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ABSTRACT Iterative turbo equalization is capable of achieving impressive performance gains over the
conventional non-iterative equalization having the same complexity, when communicating over channels
that suffer from intersymbol interference (ISI). The state-of-the-art turbo equalizers employ the logarithmic
Bahl–Cocke–Jelinek–Raviv (Log-BCJR) algorithm. However, due to the specific nature of serial data
processing, the Log-BCJR algorithm introduces significant processing delays at the receiver. Therefore,
in low-latency applications having a high throughput, the turbo equalizer might be deemed less attractive
than its conventional counterparts. In order to circumvent this problem, in this paper, we conceived a novel
fully parallel turbo equalization algorithm, which is capable of significantly reducing the data processing
delay and, hence, improving both the processing latency and the attainable throughput at the receiver. The
fully parallel equalizer is then combined with the fully parallel turbo decoder for improving the system
performance achieved in terms of the bit error ratio. Furthermore, we propose a novel odd–even interleaver
design for employment between the fully parallel equalizer and the fully parallel turbo decoder in order to
reduce complexity by 50% in fully parallel turbo equalization arrangements, while retaining a comparable
performance. Finally, we compare the computational complexity, latency, throughput, hardware resource
requirements, and the bit error ratio of the proposed fully parallel scheme to those of a Log-BCJR-based
turbo equalizer benchmarker.

INDEX TERMS Fully-parallel turbo equalization, iterative equalization and decoding.

NOMENCLATURE
ACRONYMS
ARP Almost regular Permutation
AWGN Additive White Gaussian Noise
BER Bit Error Ratio
BPSK Binary Phase Shift Keying
Log-BCJR Logarithmic Bahl-Cocke-Jelinek-Raviv
FPTD Fully-Parallel Turbo Decoder
FPTDS Fully-Parallel Turbo Detection Scheme
FPE Fully-Parallel Equalizer
LLR Logarithmic Likelihood Ratio
LTE Long Term Evolution
NSW Non-Slide Windows
QPP Quadratic Polynomial Permutation
RAM Random Access Memory
WCDMA Wideband Code Division Multiple Access

LIST OF SYMBOLS
b The multiplexed bit vector at the transmitter
b1 The message bit vector at the transmitter
b2 The parity bit vector at the transmitter

b3 The systematic bit vector at the transmitter
b̄a The a priori multiplexed LLR vector at the receiver
b̄e The extrinsic multiplexed LLR vector at the receiver
b̄a1 The a priori message LLR vector at

the turbo decoder
b̄e1 The extrinsic message LLR vector at

the turbo decoder
b̄a2 The a priori parity LLR vector at the turbo decoder
b̄e2 The extrinsic parity LLR vector at the turbo decoder
b̄a3 The a priori systematic LLR vector at

the turbo decoder
b̄e3 The extrinsic systematic LLR vector at

the turbo decoder
b̄p3 The a posteriori systematic LLR vector at

the turbo decoder
c The interleaved bit vector at the transmitter
cc The transmitted symbol vector at the transmitter
c̄a The a priori LLR vector of the equalizer
c̄c The received symbol vector of the equalizer
c̄e The extrinsic LLR vector of the equalizer
n The additive white Gaussian noise
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ᾱa The a priori forward state metric of
the turbo decoder

ᾱe The extrinsic forward state metric of
the turbo decoder

β̄
a

The a priori backward state metric of
the turbo decoder

β̄
e

The extrinsic backward state metric of
the turbo decoder

ᾱE,a The a priori forward state metric of the equalizer
ᾱE,e The extrinsic forward state metric of the equalizer

β̄
E,a

The a priori backward state metric of the equalizer

β̄
E,e

The extrinsic backward state metric of the equalizer
C The computational complexity
D The time period duration
I The number of decoding iterations
I I The number of equalizer-to-turbo-decoder iterations
IO The number of turbo-decoder iterations
L The number of states in the equalizer trellis
M The number of states in the turbo code trellis
N Frame length
Sk The k th state of the trellis
T The number of time periods per decoding iteration
X The computational resource requirement
Y The register resource requirement
Z The RAM resource requirement
h The fading coefficient
k Bit/symbol/state index
l Tap index
l Lower encoder/decoder
u Upper encoder/decoder

I. INTRODUCTION
Berrou and his team [1] proposed the first turbo equalisa-
tion scheme, where the equalizer and the channel decoder
exchange their soft-decision based information by perform-
ing iterative detection in order to gradually eliminate the
channel-induced Inter-Symbol Interference (ISI). Inspired
by this contribution, this problem was further investi-
gated by a large number of researches [2], [3]. As shown
in [4] and [5], the turbo equalizers offer a substantially
improved performance over the family of non-iterative
linear equalizers [6], [7]. The closely-related family of turbo
codes [8], [9] has been adopted for providing error cor-
rection in a number of advanced communication systems,
such as the 3rd-GenerationWideband Code DivisionMultiple
Access (3G WCDMA) [10], [11] and the 4th-Generation
Long Term Evolution (4G LTE) systems [12]. A turbo detec-
tion scheme [13], [14] may comprise a serial concatenation of
an equalizer with a turbo decoder, which comprises a paral-
lel concatenation of two component convolutional decoders.
By iteratively exchanging soft information in the form of
Logarithmic LikelihoodRatios (LLRs) [8] between the equal-
izer and the pair of constitute convolutional decoders of the
turbo code, the resultant turbo detection scheme is capable of

facilitating reliable communications at transmission through-
puts that approach the channel capacity [3], [15]. Classic
turbo detection schemes typically employ the Logarithmic
Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm [16]. This
is successively applied to the equalizer and to the two con-
volutional decoders, until an error-free decoded frame is
obtained or until the maximum number of decoding iterations
is reached. However, the Log-BCJR algorithm has an inher-
ently serial processing nature, owing to the data dependencies
within its forward and backward recursions as detailed in [3].
This limits both the achievable processing throughput and
the latency of conventional turbo detection schemes, which
imposes a bottleneck both on the transmission throughput
and on the end-to-end latency in real-time communication
systems.

