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ABSTRACT Cloud offloading is considered a promising approach for both energy conservation and
storage/computation enhancement for resource-limited mobile devices. In this paper, we present a Lyapunov
optimization-based scheme for cloud offloading scheduling, as well as download scheduling for cloud
execution output, for multiple applications running in a mobile device with a multi-core CPU. We derive an
online algorithm and prove performance bounds for the proposed algorithm with respect to average power
consumption and average queue length, which is indicative of delay, and reveal the fundamental tradeoff
between the two optimization goals. The performance of the proposed online scheduling scheme is validated
with trace-driven simulations.

INDEX TERMS Cloud computing, energy efficiency, job scheduling, Lyapunov optimization, offloading.

I. INTRODUCTION
There is a proliferation ofmobile devices in recent years, such
as smartphones and tablets, which are becoming more and
more powerful with even multi-core CPUs. However, mobile
devices still suffer from comparably limited resources. For
example, the power of a smartphone comes at the cost of
higher burden on the battery. As a result, although we are
freed from a wireline data connection, we are still highly
dependent on a power socket and charger. In addition, smart-
phones usually have relatively limited storage. With many
apps, photos, and multimedia files recorded or cached, the
internal storage space of our mobile devices can be easily
depleted.

Cloud offloading has been recognized as an effective solu-
tion to the limited resource problem [2], [3]. With offloading,
we can store our photos and videos in the cloud and fetch
it whenever it is needed. Furthermore, computation intensive
tasks can also be offloaded to software clones in the cloud [5],
so that most computation can be executed in the cloud to
greatly reduce the burden on the mobile device [6]. How-
ever, offloading data and computational tasks could involve
considerable communications between mobile devices and
cloud clones, which could consume a large amount of energy
and incur extra delay. Hence, the decision between cloud
offloading or local execution should be carefullymade at each
mobile device, taking into account the energy consumption
and delay of various options, as well as the status of the
wireless network.

In this paper, we study the problem of effective cloud
offloading scheduling while considering downloading the
output of cloud execution, for mobile devices with muti-
core CPUs. We also consider task scheduling among the
multiple cores of the CPU and frequency adaptation for the
CPU, considering both energy cost and user experience with
respect to delay. Specifically, there are several trade-offs in
making the optimal decisions. First, cloud offloading involves
data transmissions from the mobile device to the cloud, as
well as downloading the output of cloud execution, through
a stochastic and thus unpredictable wireless channel. The
energy efficiency of cloud offloading could be poor when
the wireless coverage is weak. In such cases, energy may be
conserved if we delay cloud offloading and downloading until
the channel gets better, but at the cost of additional delays.
Furthermore, cloud offloading may not be a good choice for
applications with a large amount of offloading data to be
sent to the cloud, or a large amount of output data to be
downloaded after cloud execution, since transmitting the data
over a wireless channel may consume considerable power
and incur large delay as well, which offset the gains achieved
by executing the task in the cloud. Similarly, energy can be
conserved for local execution by reducing the CPU frequency,
but at the cost of slower execution (and thus increased delay)
of the tasks.

Motivated by these observations, we present a holistic
formulation of the problem of optimal cloud offloading deci-
sion making for multiple applications running in a multi-core
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mobile device. The formulation takes into account the above
trade-offs by incorporating the key control knobs, including
CPU frequency and computation capability at the mobile
device, offloading and downloading data volume of the
applications, and the time-varying capacity and expected
offloading power consumption of the wireless connection.

