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ABSTRACT While visual or tactile image data have been conventionally processed via filters or perceptron-
like learning machines, the recent advances of computational topology may make it possible to successfully
extract the global features from the local pixelwise data. In fact, some inventive algorithms have succeeded
in computing the topological invariants, such as the number of objects or holes and irrespective of the shapes
and positions of the touches. However, they are mostly offline algorithms aiming at big data. A real-time
algorithm for computing topology is also needed for interactive applications such as touch sensors. Here, we
propose a fast algorithm to compute the Euler characteristics of touch shapes by using the Poincare—Hopf
index for each pixel. We demonstrate that our simple algorithm, implemented solely as logical operations in
Arduino, correctly returns and updates the topological invariants of touches in real time.

INDEX TERMS Poincare-Hopf index, topology, invariance, touch counter, sensor networks.

I. INTRODUCTION

Although our brain can quickly count the number of, say,
objects on a screen or touches on a skin, irrespectively of
their shapes and positions [1]-[3]. it is still difficult to extract
such global or topological features from a pixelwise image
in real time pattern recognition. Although various filters
including perceptrons have been conventionally used for
pattern recognition [4], [5], they do not perfectly achieve
topological invariance under object deformations and
translations. Generally, their analogue nature of processing
makes it difficult to count a number in integer with the
infinite precision [6], [7]. Therefore, it is worth examining
an alternative algorithm, which can be, hopefully, realized
as simple and fast operations with the perfect invariance
guaranteed.

To compute the topological invariants such as the num-
ber of distinct objects in an image, the algorithms based
on topology, a major area of mathematics [8]-[10], can be
more effective than ad hoc algorithms. Fortunately, recent
advances of the field of computational topology made it
possible to compute topological invariants in an accessible
way [11]-[18]. However, the inventive algorithms of com-
putational topology mostly aimed at off-line computation
on serial [19]-[22] or parallel system computers [23]-[25].
Therefore the real-time algorithms and their implementations

for computing topology remain to be developed for
interactive applications such as touch sensors.

In this paper, we propose a real-time algorithm to compute
the Euler characteristics of a binary touch image via the graph
theoretical or discretized Poincare-Hopf index [26]. Validated
by topology, the proposed algorithm can accurately count
the number of islands in a touch image or the number of
holes in a touch, irrespectively of the shapes and positions
of the touches. The key idea is to compute the Poincare-Hopf
index for each point and sum them for all the points to obtain
the Euler characteristics. Among many algorithmic variants
for Euler characteristics [9], [10], [22], [25], we believe that
our fast algorithm uses the least resources. This is because
it only utilizes (half of) the sparse ‘“‘critical” points for a
Morse or height function based on the topological as well as
combinatorial formulation of the Poincare-Hopf index [26].
We demonstrate that our implementation in Arduino, in the
form of solely local logical operations and without any
time-consuming iterative operations, returns and updates the
correct topological invariants of touches in real time.

The background mathematics here is rather advanced, but
we try to keep the paper as accessible as possible by engineers
and designers. One of the goals of this paper is to import
the state-of-the-art idea from mathematics and explain it as
plainly as possible. Our substantial contribution resides in
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the simplification of Poincare-Hopf indices for a binary touch
image on a two-dimensional triangular lattice by exhausting
possibilities and its circuit implementation solely as reduced
logical operations for enabling real-time tracking.

In Sec. 2, we introduce the problem setting of a binary
touch image and propose a fast algorithm to compute the
topology of touch shapes via Poincare Hopf index. After we
briefly review the mathematics of the Poincare-Hopf index
for computing the Euler characteristics, we demonstrate that
our simple algorithm, that can be implemented in logical
gates, returns and updates the correct topological invariants
of touches in real time. In Sec. 3, we present a summary and
discussions.

Il. RESULTS

We consider the problem of real-time computing the topo-
logical invariants of touches, which are independent of touch
shapes and positions. As the alternating sum or difference is
generally easier to compute, here we are especially interested
in the Euler characteristics,

x = #islands — #holes. (1

It can be useful, for example, to count the number of marbles
(without holes) in a binary image or to count the number of
holes in a single touch as we will see.