A number of techniques have been proposed for increasing
the grade of parallelism and hence for improving both the pro-
cessing throughput and latency of Log-BCJR turbo decoders
although these techniques have only found limited appli-
cation to turbo equalizers. These solutions include shuffled
iterative decoding [17], sub-block parallelism [18], [19], the
Radix-4 transform [20] and the Non-Sliding Window (NSW)
technique [20]. These techniques allow both recursions of
both convolutional decoders to be performed simultaneously,
as well as allowing the recursions to consider several turbo-
encoded bits per time period. However, in each case, the data
dependencies of the forward and backward recursions require
the turbo encoded bits of each convolutional decoder to be
processed serially, spread over numerous consecutive time
periods. As a result, each turbo decoding iteration requires
hundreds or even thousands of processing time periods, hence
limiting the attainable processing throughput of the state-of-
art turbo decoder [20] to 2.15 Gbit/s, which is far below the
10 Gbit/s target of the emerging 5G systems [21].

Against this background, we previously proposed the
Fully-Parallel Turbo Decoder (FPTD) algorithm [22], where
all turbo-encoded bits in the frame may be decoded in par-
allel, allowing each turbo decoder iteration to be completed
using just one or two time periods. This offers a more than
six-fold processing throughput and latency improvement over
the state-of-the-art Log-BCJR turbo decoder, when employed
for the LTE turbo code [22]. As a result, the FPTD facilitates
both processing throughputs exceeding 10 Gbit/s and ultra-
low processing latencies, hence satisfying the challenging
requirements of 5G for the first time. The milestones of
the development of the iterative turbo decoding and turbo
equalization are shown in Table 1.

Against this background, in this paper we propose a novel
Fully-Parallel Turbo Detection Scheme (FPTDS) for high-
throughput and low-latency applications. Our novel contri-
butions are detailed as follows:

1) We propose a novel Fully-Parallel Equalizer (FPE), as
well as FPTDS, where the FPE is operated in parallel
with the FPTD conceived in [22] and [26].

2) We propose a novel odd-even interleaver for the pro-
posed FPTDS in order to reduce the complexity of the
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TABLE 1. Development of turbo decoding and turbo equalization.

system by 50%, while maintaining a comparable Bit
Error Ratio (BER).

3) We quantified the computational complexity, latency,
throughput, hardware resource requirements as well as
BER of the proposed FPTDS and compared them to
those of the conventional Log-BCJR turbo detection
benchmarkers.

The outline of the paper is as follows. Section II describes
our novel FPTDS, where the novel FPE and the FPTD are
operated in parallel. Our novel odd-even interleaver Con-
ceived for reducing the computational complexity of the
FPTDS is proposed in Section III. Section IV investigates
the computational complexity, throughput, hardware resource
requirements of the FPTDS and compare them to those of
the Log-BCJR benchmarkers. The BER performance of the
proposed FPTDS is quantified and compared to the bench-
markers in Section V. Finally, our concluding remarks are
offered in Section VI.

II. SYSTEM ARCHITECTURE
The architecture of the proposed FPTDS is shown in Fig.1.
In the turbo encoder [8] of the transmitter, a message bit
vector bu1 = [bu1,k ]

N
k=1 comprising N number of bits is

encoded by the upper convolutional encoder, generating the
parity bit vector bu2 = [bu2,k ]

N
k=1 and the systematic bit vector

bu3 = [bu3,k ]
N
k=1 = bu1. Meanwhile, the message bit vector bu1

is interleaved by the block5 in order to obtain the interleaved
message bit vector bl1 = [bl1,k ]

N
k=1 and then it is encoded

by the lower convolutional encoder to produce the parity bit
vector bl2 = [bl2,k ]

N
k=1. Following this, the systematic bit

FIGURE 1. The iterative equalization and decoding system.
(a) Transmitter. (b) Receiver.

vector bu3 and the parity bit vectors b
u
2 and b

l
2 are multiplexed

in order to form the bit vector b = [bk ]3Nk=1 comprising 3N
bits, which is then interleaved by the block 5E of Fig. 1
into the bit vector c = [ck ]3Nk=1. Finally, the bit vector c is
modulated, resulting in the symbol vector cc = [cck ]

3N
k=1. For

simplicity, Binary Phase Shift Keying (BPSK) modulation is
assumed, according to cck = 2ck − 1.

The symbol vector cc is assumed to travel through a
wireless channel which is contaminated by ISI caused by
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multipath fading having ` taps and then by the Additive
Gaussian White Noise (AWGN) n = [nk ]3Nk=1 having a

noise variance of σ 2. The fading coefficients [hl]`l=0 obey the
Rayleigh distribution and are normalized to a unity power.
The received signal may be modelled as:

c̄ck =
∑̀
l=0

hlcck−l + nk , k = 1, 2, . . . , 3N . (1)

In the following sections, wewill describe the conventional
Log-BCJR turbo detection scheme and the novel FPTDS.
In each section, we will detail the equalizer, the turbo decoder
and the iterative turbo equalization and decoding operations
exchanging soft-information between them.

A. CONVENTIONAL LOG-BCJR TURBO DETECTION
The conventional equalization and decoding may rely on
I I equalizer-to-turbo-decoder and IO turbo-decoder itera-
tions. The equalizer-to-turbo-decoder iterations are carried
out between the equalizer and the turbo decoder, while
the turbo-decoder iterations are performed between the two
component decoders of the turbo decoder. The equalizer-to-
turbo-decoder iterations between the equalizer and the turbo
decoder are continued, until no more errors are detected or
until reaching the maximum affordable number of equalizer-
to-turbo-decoder iterations. The presence of errors may be
detected using classic error detection codes, such as Cyclic
Redundancy Check (CRC) codes.

1) LOG-BCJR EQUALIZER
The received signal vector of 3N symbol c̄c is first equalized
by the equalizer, where the Log-BCJR equalization algo-
rithm [4] is employed. As seen in Fig. 1, the inputs of the turbo
equaliser comprise the symbol vector c̄c = [c̄ck ]

3N
k=1 received

from the channel and the a priori LLR vectors c̄a = [c̄ak ]
3N
k=1

gleaned from the turbo decoders.
In response, the turbo equaliser forwards the extrinsic LLR

vector c̄e = [c̄ek ]
3N
k=1 to the turbo decoder. Before being

forwarded to the turbo decoder, the extrinsic LLR vector c̄e

is deinterleaved by the block5−1E of Fig. 1 into the vector of
turbo-encoded LLRs b̄a = [b̄ak ]