We then develop an effective solution algorithm to the
formulated problem. The proposed scheduling algorithm is
based on the Lyapunov optimizing framework [7], [8], [13].
It dynamically schedules the tasks in the task queues for cloud
offloading or local execution, downloads output from the
cloud for offloaded tasks, and in the case of local execution,
tunes the CPU frequency to balance energy consumption and
delay, based on the current network condition and task queue
backlogs. The proposed algorithm is inherently an online
algorithm, meaning that it does not require information about
the stationary distributions of the arrival and wireless channel
processes, neither does any future application and network
state information. It makes decisions based on the current
queue backlogs and wireless channel conditions. Such an
online algorithm would be useful for real-time applications.
We derive upper bounds on the average energy consump-
tion and average queue length achieved by the proposed
algorithm, which clearly reveal the trade-off between energy
consumption and delay in optimal cloud offloading. The pro-
posed algorithm is validated with trace-driven simulations,
where the mobile device has both LTE andWiFi connections,
and the energy-delay trade-off is clearly revealed.

The rest of this paper is organized as follows. The system
model and problem statement are presented in Section II.
The proposed algorithm is developed in Section III and
evaluated with trace-driven simulations in Section IV.
We review related work in Section V. Section VI concludes
the paper. The main notation used in this paper is summarized
in Table 1.

II. SYSTEM MODEL AND PROBLEM STATEMENT
A. SYSTEM MODEL
The system model is illustrated in Fig. 1. We consider a
mobile device having N applications running,1 denoted as
N = {1, 2, · · · ,N }, among which 1 ≤ N ′ ≤ N applications,
denoted as N ′, can be offloaded to the cloud. The tasks
generated from each application are enqueued and processed
in a First-In-First-Out (FIFO) manner. In addition, we assume
that the arrival and execution of these tasks follow a discrete,
time-slotted system. In addition, most tasks can be processed
in one slot, while very large tasks can be divided to smaller
subtasks that can be processed in one time slot. In particular,
the queue of tasks waiting to be processed for application i at
the beginning of time slot t is denoted asQi(t), and the overall
queue lengths at the beginning of time slot t are denoted as

Q(t) = {Q1(t),Q2(t), · · · ,QN (t)}. (1)

1A multiple-thread application that enables parallel computing, can be
treated as multiple applications.

TABLE 1. Notation.

In time slot t , the tasks generated by applications are
denoted as

A(t) = {A1(t),A2(t), · · · ,AN (t)}, (2)

which can be regarded as new arrivals to Q(t). In this paper,
we assume that each Ai(t) is independent and identically
distributed (i.i.d.) over time slots and the expectations of
them, i.e., the average arrival rates, are denoted as

Eλ
1
= E{A(t)} = {λ1, λ2, · · · , λN }. (3)

The departing tasks from queue Q(t) at time slot t is either
scheduled for local execution, denoted as

B(t) = {B1(t),B2(t), · · · ,BN (t)}, (4)
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FIGURE 1. The system model.

or offloaded to the cloud, denoted as

BO(t) = {BO1 (t),B
O
2 (t), · · · ,B

O
N (t)}. (5)

In addition, we assume that for task k of application i, the
computational complexity for local execution, θi(k) (i.e., the
amount of computations required to accomplish the task),
the data size for offloading, Di(k) (i.e., the amount of data
transmitted for executing the task in the cloud), and the data
size of the cloud execution output,DDi (k) (i.e., the results to be
returned to the mobile device), are all i.i.d. random variables.
If the task cannot be offloaded to the cloud, then we have
Di(k) = ∞ and DDi (k) = 0. Alternatively, if the task can
only be offloaded to the cloud, then we have θi(k) = ∞.
When a task is offloaded, it is first processed by a server in

the cloud and then the output of cloud execution is returned
to the mobile device. Hence, there is also a queue for the
output data of cloud execution (e.g., at the access point or
base station). Let QD(t) denote the returned output queue at
the end of the time slot t , as shown in Fig. 1. We have

QD(t) = {QD1 (t),Q
D
2 (t), · · · ,Q

D
N (t)}, (6)

where QDi (t) = 0 for i ∈ N \N ′, as there will be no output
from cloud computing if the task cannot be offloaded. The
arrival to the queue QD(t) can be denoted as

AD(t) = {AD1 (t),A
D
2 (t), · · · ,A

D
N (t)}, (7)

for an application i task that is to be offloaded,
|ADi (t)| = |B

O
i (t)|. That is, if we ignore the time a cloud server

takes to process the task, there is an increment of queue length
in QDi (t) if a task in Qi(t) is offloaded to the cloud.