A. PROBLEM SETTING

For ease of comprehension, let us begin with a simple exam-
ple of a “six” shape touch in Figure 1. The tactile sensors
are densely located on a two dimensional triangular lattice
to sense tactile stimulations at each point. The goal is to
count the topological invariant, in this example the number
of holes (=1) in this binary image (2-clique complex with the

FIGURE 1. Example of a binary touch image on a two dimensional
triangular lattice. The touched point is colored black. When the
neighboring two points are both touched, they are connected by a black
line. In our problem setting, for a touch image of an arbitrary shape, we
would like to compute the Euler characteristics, #islands — #holes

(=1 -1 = 0 for this example), as a topological invariant. Here we

do not count local triangles as a hole.
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graph as 1-skeleton), irrespective of the shapes and positions
of the stimulating touch. Note that a touch has an arbitrary
shape of finite size while each point sensor can sense and keep
whether each point is touched so far or not.

B. COMPUTING THE EULER CHARACTERISTICS OF
TOUCHES VIA POINCARE HOPF INDEX

Here we overview how to compute the Euler characteristics
(= #islands — #holes) via Poincare-Hopf indices.

First we compute the Poincare-Hopf index for each lattice
point as colored in Figure 2. It is +1 (red), —1 (blue) or
0 (otherwise), depending on the exit (or downward) patterns
of connections as shown in Figure 3. That is, a blue point is
a point that is connected to only two side points out of three
downward points, and a red point is not connected to any of
three downward points. We will explain why only downward
patterns matter for the index in the next subsection.

FIGURE 2. Example of Poincare-Hopf indices assigned on lattice points.
The nonzero indices +1 and —1 were indicated by red and blue colors,
respectively. The Euler characteristics for this touch image can be
computed as the sum of all the indices (= #red points—

#blue points = 11 — 11 = 0).

index = 1 Index = -1

Q
Q
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FIGURE 3. The rule for Poincare-Hopf index for each point. It is +1 (red),
—1 (blue) or 0 (otherwise), depending on the downward patterns of
connections. That is, a blue point is a point that is connected to only
two side points out of three downward points, and a red point is not
connected to any of three downward points.

Finally, the Euler characteristics is obtained as the sum
of Poincare-Hopf indices for all the points. In the case of
Figures 1 and 2, the Euler characteristics via Poincare-Hopf

2567



IEEE

The journal for rapid open access publishing

K. Miura, K. Nakada: Real-Time Computing of Touch Topology via Poincare-Hopf Index

index is given by
x = #red — #blue = 11 — 11 = 0. 2)

Note that this is always equal to the “topological” Euler
characteristics computed as

x = #islands — #holes=1—1 =0, 3)

as we will explain in the next subsection. Figure 4 demon-
strates that this algorithm also works for other examples.

C. MATHEMATICAL BACKGROUND OF POINCARE-HOPF
INDEX TO RIGOROUSLY COMPUTE EULER
CHRACTERISTICS

Here we show some backgrounds why the Poincare-Hopf
indices rigorously compute the Euler characteristics.

Historically the Euler characteristics and the
Poincare-Hopf index were defined in the continuous setting,
say, for surfaces like a swim ring. Because triangulated
surfaces are more tractable for computations on computers,
a discretized version has been recently developed [26].
Although this discretized formulation reproduces the
continuous Poincare-Hopf index for the case of a trian-
gulated surface (which we specifically use), it actually
works for a general graph (clique complex) for the pur-
pose of computing the Euler characteristics. Note that, for
a general graph, the Euler characteristics is combinatorially
defined as the alternating sum of the number of k-cliques:
X = Y pep #k-cliques.

Although the Poincare-Hopf indices can be computed for a
given flow (vector field) on a surface, the specific case called
the Morse index has been especially useful, where non-zero
indices are assigned for the critical points of an arbitrary given
height function (or a gradient flow). Therefore we simply
considered y-axis as a height function when we specifically
focused on a two-dimensional triangular lattice for the appli-
cation purpose. To be precise, we wrote down and simplified
the coloring rule (red or blue) for all possible downward
cases in this specific lattice. Note that as we used the graph
theoretical index based on the combinatorial formulation, it
actually count only half of the critical points, computationally
favorably.