3N
k=1 and then demultiplexed

into three a priori LLR vectors b̄u,a2 , b̄l,a2 and b̄u,a3 , where
the latter is deinterleaved by the block 5−1 of Fig. 1 to
obtain b̄l,a3 .
In each iteration, the equalizer will sequentially compute

the 3N extrinsic LLRs of c̄e based on (2)-(6). More specif-
ically, the equalizer uses (2) to combine the 3N LLRs c̄ck
and the 3N LLRs c̄ak gleaned from the channel and from
the FPTD, respectively, in order to to produce an a priori
transition metric γ̄ E

k (Sk−1, Sk ) for each transition in the
L = log2(`−1)-state trellis [4], namely for each pair of states
Sk−1 and Sk , for which it is possible for the equalizer to transi-
tion between, as indicated using the notation b(Sk−1, Sk ) = 1.
Then the 3N extrinsic forward state metric vectors
ᾱE =

[
ᾱEk = [ᾱEk (Sk )]

M−1
Sk=0

]3N
k=1 and the 3N extrinsic

backward state metric vectors β̄
E
=

[
β̄
E
k−1 =

[β̄Ek−1(Sk−1)]
M−1
Sk−1=0

]3N
k=1 are computed by (3) and (4), respec-

tively. As shown in (3), the k th forwardmetric ᾱEk (Sk ) depends
on the (k − 1)th forward metric ᾱEk−1(Sk ). Therefore, the
3N th forward metric ᾱE3N (Sk ) depends on the (3N−1)

th previ-
ous forward metrics. Consequently, the forward recursion is
spread over 3N time periods, resulting in a slow processing.
This is similar in the backward recursion.

δ̄E(Sk−1, Sk )=
[
b0(Sk−1, Sk ) · c̄ak (2)

+

∣∣∣c̄ck − ∑̀
l=0

(2bl(Sk−1, Sk )−1)·hl
∣∣∣2/(2σ 2)

]
,

ᾱEk (Sk )= max*
{Sk−1|c(Sk−1,Sk )=1}

[
γ E
k (Sk−1,Sk )+ᾱ

E
k−1(Sk−1)

]
,

(3)

β̄Ek−1(Sk−1) = max*
{Sk |c(Sk−1,Sk )=1}

[
γ E
k (Sk−1, Sk )+ β̄

E
k (Sk )

]
, (4)

δ̄E(Sk−1, Sk )= γ̄ E
k (Sk−1, Sk )+ᾱ

E
k−1(Sk−1)+β̄

E
k (Sk ), (5)

c̄ek =
[

max*
{(Sk−1,Sk )|b1(Sk−1,Sk )=1}

[δ̄E(Sk−1, Sk )]
]

−

[
max*

{(Sk−1,Sk )|b1(Sk−1,Sk )=0}
[δ̄E(Sk−1,Sk )]

]
−c̄ak .

(6)

Equations (3) and (4) employ the Jacobian logarithm,
which is defined for two operands as [8]

max∗(δ̄1, δ̄2) = max(δ̄1, δ̄2)+ ln
(
1+ e−|(δ̄1−δ̄2)|

)
, (7)

and may be extended to more operands by exploiting its
associative property. Alternatively, the exact max∗ of (7) may
be approximated by [27]

max∗(δ̄1, δ̄2) = max(δ̄1, δ̄2) (8)

Thereafter, an a posteriori transition metrics δ̄Ek (Sk−1, Sk )
is produced by (12) for each transition between the state Sk−1
and Sk in the trellis. Finally, (13) is employed to generate the
vector of 3N extrinsic LLRs c̄e = [c̄ek ]

3N
k=1, which will be

forwarded to the channel decoder.

2) LOG-BCJR TURBO DECODER
Again, the classic turbo decoder includes a pair of convo-
lutional component decoders, where both rely on the Log-
BCJR decoding algorithm [8], [22]. As illustrated in Fig. 1,
the inputs of each component decoder comprise the a priori
systematic LLR vector b̄a3 = [b̄a3,k ]

N
k=1 and the a priori parity

LLR vector b̄a2 = [b̄a2,k ]
N
k=1 from the equalizer, as well as

the a priori message LLR vector b̄a1 = [b̄a1,k ]
N
k=1 from the

other component decoder. Meanwhile, the outputs comprise
the extrinsicmessage LLR vector b̄e1 = [b̄e1,k ]

N
k=1 for the other

decoder and the encoded extrinsic LLR vector b̄e2 = [b̄e2,k ]
N
k=1

for the equalizer. For convenience, the superscripts u and l
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are omitted in this section and thereafter, wherever our dis-
cussions are equivalent for the upper and lower convolutional
decoders.

Similar to the equalizer, the decoding operations of the
component decoders employ the Log-BCJR algorithm based
on (9)-(14). More specifically, each component uses (9) to
combine the a priori LLRs b̄a1,k , b̄

a
2,k and b̄a3,k to produce

an a priori transition metric γ̄k (Sk−1, Sk ) for each pair of
transition states Sk1 and Sk , for which it is possible for the
convolutional encoder to traverse between, as indicated using
the notation c(Sk1, Sk ) = 1. Here, bj(Sk1, Sk ) is the value that
is implied for the bit bj,k by the transition between the state
Sk1 and Sk , according to the state transition diagram [22].
These vectors of transition metrics are then combined accord-
ing to (10)-(11), in order to produce the vector of N extrinsic
forward state metric vectors ᾱ =

[
ᾱek = [ᾱek (Sk )]

M−1
Sk=0

]N
k=1,

and the vector of N extrinsic backward state metric vectors
β̄ =

[
β̄
e
k−1 = [β̄ek−1(Sk−1)]

M−1
Sk−1=0

]N
k=1, respectively. Like the

Log-BCJR equalizer, the forward and backward recursions in
the Log-BCJR turbo decoder are also spread over N periods,
hence resulting in a slow serial processing.

γ̄k (Sk−1,Sk )=
3∑
j=1

[bj(Sk−1, Sk ) · b̄aj,k ], (9)

ᾱk (Sk )= max*
{Sk−1|b1(Sk−1,Sk )=1}

[
γ̄k (Sk−1, Sk )+ᾱk−1(Sk−1)

]
,

(10)

β̄k−1(Sk−1) = max*
{Sk |b1(Sk−1,Sk )=1}

[
γ̄k (Sk−1, Sk )+ β̄k (Sk )

]
,

(11)

δ̄(Sk−1, Sk ) = γ̄k (Sk−1, Sk )+ ᾱk−1(Sk−1)+ β̄k (Sk ),

(12)

b̄e1,k =
[

max*
{(Sk−1,Sk )|b1(Sk−1,Sk )=1}

[δ̄(Sk−1, Sk )]
]
− b̄a1,k

−

[
max*

{(Sk−1,Sk )|b1(Sk−1,Sk )=0}
[δ̄(Sk−1, Sk )]

]
−b̄a3,k ,

(13)

b̄e2,k =
[

max*
{(Sk−1,Sk )|b2(Sk−1,Sk )=1}

[δ̄(Sk−1, Sk )]
]

−

[
max*

{(Sk−1,Sk )|b2(Sk−1,Sk )=0}
[δ̄(Sk−1, Sk )]

]
−b̄a2,k .