B. LOCAL EXECUTION ENERGY CONSUMPTION MODEL
For applications that are executed locally at the mobile
device, most of the energy consumption comes from the
CPU and the screen. As the screen energy consumption is
largely dependent on the user habit, we do not take this part
into account in this paper.2 The energy consumption is thus
mainly determined by the CPU operation.

2It may be annoying to dynamically adjust the display size, resolution, or
brightness during the execution of an application. We simply assume some
constant amount of energy consumption associated with this part.

In particular, the CPU energy consumption is proportional
to v2, where v is the CPU voltage [9]. Furthermore, the clock
frequency of the CPU at time slot t , denoted as f (t), is shown
approximately linear to the CPU voltage v [9]. Therefore,
the CPU power consumption in a CPU core occupied by
application i in time slot t can be approximated as

εi(t) = η′ · f 2i (t), (8)

where η′ is the energy coefficient determined by the CPU
hardware architecture. As the energy consumption is linear
with f 2(t), energy can be saved by reducing the CPU fre-
quency, which, however, will slow down the execution of the
tasks.

A CPU schedule can be represented by {αL(t),2(t)},
where αL(t) ∈ N is the set of applications being executed
locally, 2(t) = {21(t),22(t), · · · ,2N (t)}, and 2i(t) is the
amount of computations a CPU core can offer to application i
at time slot t . Note that2i(t) = 0, if i /∈ αL(t). Assuming that
there areM cores in the CPU. We have |αL(t)| ≤ M , i.e., the
number of parallel computing applications cannot exceed the
number of cores in the CPU. For a given CPU architecture,
the computational capability 2i(t) is usually linear with the
CPU frequency. Hence, the CPU energy consumption at
time t is also a quadratic function of 2i(t), i.e.,

εi(t) = η ·22
i (t), (9)

where η is the adjusted energy coefficient. The total energy
consumption for local execution is

ε(t) =
N∑
i=1

εi(t). (10)

C. OFFLOADING ENERGY CONSUMPTION MODEL
For applications that can be offloaded to the cloud, we make
the following assumptions. First, we assume that a software
clone has already been associated with each application in
the cloud to support cloud computing [10], such that only
the latest use generated data, application status updates, and
cloud execution output, refereed to as offloading data, need
to be transmitted between the mobile device and the cloud.

Second, we focus on the channel models associated with
the wireless interfaces and ignore the delay and energy con-
sumption in the cloud, which are justifiably minor issues
comparing to that on the mobile device side. It is typical
for a smartphone to choose one of the mobile networks
(e.g., 2G, 3G, LTE, andWiFi) and the corresponding data rate
is determined by the operator and the baseband chip config-
uration. We adopt the network selection algorithm proposed
in [11] to choose between a cellular network and WiFi, and
focus on the task scheduling problem in this paper.

Let ωO(t) be the wireless link data rate from the mobile
device to the cloud, and ωD(t) the data rate from the cloud to
the mobile device. An offloading decision is denoted as

αO(t) ∈ {N ′,′ idle′}. (11)
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That is, the device can choose to offload a task from one of the
eligible queues or remain idle (i.e., to choose local execution).
Then, the expected energy consumption is denoted as pO(t).
Similarly, the decision for downloading the cloud execution
output can be denoted as

αD(t) ∈ {N ′,′ idle′}, (12)

and the expected energy consumption is denoted as pD(t).

