
for each data analyst query, the data aggregator defines a
random function Hq, such that, for any database instance α,
the random variable Hq(α) has expectation q(α) and a noise
value equal to ρ. By answering the query through this mech-
anism, the data aggregator leaks some information about
each data item α, and its owner expects to be compensated
appropriately. Themechanism uses the Laplacian distribution
as a source of random noise. Laplacian noise is commonly
used to obtain differential privacy. A Laplacian distribution
with mean 0 and parameter e > 0 is denoted by Lap(e). The
probability density function of Lap(e) is

f (x) =
1
2e
exp(
−|x|
e

) (13)

The aggregator uses the Laplacian mechanism denoted by
L to add a noise variable drawn from the probability density
function Lap(e). The mechanism returns Lq(α) = q(α) + ρ,
where ρ is noise with distribution Lap(e) and e =

√
υ/2

and υ is the variance of Laplacian distribution. Given such
mechanism the privacy loss of each individual is bounded by:

ε(Lq(α)) ≤
sq
√
υ/2

(14)

where sq is the sensitivity of a query q defined in [41].
From equation (14), we can construct the decision for

each consumer as a combination of privacy protection level
and incentive. This model is explained in equation (6).
By substituting the values in equation (6) we get:

N = a.ε(Lq(α)).vi,t + b.r (15)

Following the work provided in [35], [36], and [38],
we considered in equation (15) a linear relation between the
privacy loss ε and the expected cost vi,t . Furthermore, for
the sake of simplicity, we considered the function for the
incentive f2(r) = r . Thus, for consumer i of type t to agree
to the use of his data, his expected payment should be at
least ε.vi,t . Here, we assume a linear relation between cost
of privacy loss and the ε, however, any other functions are
possible without loss of generality.

B. DATA AGGREGATOR ACTIONS
The main goal of the aggregator is to take actions that bal-
ance the pricing framework. This means that each consumer
must be fairly rewarded whenever the answer to some query
results in some privacy loss, and the data analyst is charged
to cover these rewards. In this sense, aggregator actions are
geared towards finding an equilibrium where everybody is
satisfied with the outcome of the negotiation game. The data
aggregator can estimate the expected number of data records
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in the dataset for each anonymization value and the reward
based on the combination of equation (9) and (15).

Uag = (γ − r)(a.ε(Lq(α)).vi,t + b.r)− β (16)

The goal of the data aggregator is to find the reward value r̂
that maximizes his utility Uag as follows:

r̂ = argmax
r

(Uag)

= argmax
r

[(γ − r)(a.ε(Lq(α)).vi,t + b.r)− β] (17)

subject to the constraint that r̂ ≥ 0
The data aggregator will have the following actions:
• 〈Offer,Accept〉 if max(Uag) ≥ 0
• 〈Offer,Reject〉 if max(Uag) < 0
• 〈Offer,Accept/Reject〉 if max(Uag) = 0
The best response BRag strategy for the data aggregator is

then as follows:

BRag=

{
Reject if (γ − r̂)(a.ε(Lq(α)).vi,t + b.r̂)− β ≤ 0
Accept if (γ − r̂)(a.ε(Lq(α)).vi,t + b.r̂)− β ≥ 0

(18)

Every time the aggregator receives an offer from the data
analyst, he must calculate the value of r̂ that maximizes his
payoff. This means finding a combination of r̂ and γ such
that r̂ > γ .

C. DATA ANALYST ACTIONS
Asmentioned earlier, the data analyst would like to maximize
the number of consumers who are willing to participate in the
dataset. Therefore, he must find the most profitable action
that achieves this goal. In other words, the data analyst must
find the best combination of ε(Lq(α)) and γ that maximizes
the analyst’s utility. The main factor that affects the best
action of the data analyst is the optimal reward r̂ that the
consumers are receiving from the data aggregator based on
the offer 〈ε(Lq(α)), γ 〉. In this case, if r̂ is the optimal solution
for the combination of ε(Lq(α)) and γ , then r̂ can be defined
as a function of ε(Lq(α)) and γ (i.e., r̂ = z(ε(Lq(α)), γ )).
Furthermore, if one value of r maximizesUag, then this value
is part of the equilibrium that maximizes Uda and the number
of records N will be determined based on the following:

N =
{
a.ε(Lq(α)).vi,t + b.r if max(Uag) ≥ 0
0 otherwise

(19)

Equation (19) states that the data analyst will be granted
access to the dataset only when the data aggregator accepts
the offer, the noise level is ε(Lq(α)), and the reward is
r̂ = z(ε(Lq(α)), γ ). In case the data aggregator rejects
the offer 〈ε(Lq(α)), γ 〉, the analyst will not be given access
to the dataset. Substituting the function definition of
r̂ = z(ε(Lq(α)), γ ) into equation (19), N becomes a function
of ε(Lq(α)) and γ as well. Recall that the precision value
η defined in subsection IV.D depends on the anonymiza-
tion technique used by the aggregator and hence it is a
function of ε(Lq(α)) and γ and denoted as η′(ε(Lq(α)), γ ).