(14)

Thereafter, an a posteriori transition metric δ(Sk−1, Sk )
is computed by (12) for each transition between the states
Sk−1 and Sk in the trellis, which is then substituted
into (13) and (14) for generating the uncoded and encoded

extrinsic LLR vector b̄
e
1,k =

[
b̄e1,k

]N
k=1 and b̄

e
2,k =

[
b̄e2,k

]N
k=1,

respectively. Again, these equations rely on the Jacobian
logarithm of (7). Following the final turbo-decoder iteration
between the two component decoders, an a posteriori LLR
pertaining to the k th message bit bu1,k may be obtained as

FIGURE 2. 2D EXIT charts of the FPTD at different Eb/N0 values. A LTE
M = 8-state turbo code [12] having a coding rate of 1/3 is employed
along with BPSK modulation for communication over a Rayleigh fading
channel. (a) Block connection of the FPTDS. (b) Block diagram of the FPE.
(c) Block diagram of the FPTD.

b̄u,p3,k = b̄u,e1,k + b̄u,a1,k + b̄u,a3,k . A hard decision for the message
bit bu3,k may then be obtained as the result of the binary

test b̄u,p1,k > 0.
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The extrinsic message LLR vectors b̄u,e1 and b̄l,e1 are iter-
atively exchanged between the upper and lower component
decoders for IO iterations. Following this, b̄a,e1 and b̄a,e1 are
summed to provide b̄u,e3 . Then b̄u,e3 , b̄u,e2 and b̄l,e2 are multi-
plexed to obtain b̄e and interleaved to obtain c̄a.

B. FULLY-PARALLEL TURBO DETECTION
In contrast to the conventional turbo detection scheme dis-
cussed in Section II-A, all of the symbols in the received
symbol vector c̄c may be simultaneously equalized by a FPE
and all of the corresponding LLRs may be simultaneously
decoded by a FPTD [22] in the FPTDS of Fig. 2, eliminating
the requirement for equalizer-to-turbo-decoder and turbo-
decoder iterations in the system. Instead, in each iteration of
the proposed FPTDS, the extrinsic LLR vector is passed from
the FPE to the FPTD through the deinterleaver 5−1E and the
demultiplexer of Fig. 1, while that of the FPTD is forwarded
to the FPE through the multiplexer and the interleaver5E of
Fig. 1 and Fig. 2a.

1) FPE
The FPE comprises 3N algorithmic decoding blocks, as
detailed in Fig. 2b. Observe in Fig. 2b that the inputs of
the FPE comprise the vector of 3N symbols c̄c = [c̄ck ]

3N
k=1

received from the channel, the a priori message LLR vector
c̄a = [c̄ak ]

3N
k=1 received from the FPTD during the previ-

ous time period, the a priori forward state metric vectors

ᾱE,a = [ᾱE,ak ]3N−1k=0 and the a priori backward state metric

vectors β̄
E,a
= [β̄

E,a
k ]3Nk=1, which are fed back from the FPE

during the previous time period. Meanwhile, the output of
the FPE includes the extrinsic LLR vector c̄e = [c̄ek ]

3N
k=1,

the forward state metric vectors ᾱE,e = [ᾱE,ek ]Nk=0 and the

backward state metric vectors β̄
E,e
= [β̄

E,e
k ]Nk=0, which will

be fed forward to the FPE for use during the next time
period. Before being forwarded to the FPTD, the extrinsic
LLR vector c̄e is deinterleaved into the vector b̄a = [b̄ak ]

3N
k=1

and then demultiplexed into three a priori LLR vectors b̄u,a2 ,
b̄l,a2 and b̄u,a3 , where the latter is interleaved in the block 5 to
obtain the a priori LLR vector b̄l,a3 of Fig. 1.

δ̄E(Sk−1,Sk )= ᾱ
E,a
k−1(Sk−1)+ β̄

E,a
k (Sk )

+

[
b0(Sk−1, Sk ) · c̄ak

+

∣∣∣c̄ck−∑̀
l=0

(2bl(Sk−1, Sk )− 1)·hl
∣∣∣2/(2σ 2)

]
,

(15)

ᾱ
E,e
k (Sk )=

[
max*

{Sk−1|c(Sk−1,Sk )=1}
[δ̄E(Sk−1, Sk )]

]
−β̄

E,a
k (Sk ),

(16)

β̄
E,e
k−1(Sk−1)=

[
max*

{Sk |c(Sk−1,Sk )=1}
[δ̄E(Sk−1, Sk )]

]
−ᾱ

E,a
k−1(Sk−1),

(17)

c̄ek =
[

max*
{(Sk−1,Sk )|b1(Sk−1,Sk )=1}

[δ̄E(Sk−1, Sk )]
]

−

[
max*

{(Sk−1,Sk )|b1(Sk−1,Sk )=0}
[δ̄E(Sk−1, Sk )]

]
−c̄ak .

(18)

In each time period, some or all of the 3N algorithmic
blocks of the FPEwill compute the outputs based on (15)-(18)
at the same time. More specifically, the algorithmic block
having the index k uses (15) to combine the received symbol
c̄ck and the a priori LLR c̄ak gleaned from the channel and
the FPTD, respectively, as well as the a priori state metric
vectors ᾱE,ak−1 = [ᾱE,ak (Sk )]

L−1
Sk=0

and β̄
E,a
k = [β̄E,ek (Sk )]

L−1
Sk=0

in

order to produce an a posteriori state metric δ̄E(Sk−1, Sk ) for
each transition in the state transition diagram [22], namely
for each pair of states Sk−1 and Sk for which it is possible for
the convolutional encoder to transition between, as indicated
using the notation c(Sk−1, Sk ) = 1. Note that bl(Sk−1, Sk )
is the value that is implied for the bits ck−l by the transition
between Sk−1 ∈ [0,L−1] and Sk ∈ [0,L−1], where L = 2`.
These a posteriori transition metrics are then combined with
the aid of (16)-(18), in order to produce the extrinsic forward
state metric vector ᾱE,ek = [ᾱE,ek (Sk )]

M−1
Sk=0

, the extrinsic back-

ward state metric vector β̄
E,e
k−1 = [β̄E,ek−1(Sk−1)]

M−1
Sk−1=0

and the

extrinsic LLR c̄ek , respectively. Again, (16) and (17) employ
the Jacobian logarithm of (7).