D. QUEUING AND THE OVERALL ENERGY
CONSUMPTION MODEL
As discussed, energy can be conserved by optimizing the exe-
cution decision for the application tasks, i.e., local execution
or offloading to the cloud. For local execution, energy can
be saved by reducing the CPU frequency (i.e., running the
application at a lower speed, which leads to a smaller 2(t)).
For offloading, energy can be saved by only using good
channels for transmission of offloading data and receiving
the cloud output. There maybe an additional delay to wait for
the channel to get better. If we aggressively save power by
these means, the applications will suffer from large delays;
the lengths of the task queues may increase to very high levels
and the system may become unstable. We need to balance
energy saving and delay, which is indicated by the task queue
length.

Define the total power consumption in time slot t as

P(t) = ε(t)+ pO(t)+ pD(t). (13)

Based on the local execution and offloading energy consump-
tion models, the overall energy consumption of the mobile
device can be derived as follows.

P̄ 1
= lim sup

T→∞

1
T

T−1∑
t=0

E{P(t)}

= lim sup
T→∞

1
T

T−1∑
t=0

E{ε(t)+ pO(t)+ pD(t)}. (14)

We define the average task and output queue length, denoted
as Q̄, for evaluation of the energy-queue trade-off as

Q̄ 1
= lim sup

T→∞

1
T

T−1∑
t=0

N∑
i=1

E{Qi(t)+ QDi (t)}, (15)

whereQi(t) is the task queue length for application i at time t ,
and QDi (t) is the cloud output queue length for application i
at time t . We consider the system to be stable if the average
queue length is bounded, i.e., the limit in (15) exists.

The dynamics of the task queue backlog Qi(t) can be
written as

Qi(t + 1) = max{Qi(t)+ Ai(t)− Bi(t)− BOi (t), 0}, ∀i,

(16)

where Bi(t) is the service rate at time t defined as follows.3

Bi(t) =



argmax{b}
{∑b

k=1 θi(k) ≤ 2i(t)
}
,

if i ∈ αL(t)

argmax{b}
{∑b

k=1 Di(k) ≤ ωO(t)
}
,

if i ∈ αO(t)
0, otherwise.

(17)

Note that αL(t) and αO(t) should not point to the same appli-
cation i, as it is inefficient to both offload and locally execute
the same application task at the same time. If i ∈ αL(t), the
task queue of application i is executed locally and Bi(t) is the
maximum number of tasks can be executed locally at time
slot t . If i ∈ αO(t), the tasks of application i are offloaded to
the cloud and Bi(t) is the maximum number of tasks can be
offloaded at this time slot.

Similarly, the dynamics of the cloud output queue backlog
QDi (t) can be written as

QDi (t + 1) = max{QDi (t)+ A
D
i (t)− B

D
i (t), 0}, ∀i ∈ N ′,

(18)

where
∣∣ADi (t)∣∣ = ∣∣BOi (t)∣∣ and BDi (t) is the service rate at time i

for the cloud output queue defined as

BDi (t) =


argmax{b}

{∑b
k=1 D

D
i (k) ≤ ωD(t)

}
,

if i ∈ αD(t)
0, otherwise.

(19)

If i ∈ αD(t), the cloud output queue i is downloaded and
BD(t) is the maximum number of tasks that can download
their cloud output at this time slot.

E. PROBLEM STATEMENT
For a mobile device, it makes task scheduling decisions about
offloading and local execution at the beginning of each slot.
It then makes decisions for downloading the return data of
cloud execution for the next slot at the end of current time
slot. The objective of mobile devices is to keep all the queues
stable and to minimize the overall energy consumption. The
scheduling problem can be formulated as

min : lim sup
T→∞

1
T

T−1∑
t=0

E{ε(t)+ pO(t)+ pD(t)} (20)

s.t. αL(t) ∩ αO(t) = ∅, for all t (21)∣∣∣αL(t)∣∣∣ ≤ M , for all t (22)

Q̄ <∞, (23)

where Constraint (21) forbids a task to be both executed
locally and offloaded to the cloud in the same time slot,
Constraint (22) is the limitation forced by the number of

3We assume that the duration of a time slot is large enough such that
any task can be executed locally, offloaded to the cloud, or with output
downloaded from the cloud in less than one time slot. This can be achieved
by choosing a suitable time slot duration or by partitioning big tasks into
smaller ones.
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cores in the CPU, and Constraint (23) ensures stability of the
task and output queues. The optimal solution to the problem
consists of cloud offloading or local execution decisions for
each time slot t (i.e., αL(t) and αO(t)) and the optimized
CPU computation capability 2(t) for each time slot t , which
translates to the optimal CPU clock frequency f as discussed
in Section II-B (configured as in (37)).