In equation (11), after substituting N and η with
N ′(ε(Lq(α)), γ ) and η′(ε(Lq(α)), γ ), then Uda becomes a
function of two variables ε(Lq(α)) and γ . The best response
for the data analyst ε(Lq(α)) and γ that maximize his payoff:

max[N ′(ρ, γ )(ϑ.η′(ρ, γ )− γ )] (20)

In equation (20), the upper bound for γ is ϑ . Parameter
ε(Lq(α)) is not necessarily bounded from above. According
to [41], the value of ε can take any value depending on the
situation. When there is a situation of higher possibility of
privacy breach, ε must be specified to reflect such probability.
There are many economical methods to choose ε as have been
surveyed in [43]. If Uda has an absolute maximum subject to
the bounds defined on ε(Lq(α)) and γ , the game has equilibria
of the forms ((ε̂(Lq(α)), γ̂ ), reject) or ((ε̂(Lq(α)), γ̂ ), r̂). This
means the outcome of the game will be as follows: If the
data aggregator determines that the offer will lead to poten-
tial loss, then the offer will be rejected and the negotiation
ends unsuccessfully. When there is at least one combination
of ε(Lq(α)) and γ for which the data aggregator can make
profit, then the negotiation game ends successfully. The data
aggregator must balance between the cost of anonymization,
the reward amount, the number of consumers who are willing
to participate in the data set and the payment received from
the data analyst. When this balance is achieved, we are then
assured of a game equilibrium.

D. GAME EQUILIBRIUM
Having explained the strategic actions of the players in the
negotiation game. We are now ready to discuss the equilib-
rium of the game. The first step is to determine the optimum
reward r̂ from equation (16). If the data aggregator accepts
the offer 〈ρ, γ 〉 with incentive r , his payoff will be:

Uag = (γ − r)(a.ε(Lq(α)).vi,t + b.r)− β (21)

Calculating the derivative of Uag with respect to r and
setting it to zero reveals the maximizing r :

dUag

dr
=
d[(γ − r)(a.ε(Lq(α)).vi,t + b.r)− β]

dr
= 0 (22)

Solving equation (22) for r̂ we get:

r̂ =
γ.b− a.ε(Lq(α)).vi,t

2b
(23)

The second derivative dUag
dr = −2b < 0, this means the r̂

is the local maximum. The restriction here is r ≥ 0. If r̂ < 0,
the maximizing r will be zero. The lower bound on r leads us
to consider two separate cases:

1) If γ.b > a.ε(Lq(α)).vi,t then the amount of reward that
maximizes Uag is r̂ = γ.b−a.ε(Lq(α)).vi,t

2b . Substituting for r̂
in equation (22) gives us the maximum payoff to the data
aggregator:

Ûag =
b
4
(γ +

a.ε(Lq(α)).vi,t
b

)− β (24)
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The data aggregator will accept the offer if Ûag ≥ 0. This
means when the following condition is satisfied:

γ +
a.ε(Lq(α)).vi,t

b
≥

√
4β
b

(25)

2) If γ.b < a.ε(Lq(α)).vi,t then the optimum reward value
would be r̂ = 0 which gives the data aggregator a maximum
payoff:

Ûag = γ (a.ε(Lq(α)).vi,t )− β (26)

The data aggregator will accept the offer if Ûag ≥ 0. This
means when the following condition is satisfied:

γ (a.ε(Lq(α)).vi,t ) ≥ β (27)

Substituting the values in conditions 1) and 2) into equa-
tion (19), then we can define the number of consumers as
follows:

N =



a.ε(Lq(α)).vi,t + b.γ if γ.b ≥ a.ε(Lq(α)).vi,t

and γ+
a.ε(Lq(α)).vi,t

b
≥

√
4β
b

a.ε(Lq(α)).vi,t if γ.b < a.ε(Lq(α)).vi,t
and γ (a.ε(Lq(α)).vi,t ) ≥ β

0 otherwise
(28)

Next, we provide the experimental evaluation of the
mechanism.

FIGURE 4. ADL example derived from power consumption data.

VI. EXPERIMENTS AND RESULTS
In this section, we present numerical experiments to test the
validity of the proposed mechanism. For the experiments,
we use a dataset of household power consumption provided
by ‘‘UMass Trace Repository’’ [44], which provides daily
power consumption records of appliances inside a house.
We have used the data to extract the relevant information
and categorize the data using the ADL model for several
days worth of power consumption. A sample view of power
consumption data categorized according to ADL is shown in
figure 4. The data is for one house only over many months of
power consumption. We built our experiment for 1000 users.
For each data category we have assigned a privacy risk
value PRi,t to be uniformly distributed between 0 and 1 to
reflect the privacy attitude of different types of users. For the
privacy cost valuation vi,t we assumed that the data record
cost varies between 1 and 5 cents. Each consumer value

the offer and opt in or opt out of the dataset after valuating
the privacy level and the reward value. In every setting, the
experiment examines the effect of the privacy level variation
on the overall benefit of both the data analyst and the data
aggregator. This is measured by the number of consumers
that opts in. The choice of ε, which reflects the privacy level,
is based on the suggestion provided in [41]. We simulated
the value of ε to take values 0.1, 0.2, 0.3, 0.4, and 0.5 these
values reflect different probabilities of privacy breach events.
We also assumed that the payment corresponding to these
values are 13, 12, 11, 10, 9, and 8 cents respectively.