In contrast to the classic Log-BCJR equalizer, the for-
ward and backward state metrics ᾱE,ek and β̄

E,e
k−1 at a given

period only depend on the forward and backward statemetrics
fed back from the previous time period. Therefore, the data
dependencies of the forward and backward recursions are
broken, allowing fully-parallel operation. Hence, this speeds
up the processing by a factor, of which is up to 3N .

2) FPTD
The FPTD is described and analysed in great detail
in [22] and [26]. Briefly, a FPTD includes two convolu-
tional component decoders, each of which has N algorithmic
blocks. As illustrated in Fig. 2c, the inputs of each component
decoder comprise the a priori systematic LLR vector b̄a3 =
[b̄a3,k ]

N
k=1 and the a priori parity LLR vector b̄a2 = [b̄a2,k ]

N
k=1

contributed by the FPE during the previous time period, the
a priori message LLR vector b̄a1 = [b̄a1,k ]

N
k=1 gleaned from

the other component decoder in the previous time period, the
a priori forward state metric vectors ᾱa = [ᾱak ]

N−1
k=0 and the

backward state metric vectors β̄
a
= [β̄

a
k ]
N
k=1 fed back from

the component decoder in the previous time period, where
we have ᾱak = [ᾱak (Sk )]

M−1
Sk=0

, β̄
a
k−1 = [β̄ak−1(Sk−1)]

M−1
Sk−1=0

and M is the number of states in the corresponding state
transition diagram [22]. Meanwhile, the outputs comprise
the extrinsic message LLR vector b̄e1 = [b̄e1,k ]

N
k=1 for the

other decoder, the forward state metric vectors ᾱe = [ᾱek ]
N
k=1

and the backward state metric vectors β̄
e
= [β̄

e
k ]
N−1
k=0 which

will be fed forward for processing in the next time period,
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where ᾱek = [ᾱek (Sk )]
M−1
Sk=0

, β̄
e
k−1 = [β̄ek−1(Sk−1)]

M−1
Sk−1=0

.
Again for convenience, the superscripts u and l are omitted
in this section and thereafter, wherever our discussions are
equivalent for the upper and lower convolutional decoders.

In contrast to the FPTD of [22] and [26], the FPTD
here also outputs the extrinsic encoded LLR vector
b̄u,e2 = [b̄u,e2,k ]

N
k=1 and b̄l,e2 = [b̄l,e2,k ]

N
k=1 from the upper and

lower component decoder, respectively. These extrinsic parity
LLR vectors b̄u,e2 and b̄l,e2 along with the extrinsic systematic
LLR vector b̄u,e3 = b̄u,a1 + b̄u,e1 are multiplexed into b̄e and
then they are interleaved in the block 5 of Fig. 1, forming
the a priori LLR vector c̄a for the equalizer to use during the
next time period.

Simultaneously with the FPE, some or possibly all of theN
algorithmic blocks in each component decoder of the FPTD
are operated in parallel. Each of these block performs the
operation of (19)-(23). More specifically, the algorithmic
block having the index k uses (19) in order to combine the
a priori LLRs b̄a1,k , b̄

a
2,k and b̄

a
3,k , as well as the a priori state

metric vectors ᾱak−1 and β̄
a
k for producing an a posteriori state

metric δ̄(Sk−1, Sk ) for each transition in the state transition
diagram [22], namely for each pair of states Sk−1 and Sk for
which it is possible for the convolutional encoder to transition
between. These a posteriori transition metrics are then com-
bined by (20)-(21), in order to produce the extrinsic forward
state metric vector ᾱek = [ᾱek (Sk )]

M−1
Sk=0

and the extrinsic
backward state metric vector β̄

e
k−1 = [β̄ek−1(Sk−1)]

M−1
Sk−1=0

,

respectively. Similar to the FPE, the forward and backward
state metrics ᾱek and β̄

e
k−1 at a given period only depend on

the forward and backward state metrics fed back from the
previous time period. Therefore, the data dependencies of
the forward and backward recursions are broken, therefore
allowing fully-parallel operation. Hence, the processing is
sped up by a factor of up to 2N , compared to the classic serial
Log-BCJR turbo decoder.

Furthermore, the a posteriori transition metrics are also
employed in (13) for computing the uncoded extrinsic
LLR b̄e1,k while the encoded extrinsic LLR b̄e2,k is achieved
using (23). Again, these equations employ the Jacobian
logarithm of (7). Following the final decoding iteration,
an a posteriori LLR pertaining to the k th message bit bu1,k
may be obtained as b̄u,p1,k = b̄u,e1,k+ b̄

u,a
1,k+ b̄

u,a
3,k . A hard decision

for the message bit bu1,k may then be obtained as the result of
the binary test b̄u,p1,k > 0.

δ̄(Sk−1, Sk )=
[ 3∑
j=1

[bj(Sk−1, Sk ) · b̄aj,k ]
]

+ ᾱak−1(Sk−1)+ β̄
a
k (Sk ), (19)

ᾱek (Sk )=
[

max*
{Sk−1|b1(Sk−1,Sk )=1}

[δ̄(Sk−1, Sk )]
]
−β̄ak (Sk ),

(20)

β̄ek−1(Sk−1)=
[

max*
{Sk |b1(Sk−1,Sk )=1}

[δ̄(Sk−1, Sk )]
]
−ᾱak−1(Sk−1),

(21)

b̄e1,k =
[

max*
{(Sk−1,Sk )|b1(Sk−1,Sk )=1}

[δ̄(Sk−1, Sk )]
]
− b̄a1,k

−

[
max*

{(Sk−1,Sk )|b1(Sk−1,Sk )=0}
[δ̄(Sk−1, Sk )]

]
−b̄a3,k ,

(22)

b̄e2,k =
[

max*
{(Sk−1,Sk )|b2(Sk−1,Sk )=1}

[δ̄(Sk−1, Sk )]
]

−

[
max*

{(Sk−1,Sk )|b2(Sk−1,Sk )=0}
[δ̄(Sk−1, Sk )]

]
−b̄a2,k .