To obtain the Poincare-Hopf index for this discretized
setting, we simply need to count the number of downward
destinations. In Figure 3, the red case has zero downward
destination and the blue case has two downward destinations.
Note that although any generic hight function works, we
solely used y-axis itself as a hight for simplicity. Rigorously
speaking, the number of destinations means the number of
islands (or connected components) and, thus, the cases other
than Figure 3, the destinations are all connected (= 1) as
shown in Figure 5. (For a general graph, you should compute
the Euler characteristics of the subgraph set of destinations
instead of simply the number of destinations.)

Then, the Poincare-Hopf index at each point is defined as

index = 1 — #destinations. “4)
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FIGURE 4. Additional examples of Poincare-Hopf indices. The nonzero
indices +1 and —1 were indicated by red and blue colors, respectively.
The Euler characteristics via the Poincare-Hopf index (=#red points —
#blue points) is equal to the topological Euler characteristics
(=#islands — #holes) for each case, that is, 1, 3, and —1, respectively.

Therefore it is 1 for the red point, —1 for the blue point, and
0 otherwise. As is evident in Figures 2 and 4, the index detects
the saddle-like points (blue) and the minimum (red) and they
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0=1-1 -1=1-2 0=1-1 0=1-1 1=1-0
[ J
@ ./\ D (terminal)
#islands=1 #islands=2 #islands=1 #islands=1 #islands=0

FIGURE 5. The rule for Poincare-Hopf index (=1- #destinations) for all eight patterns of downward connections. As there are three downward edges,
the existence or absence of each edge results in eight patterns in total. However, to save space, the symmetric and equivalent three patterns were
omitted. The green dots and edges represent the destinations called exit sets. The green integers denote the numbers of isolated destinations. The
underlined integers denote the Poincare-Hopf indices for each top point. Note that the number of destinations is one and thus the index is

zero except for the two patterns shown in Figure 3.

correctly amount to the Euler characteristics (=#islands —
#holes), at least for the given examples. And it is well known
that the difference of the numbers of red and blue points is
an invariant under morphing, because adding an extra bunch
to a camel back only increases one saddle and one minima
(or maxima) together, keeping the difference. That is, even
if we prolong a shape, it simply adds the equal numbers
of saddles (blue points) and minima (red points). Although
the above explanation is just intuitive, it is proven that this
definition correctly computes the Euler characteristics [26].
Note that, again, although the conventional Morse theory
count both the minima and maxima, here we count only
minima from the symmetry to save computational resources.

D. A CONCRETE ALGORITHM FOR IMPLEMENTATION
Here we show a concrete algorithm to compute the
Poincare Hopf index for each point in a two dimensional
binary image. Often, the image is given in the form of a
square lattice. So here we assume a square image represented
by uy; ;1. In that case, you can downsample the lattice points
in order to obtain a triangular lattice as in Figure 6. To be
specific, you can only consider the points where i+ is even or
letuy; jj = Oif i+j odd. Notice thatin the hardware implemen-
tation we used logical operations instead of *“if then” branch
to gain speed.

Wi j

U 4

] Wi, ]

Wi js2]

FIGURE 6. Notation to derive a logical operation for Poincare-Hopf index
for downsampled case. As we downsample from a square lattice uj; ; to

obtain a triangular lattice, we only consider the points where i +j is even
and let uj; j) = 0 for i +j odd.
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Then by using the notation in Figure 6, the rule to compute
the Poincare-Hopf index in Figure 3 at the point (x, y) = (i, j)
can be described as

my; ) = upi (1 — upi—1 1) — up o) — Ui j1y)
upi jui—1,j+11 (10 — upi jroDupiv j+11- (5)

Note that m; j can be nonzero only when either of the above
two terms is nonzero, corresponding to the two cases in
Figure 3. That is, the first term of the right-hand side of
the equation corresponds to the red point while the second
term to the blue point. Again, the Euler characteristics of
the image is the sum of the Poincare-Hopf indices of all
points.