III. TASK SCHEDULING ALGORITHM FOR MOBILE USERS
In this section, we present a task scheduling algorithm based
on the Lyapunov optimization framework [7]. This algorithm
requires no information about the stationary distributions of
the arrival and wireless channel processes; it only requires
information on the current queue lengths and the current
channel conditions. Such an online algorithm property is
useful for real-time applications [8], [12], [13].

A. LYAPUNOV OPTIMIZATION BASED
SOLUTION ALGORITHM
To present the proposed algorithm, we first define a Lyapunov
function L(Q(t)) as in [7].

L(Q(t)) 1=
1
2

N∑
i=1

Q2
i (t)+

1
2

N∑
i=1

{QDi (t)}
2, (24)

where L(Q(0)) = 0. If all the queue lengths are small, then
L(Q(t)) will be small; if at least one queue is congested,
then L(Q(t)) will become large. Since there is a finite num-
ber of applications running on the mobile device, L(Q(t))
being bounded is equivalent to the notion that the system
is stable.

Since L(Q(0)) = 0, for L(Q(t + 1)), we have

E{L(Q(t + 1))} = E

{
t∑

k=0

[L(Q(k + 1))−L(Q(k))]

}

=

t∑
k=0

E{L(Q(k + 1))−L(Q(k))|Q(k)} =
t∑

k=0

1(L(k)),

where 1(L(t)) is the drift defined as [14]

1(L(t)) 1= E{L(Q(t + 1))− L(Q(t)) |Q(t) }. (25)

We can minimize 1(L(t)) to maintain a low expectation for
L(Q(t)). It follows (16) that

Q2
i (t + 1) ≤ {Qi(t)+ Ai(t)− Bi(t)− BOi (t)}

2. (26)

For i ∈ αO(t), we have

{QDi (t + 1)}2 ≤ {QDi (t)+ B
O
i (t)− B

D
i (t)}

2. (27)

For i /∈ αO(t), we have

{QDi (t + 1)}2 ≤ {QDi (t)− B
D
i (t)}

2. (28)

Substituting (26), (27), and (28) into (25), we derive the
drift (29) as given in the bottom of this page. In (29),
ϕ denotes the terms in the expectation operators and

8 =
1
2

N∑
i=1

E
{
{Ai(t)−Bi(t)− BOi (t)}

2
+{BOi (t)− B

D
i (t)}

2
}
.

(30)

Note that BOi (t) = 0 for i /∈ αO(t). If the arrival rate and
service rate of each queue is bounded, which is true for stable
systems, then 8 is bounded.

As in [7], we obtain the drift-plus-penalty, defined as
1(L(t)) + Vp · E{P(t)}}, by scaling the energy consumption
with a positive coefficient Vp. The parameter Vp indicates the
user’s emphasis on energy consumption. Different applica-
tions can choose different Vp’s to meet their specific delay
requirements. Following (29), the upper bound of the
drift-plus-penalty can be derived as

1(L(t))+ Vp · E{P(t)} ≤ 8+ E
{
ϕ + Vp · P(t)

}
. (31)

To minimize the drift-plus-penalty, we can instead minimize
{ϕ + Vp · P(t)} at every time slot, which only requires the
current information on queue lengths, channel conditions,
and the price for offloading.