(23)

III. INTERLEAVER DESIGN FOR THE FPTDS
By employing the odd-even interleaver [28] like that of the
LTE turbo code, an odd-even operation of the algorithmic
blocks may be employed in the FPTD of [22], hence reducing
its complexity by 50%. More explicitly, an odd-even inter-
leaver only connects algorithmic blocks from the upper row
having an odd index to blocks from the lower row that also
have an odd index. Similarly, blocks from the upper row
of the FPTD having an even index are only connected to
those from the lower row also having an even index. This
arrangement allows the 2N decoding blocks of the FPTD
to be grouped into two sets. The first set includes the odd-
indexed blocks in the upper row and the even-indexed blocks
in the lower row, which are indicated by the light grey shading
in Fig. 2c. Meanwhile, the second set comprises the even-
indexed blocks in the upper row and the odd-indexed blocks
in the lower row, which are highlighted by the dark grey
shading in Fig. 2c. Given this arrangement, the FPTD may
operate only the first set in odd indexed time periods and
only the second set in even indexed time periods. This reduces
the computational complexity of the FPTD by 50% without
increasing the number of time periods required for complet-
ing the decoding process [22]. This is because in the odd-even
arrangement, operating both sets in all time periods leads to
redundancy, which can be eliminated without impairing the
attainable performance.

Inspired by this idea, in this section we propose a novel
odd-even design of the multiplexer and interleaver 5E of
Fig. 1 between the equalizer and the channel decoder. The
design is illustrated in Fig. 2a. First, the LLR vectors b̄u,e3 ,
b̄u,e2 and b̄l,e2 are arranged into the vector b̄e = [b̄ek ]

3N
k=1 of

the multiplexer. More explicitly, the vector b̄u,e3 = [b̄u,e3,k ]
N
k=1

is placed into [b̄ek ]
N
k=1. Next, the first element b̄u,e2,1 of the

vector b̄u,e2 is placed at the position b̄e2N of the vector b̄e

while the remaining elements [b̄u,e2,k ]
N
k=2 of vector b̄u,e2 are

placed from the position b̄eN+1 to the position b̄
e
2N−1. Finally,

the vector b̄l,e2 = [b̄l,e2,k ]
N
k=1 is placed into the remain-

ing positions [b̄ek ]
3N
k=2N+1 of the vector b̄e. Thereafter, an

odd-even interleaver is employed for connecting the vec-
tor b̄e of the multiplexer with the vector c̄a of the equal-
izer in the same manner as between the upper and lower
decoder of the FPTD [22]. The odd-even connections may
employ either random or structured designs, such as the
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TABLE 2. The number of operations of equalizers and decoders per decoding iteration.

Almost Regular Permutation (ARP) and Quadratic Polyno-
mial Permutation (QPP) interleavers [28].

By contrast, the vector c̄e of the equalizer is connected to
the vector b̄a of the multiplexer using the same order of the
odd-even interleaver. The vector b̄a is further demultiplexed
into three LLR vectors b̄u,a3 , b̄u,a2 and b̄l,a2 with the same order
of the multiplexer.

As illustrated in Fig. 2a, the odd blocks of the vector c̄
marked by the light grey colour are connected to the odd
blocks of the vector b̄ in the dark grey zone, which is further
connected to the dark grey blocks of the vector b̄u3, b̄

u
2 and b̄

l
2.

Meanwhile, the even blocks of the vector c̄ in the dark grey
zones are connected to the even blocks of the vector b̄ in
the light grey zones, which is further connected to the light
grey zones of the vector b̄u3, b̄

u
2 and b̄l2. Consequently, the

FPTDS are divided into the pair of sets: the dark gray set
and the light grey set. In this way, the iterative exchange of
the extrinsic information within the FPTDS can be instead
thought of as an iterative exchange of extrinsic information
between the two sets. When fully parallel equalization and
decoding is employed, the operation of FPTDS relying on
the odd-even interleaver corresponds to two independent pro-
cesses, which have no influence on each other. Therefore,
one of the two iterative processes is redundant. This can be
achieved by activating the algorithmic blocks of only one
set in each time period, with two consecutive time periods
alternating between the two sets. By doing this, each detection
is spread into T = 2 time periods. However, in order to
achieve the same BER performance, the number of iterations
required can be halved. Therefore, compared to the FPTDS
where all blocks are activated in T = 1 time period, the
FPTDS associated with the odd-even interleaver is capable
of reducing the complexity by 50%, while retaining the same
processing throughput.

IV. SYSTEM CHARACTERISTICS
In [22], the characteristics of the FPTD, of the
Log-BCJR turbo decoder as well as of the state-of-the-art

turbo decoder [20] were compared in the context of the LTE
and WiMAX turbo codes. However, the NSW, radix-4 and
pipelining techniques of the state-of-the-art turbo decoder
have not been proposed and investigated for the equalizer.
Therefore, in this section, we will compare the characteristics
of the FPTDS and of the classic Log-BCJR detection scheme
described in Section II. These characteristics include the
computational complexity, the throughput and latency, as
well as the hardware resource requirements of the iterative
equalization and decoding operation.

In the FPTDS employing an odd-even interleaver, each
iteration requires two time periods as described in Section III.
However, it is not straightforward to define the iterations
of the Log-BCJR turbo detection scheme, since it contains
I I equalizer-to-turbo-decoder iterations and each equalizer-
to-turbo-decoder iteration has further IO turbo-decoder iter-
ations. For convenience, it is assumed that the classic
Log-BCJR detection system has the number of iterations as
the number of equalizer-to-turbo-decoder iterations I I of the
FPTDS. More specifically, each iteration of the Log-BCJR
system contains one equalization and IO turbo decoding
operations.

The characteristics of both the FPTDS and of the
Log-BCJR system are summarized in Table 3. Note that
the FPTDS of Table 2 is assumed to employ the odd-even
interleaver of Section III.

A. COMPUTATIONAL COMPLEXITY
The computational complexity of each trellis stage of the con-
ventional Log-BCJR and each algorithmic block (which pro-
cess one trellis stage) of the FPTDS is quantified in Table 2.
The computational complexity is quantified in terms of the
number of addition, subtraction and max∗ evaluation opera-
tions. The number of operations of the Log-BCJR equalizer
is based on evaluating (2) - (6) while that of the FPE equalizer
is based on (15) - (18).