FIGURE 5. Number of consumers versus the privacy level.

In every run of the experiment we aim at testing the behav-
ior of consumers, i.e. opting out or opting in, measured by
the number of records, then the profitability of the aggregator
given the number of records. We assumed that each consumer
has one record and the outcome of the game would be the
inclusion or exclusion of this record in the dataset. We first
start by fixing the values of parameters a and b in equation (6).
Specifically, we give more weight to the privacy cost over the
reward for each value of ε. We assumed that the cost incurred
by the aggregator is fixed and equal to 10 cents per record,
which is in line with real scenarios. In figure 5, we show the
number of consumers records versus the chosen value of ε.
As the value of ε increases, user become concerned about
their privacy and as a result fewer number of consumers
would opt in if the value of reward does not change at least
for the pragmatic consumers who try to weigh between the
reward and the privacy level. Smaller values of ε attracts more
data users to opt in without severely affecting the precision of
the queries. The data user can make more profit in this case
as can be seen in figure 6. Furthermore, based on the settings
chosen, after a certain point the cost becomes too high for
condition of equation (27) to be satisfied. In this case, the
data aggregator is receiving a lower payment that limits him
to announce non-zero rewards. In such case, many consumers
prefer to opt out. At this stage, the data aggregator would not
be able to find a combination of ε and γ that is acceptable
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FIGURE 6. Aggregator Profit versus the privacy level.

to maintain Uag ≥ 0. As ε increases, the test shows that
individual’s marginal expected harm increases endlessly. But,
this could be unreasonable and there should be a maximum
cost for participating. The cost curve could be refined for very
small and very large values of ε.

FIGURE 7. Reward effect on the number of consumers’ decision.

In figures 7 and 8, we present an experiment where the
value of ε is fixed for 0.1 and 0.2, but we let the parame-
ters a and b to vary so that they reflect the privacy attitude of
a wider spectrum of consumer types. In the first experiment,
we fixed the value of a as before, but we let the value of
parameter b to take the values 0.1, 0.2, 0.3, 0.4, and 0.5.
The aim of this experiment is to study the effects of con-
sumers’ privacy attitude on stable values of ε. According to
figure 7, as the number of privacy unconcerned group who
value the reward more than the privacy increase, the data
user can receive larger volume of data without asking for
sanitized dataset. This is clear in figure 7 for both values of ε.
In figure 8, we fixed the value of b and we let a take values
1, 2, 3, 4, and 5. By increasing the value of a we model
a privacy aware population. As can be seen in figure 8,

FIGURE 8. Privacy Cost effect on the number of consumers’ decision.

when privacy has more significant impact on consumers’
decisions, the data analyst must choose appropriate
anonymization levels to convince more consumers to par-
ticipate in the dataset. In both experiments, we show how
the attitude of consumers reflected here by the choice of
parameters a and b influence the stability values of ε. If b is
less than a certain level then it mainly influences the price
of information and not the level of noise added to the data
records. However, when consumers become more interested
to receive a larger reward, the data analyst can maximize
his utility by just increasing the price and asking for less
privacy. These experiments show how consumers attitude
towards privacy is crucial in designing balanced markets for
fair sharing of data. The experiments also provide a principled
way to choose reasonable values for privacy parameter ρ,
here as ε, and γ based on parameters with more immediate
connections to the real world.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented a mechanism for sharing power
consumption data in deregulated smart grids. We presented
the concept of Activities in Daily Living as a means of
data categorization and to help the data aggregator and
the consumers to identify privacy risk values. We provided
explanations of privacy cost based on privacy risk, and we
modeled the privacy tradeoffs using a game theoretic model
and presented the negotiation aspects of the game. Also,
we explained the general approach of solving the game and
its equilibrium points. We used the concept of differential
privacy as an anonymity mean to minimize the leakage of
information and as a negotiation parameter to specify the
privacy level and the associated payment. The results of
or experiments show the importance of consumers’ attitude
towards privacy. The experiments also provide a principled
way to choose reasonable levels of anonymization to have a
balanced framework. However, like any model, ours relies on
some simplifying assumptions; for instance, we assume that
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participants increase their cost linearly with the privacy risk
value or with the anonymization level. These assumptions
may require a more detailed modeling and user based studies
to reflect reality.

Our plan for the future is as follows: We first would like
to consider different setup of the negotiation game where the
data analyst sends the query first without specifying the level
of privacy and price, but instead presented with a menu of
optimal prices and anonymity level. This will allow the data
aggregator to ensure that prices are set such that, whatever
disclosure is obtained by the analyst, all contributing indi-
viduals are properly compensated. Second, we would like to
study the case where intelligent mechanism installed in smart
meters provide personalized anonymity levels for automatic
involvement in themarket. This will reduce the cost burden on
the aggregator and provides consumers with better sensibility
of involvement in the decision making of their own assets.
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