E. DEMONSTRATION BY ARDUINO IMPLEMENTATION

In order to demonstrate the proposed algorithm, we con-
cretely implemented it on a microcontroller board, Arduino
(Figure 7), with a TFT touchscreen, which computes the
Euler characteristics of touches automatically and updates it
in real time.

We successfully computed the Euler characteristics
(= #islands — #holes) for the inputs by finger. For example,
the top picture in Figure 4 has two islands and no hole,
resulting in x = 2 — 0 = 2. The next picture has one island
and one hole, resulting in x = 1 — 1 = 0. The next picture
has one island and two holes, resultingin y =1 -2 = —1.
The bottom picture has one island and three holes, resulting in
x = 1—3 = —2. Thus our implementation correctly updated
the Euler characteristics in real time when we continued to
add points directly on the touch screen.

To achieve the speed for interactive responsiveness, the
implementation was designed as logical operations in an
Arduino programming language like Wiring. The specifi-
cation of our implementation is as follows: Arduino Uno,
a microcontroller board equipped with the AVR 8bit micro-
controller, a 16MHz quartz crystal oscillator, and a 32KB
Flash memory, and the Adafruit 2.8” TFT Touch Shield with
a touchscreen display (240x 320 pixels) and capacitive touch
functionality.
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. Cap Toue
. Capacitive touchscreer

FIGURE 7. Demonstration by real-time Arduino implementation of
proposed algorithm. While the sensors keep all the past touched points,
the monitor indicates the Euler characteristics (= #islands — #holes)

for the touch image displayed on the touchscreen. Note the monitor
updates the number whenever a new island or a hole appears. For
example, the top picture has two islands and no hole, resulting in

X =2 — 0 = 2. The second picture has one island and one hole, resulting
in x =1 -1 = 0. The third picture has one island and two holes, resulting
in x =1 —2 = —1. The bottom picture has one island and three holes,
resultingin x =1 -3 = -2.

Ill. SUMMARY AND DISCUSSIONS

In this paper, we proposed a real-time algorithm to compute
the Euler characteristics of a binary touch image via
Poincare-Hopf indices. Validated by topology, the proposed
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algorithm accurately counts the number of islands in a touch
image or the number of holes in a touch, irrespectively
of the shapes and positions of the touches. The key idea
is to compute the Poincare-Hopf indices for a few active
points and sum them to obtain the Euler characteristics.
We demonstrate that our implementation in Arduino, in the
form of solely local logical operations, returns and updates
the correct topological invariants of touches in real time. Thus
the advantage of our implementation resides in the real-time
computation supported by the sparse Poincare-Hopf indices,
which enabled interactive applications with touchscreens.
The proposed algorithm of the logical form representation
can be implemented in any circuits such as FPGAs and is
never specialized to our Arduino codes with a microcomputer
board.

Regarding the computational speed, the algorithm pro-
posed in the current paper is much faster than our previous
implementation [25]. This is because the previous one needed
an iterative matrix multiplication, although our previous one
and other offline algorithms can compute not only the Euler
characteristics (= #islands — #holes) but also individual Betti
numbers such as #islands or #holes separately, at the expense
of the computational time. Therefore the previous offline
algorithms can be complementary to the proposed algorithm.
To be concrete, you can utilize the proposed algorithm if you
only need the Euler characteristics but not each component of
its alternating sum.

An alternative algorithm for the Euler characteristics
without iterations could be to use the Euler’s formula:
x = #points — #edges + #faces. However, the counting the
number of triangular faces costs resources as it requires to
confirm whether all the three points for each triangle (triplets)
exist or not. In general, the algorithm that uses as little (active)
points as possible such as the proposed algorithm that uses the
critical points may be resource efficient. Thus our algorithm,
which counts only half of the critical points, can be the
fastest among the algorithmic variants for computing Euler
characteristics.

In addition to the speed, there are possible extensions that
truly take an advantage of the Poincare-Hopf index. First, you
can improve the real-time algorithm by utilizing the locality
of the index. For example, the Poincare-Hopf index needs to
be updated only when the surrounding pixels have changed.
Second, the sensor network can be easily extended to any
complicated shape in three dimensional space. Actually the
algorithm extends to general graphs (clique complexes) rather
straightforwardly.
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