In the Log-BCJR equalizer, (2) requires 1 addition opera-
tion for adding c̄ck and c̄

a
k . Meanwhile, asM/2 γk values equal
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to zero, (3) or (4) requires 3M/2 additions of αk /βk−1 and
γk , and a further M max∗ evaluation operations. Similarly,
(5) requires 2M additions between αk−1 as well as βk , and a
further 3M/2 additions with γk . Finally, (6) needs (2M − 2)
max∗ evaluations and 2 subtraction operations.
In the FPE, (15) requires 2M additions between αk−1

as well as βk , and a further 3M/2 additions, as M/2 of
2M transitions have both the uncoded and encoded bits
equal to zero. Meanwhile, (16) and (17) require 8 max∗ and
8 subtractions of αk−1 or βk for each equation. Since (15) is
identical with (6), they have the same complexity.

Likewise, the number of operations of the Log-BCJR turbo
decoder are based on (9) - (14), while that of the FPTD
is based on (19) - (23). Note that (9) and (19) require
one additional addition for adding a systematic LLR b̄a3,k ,
while (13) and (22) require one additional subtraction for
removing a systematic LLR b̄a3,k .

As shown in [29], the complexity of the approximate
max∗ operation of (7) equals to that of an addition. There-
fore, in Table 2 the overall complexity of the classic
Log-BCJR equalizer and of the FPE are denoted by CBE
and CFE , respectively. Observe that in Table 2, the overall
complexity of the Log-BCJR turbo decoder and of the FPTD
are denoted by CBD and CFD.

Furthermore, the complexity of each iteration of the
FPTDS CF is equal to the summation of the complexity
of both the FPTD and the FPE (CF = CFE + CFD).
By contrast, the complexity of each iteration of the classic
Log-BCJR scheme equals to those of the Log-BCJR equalizer
and IO times the complexity of the Log-BCJR turbo decoder
(CB = CBE + IO · CBD). Clearly, the complexity of the
Log-BCJR turbo decoder in each iteration depends on the
number of turbo-decoder iterations IO set up. Therefore, a
careful considered configuration of the turbo detection is
required in order to have a fair comparison between the
classic Log-BCJR turbo detection and the FPTDS, which will
be detailed in Section V.

B. TIME PERIODS PER DECODING
As described in Section III, a FPTDS using an odd-even
interleaver requires two time periods for the dark grey and
light grey groups to complete one iteration. By contrast, each
component of the Log-BCJR turbo decoder requires N time
periods for the computation of the forward recursion and
N time periods for the backward recursion. Therefore, the
Log-BCJR turbo decoder requires 4N time periods. Similar
to each component of the Log-BCJR turbo decoder, the
Log-BCJR equalizer requires 3N time periods for each
forward and backward recursion computation.With IO turbo-
decoder iterations of the Log-BCJR turbo decoder, each itera-
tion of the Log-BCJR turbo detection scheme requires a total
of T = 4N · IO + 6N = (2IO + 3) · 2N time periods. Hence,
in order to complete one detection iteration, the classic
Log-BCJR turbo detection scheme needs (2IO + 3)N time
periods more than the FPTDS.

C. TIME PERIOD DURATION
The time period duration here is defined as the longest
time for an algorithmic block to complete all computations.
It depends on the dependencies between the additions, sub-
tractions and max∗ operations and it is quantified by the
length of the critical path containing most operations. In prac-
tical hardware implementations, this dictates the highest
clock frequency that can be used. For the FPTDS, the time
period duration is the longer one of the pair of durations
that one block of the FPTD completes (19)-(23) and the
duration that one block of the FPE completes (15)-(18).
As analysed in [22], the computation of (19)-(23) has a
critical path comprising five additions plus log2(M ) max∗

evaluation operations, whereM is the number of states in the
turbo code trellis. As described in [29], the times required to
compute an addition and the approximation of the max∗ are
equal, giving a time period duration DFD = 5 + log2(M )]
operations for the FPTD. Similarly, it may be inferred
from (15)-(18) that each algorithmic block of the FPE has
a critical path comprising five additions and log2(L) max∗

operations, where L is the number of states in the equalizer
trellis. Therefore, the time period duration of the FPE is
DFD = 5+ log2(L)]. Finally, the time period duration of the
FPTDS DF is the longer one between the two durations DFD
and DFE .

Meanwhile, the time period duration of the Log-BCJR
system is the longer one of the duration that one trellis
stage of the Log-BCJR decoder completes (9)-(14) and the
duration that one trellis stage of the Log-BCJR equalizer
completes (2)-(6). In contrast to the FPTD [22], the
Log-BCJR turbo decoder requires one max∗ evaluation
of (10) and (11) to be completed before (12)-(14). As a
result, the time period duration of the Log-BCJR turbo
decoder is DBD = 6 + log2(M )] operations. Similarly,
the time period duration of the Log-BCJR equalizer is
DBE = 6 + log2(L)] operations. Hence, the duration of the
Log-BCJR scheme DB is the longer one of the pair of dura-
tions DFD and DFE .
Again, all of the time durations of the FPTDS and of

the classic Log-BCJR turbo detection scheme are provided
in Table 3. It is noted that the time period of the FPTDS
given by DF = 5 + log2[max(M ,L)] is lower than that of
the conventional Log-BCJR turbo detection formulated as
DB = 6 + log2[max(M ,L)], albeit only by the time of one
operation.

D. THROUGHPUT AND LATENCY
The detection latency is defined as the time duration in which
a turbo detection scheme requires to completes its iterative
equalization and decoding operations. Hence, it is given by
the product of the time periodD, the number of time periods T
per decoding iteration and the required number of decoding
iterations I , where the latter will be determined in Section V.
The latency and throughput of the schemes are detailed
in Table 3.
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TABLE 3. The characteristics of the FPTDS and the Log-BCJR turbo detection when communication over a multipath fading channel.

E. RESOURCE REQUIREMENTS
In practical hardware implementations, the chip area or
hardware resource requirement depends both on the com-
putational requirement X as well as on the memory
requirement, which can be separated into the register and
Random Access Memory (RAM) resources. The register
resource requirement Y quantifies the amount of mem-
ory that is arranged into registers, which store values
that can be accessed all at once, in every time period.
By contrast, the RAM resource requirement Z quantifies
the amount of storage that is arranged into RAM, which
store different values that can be accessed in different time
periods.

As analysed in [22], the FPTDS having an odd-even inter-
leaver can share hardware in alternate time periods. Thus,
the computational resource required by the FPTD having an
odd-even interleaver equals to half of the complexity plus
N additional resources for adding the systematic a priori
bits b̄a3, hence resulting in a total computational resource XFD
of CFD/2 + N . Since the FPE does not require the addition
of the systematic a priori information, the computational
resource XFE is reduced to CFE/2. The total computational
resource required by the FPTDS is given by the summation
of those of the FPE and the FPTD or quantified by XF =
CF/2 + N = CFD/2 + CFE/2 + N . By contrast, the Log-
BCJR system is capable of reusing the same hardware for pro-
cessing successive trellis stages in successive time periods for
computation within the equalizer and both within the decoder
as well as between the equalizer and the decoder. Therefore,
the computational resource required by the classic Log-BCJR
system is reduced to the higher number of resources between
the conventional Log-BCJR equalizer and the Log-BCJR
decoder, which is formulated as XB = max(CBD/2N + 1,
CBE/3N ).

In the FPTD, memory resources are required for storing
the forward state metrics, backward state metrics and the
extrinsic LLRs of (20), (21), (22) and (23), respectively.
These outputs are produced, whenever an algorithmic block
is operated and they must be stored for the next time period,
where they are employed by the connected blocks. However,
by using the odd-even interleaver described in Section III,
only half of the blocks operated, while the other half remain
idle. This allows thememory resources to be shared and phys-
ically positioned between two group of algorithmic blocks.
Therefore, the memory resources have to store MN forward
state metrics, MN backward state metrics and 4N extrinsic
LLRs, resulting in a total requirement of YFD = (2M + 4)N
memory resources. Similarly, the FPE requires YFE =

(2L + 3)3N/2 memory resources. Finally, the total memory
resources required by the FPTDS may be expressed as YF =
YF + YF = (2M + 3L + 8.5)N .
As quantified in [22], the classic Log-BCJR decoder only

requires M memory resources due to the reuse of the same
hardware for processing successive trellis stages in suc-
cessive time periods. Additionally, it requires (3M + 4)N
RAM resources for storing the state metrics and the extrinsic
LLRs. Similarly, the Log-BCJR equalizer requires L memory
resources and (3L + 3)3N RAM resources. Consequently,
the memory resources required by the Log-BCJR system
obey YB = max(M ,L), while the RAM requirement is
ZB = N ×max [(3M + 4), (9L + 9)].

The final resource requirements depend on the spe-
cific system configuration, namely on the number of
states L and M in the trellis as well as on the frame
length N . Therefore, our comparison between the classic
Log-BCJR turbo detection and the FPTDS will be detailed in
Section V, where the specific system configurations will be
defined.
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TABLE 4. The characteristics of the FPTDS and the Log-BCJR turbo detection when employing LTE codes for communications over a 3-tap fading channel.

FIGURE 3. The BER performance of the FPTDS and the Log-BCJR turbo
detection when employing LTE turbo codes for communication over a
3-tap fading channel for various number of iterations.

V. PERFORMANCE STUDY
In the simulations of this section, we employ an
M = 8-state LTE turbo code [12] having a coding rate
of 1/3, a frame length of N = 1024 bits relying on a 3-bit
trellis termination, as described in [22], Furthermore, BPSK
modulation is used. The channel imposes 3-tap multipath
fading plus AWGN. The fading between transmission frames
is assumed to be independent.

Fig. 3 shows the performance of the systems, where both
the Log-BCJR and the fully-parallel algorithms are char-
acterized. The classic Log-BCJR system is used both for
iterative equalization and decoding. In each of the IBCJR
equalizer-to-turbo-decoder iterations, the Log-BCJR system
performs Log-BCJR equalization followed by IO = 8 iter-
ations of Log-BCJR turbo decoding. By contrast, the FPE

FIGURE 4. The BER performance of the FPTDS when employing
fully-parallel and odd-even arrangements for communication
over a 3-tap fading channel.

system carries out fully-parallel equalization and decoding
simultaneously. In Fig. 3, the performance of the BCJR sys-
tem is represented by the dashed curves, while that of the
FPE system is shown by the continuous ones. Observe that
the FPE system exhibits a high BER, when the number of
iterations is below 16. By contrast, when the number of
iterations is increased to 32 and 64, the FPE system achieves
a comparable performance to that of the Log-BCJR system
employing IBCJR = 2 equalizer-to-turbo-decoder iterations
Fig. 4 shows the performance of the FPE systems, where

the fully-parallel and odd-even mechanisms are employed.
The number of time periods of T = {1, 2, 4, 8, 16, 32, 64}
are characterized in this figure. Recall that the fully parallel
arrangement employs one time period for each equaliza-
tion and decoding iteration, while the odd-even arrangement
employs two periods for each equalization and decoding iter-
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ation. In Fig. 4, the performance of the fully-parallel system
is shown by the square-marked curves, while that of the odd-
even system is represented by the diamond-marked curves.
The results of Fig. 4 showed that the performance of both
systems are comparable, regardless of the number of time
periods observed. Hence, the FPTDS employing an odd-even
interleaver achieves the same performance in conjunction
with the same number of time periods, while reducing the
complexity by 50% compared to the FPTDS using fully-
parallel detection.

Table 4 summaries the characteristics of both the
Log-BCJR turbo detection and of the FPTDS when com-
municating over a 3-tap multipath fading channel. The com-
plexity of both schemes is quantified in the operating region,
where a BER below 10−6 is achieved. The results showed
that upon aiming for such a low BER, the FPTDS is capa-
ble of improving the latency and throughput by a factor
of 600 over the conventional Log-BCJR scheme, which is
achieved at the modest cost of increasing the computational
complexity by a factor of 3.5 as well as the computational and
memory resource requirements by a factor of 26.

VI. CONCLUSIONS
In this paper we proposed a novel FPTDS, where all the
algorithmic decoding blocks of both the equalizer and of the
turbo decoders are being operated in parallel. The odd-even
interleaver between the equalizer and the channel decoder
was designed for reducing the computational complexity. Our
simulations demonstrated that when the LTE turbo code is
employed for communication over a 3-tap fading channel, at
the same near-error-free performance the FPTDS increases
the complexity by a modest factor of 3.5 and the hardware
resources by a factor of 26, while improving the processing
latency and throughput by a factor of 600, making it an attrac-
tive candidate for high-throughput and low-latency applica-
tions. In our future research, the hardware implementation
will be considered and the scope for potential complexity
reduction will be further investigated. Finally, comparison
with benchmarkers employing radix-4, Non-Slide Window
and pipelining techniques will also be studied.
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