Since there are M cores in the CPU of the mobile device,
onlyM application can be executed by the CPU in each time
slot. We assume that only one application can be offloaded at
each time slot (through the single active wireless connection).
We can derive theminimization expression as given in (32) on
top of the next page. The first term in (32),

∑N
i=1 Qi(t)Ai(t),

only depends on the current queue lengths and arrival rates.
It does not affect the offloading downloading decision for this
time slot. We need to minimize the second term

H1 = VppD(t)− QDi (t)B
D
i (t)|i∈αD(t), (33)

as a function of αD(t), and the third term

H2 = Vpε(t)−
∑

i∈αL (t)

Qi(t)Bi(t)

+{VppO(t)− (Qi(t)− QDi (t))B
O
i (t)|i∈αO(t)}, (34)

as a function of αL(t), αO(t), and 2(t).
Notice that for min{H1}, with the expectation of power

consumption and offloading data, we need to find a

1(L(t)) ≤ 8+ E

 ∑
i/∈αO(t)

Qi(t)(Ai(t)− Bi(t))− QDi (t)B
D
i (t)


+E

{
{Qi(t)Ai(t)− (Qi(t)− QDi (t))Bi(t)− Q

D
i (t)B

D
i (t)}|{i∈αO(t)}

}
= 8+ E{ϕ}. (29)
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min{ϕ + VpP(t)} = min


N∑
i=1

Qi(t)Ai(t)−
N∑
i=1

QDi (t)B
D
i (t)−

∑
i/∈αO(t)

Qi(t)Bi(t)− (Qi(t)− Q
D
i (t))B

O
i (t)|i∈αO(t) + VpP(t)


=

N∑
i=1

Qi(t)Ai(t)+min

VppD(t)−
N∑
i=1

QDi (t)B
D
i (t)+ Vpε(t)−

∑
i/∈αO(t)

Qi(t)Bi(t)+ VppO(t)− (Qi(t)− Q
D
i (t))B

O
i (t)|i∈αO(t)


=

N∑
i=1

Qi(t)Ai(t)+min
{
VppD(t)−Q

D
i (t)B

D
i (t)|i∈αD(t)

}
+min

Vpε(t)− ∑
i∈αL (t)

Qi(t)Bi(t)+{VppO(t)−(Qi(t)−Q
D
i (t))B

O
i (t)|i∈αO(t)}


=

N∑
i=1

Qi(t)Ai(t)+min{H1} +min{H2}. (32)

proper αD(t) that minimizes −QDi (t)B
D
i (t) in order to mini-

mize the following function.

ξDi = VppD(t)− QDi (t)B
D
i (t). (35)

This can be done by evaluating (35) for every application
in N ′ to find the application i having the smallest ξDi .
Recall that BDi (t) is defined in (19). For a given down-
link capacity ωD(t), tasks with smaller data size and longer
queue length tend to have a smaller −QDi (t)B

D
i (t). Note that

VppD(t) − QDi (t)B
D
i (t)|i∈αD(t) = 0 when αD(t) = ′idle′.

Thus a task will be offloaded in time slot t only when
min{VppD(t) − QDi (t)B

D
i (t)} < 0, meaning the channel

condition is good or at least one of the task queues is long.
For the other term H2, we need to minimize it by tuning

αL(t), αO(t), and2(t). The term Vpεi(t) − Qi(t)Bi(t) can be
rewritten as

Vpεi(t)− Qi(t)Bi(t)

= Vpη22
i (t)− Qi(t) · argmax

{b}

{
b∑

k=1

θi(k, t) ≤ 2i(t)

}
∼= Vpη22

i (t)− Qi(t)
2i(t)

θ̄i(t)
, (36)

where θ̄i(t) = 1
Qi(t)

∑Qi(t)
k=1 θi(k, t). We can derive the approx-

imate minimum value Vpε(t)−Qi(t)Bi(t) subject to the CPU
computation capability 2i(t) as

ξLi (t) = −
Q2
i (t)

4Vpηθ̄2i (t)
, when 2i(t) =

Qi(t)

2Vpηθ̄i(t)
. (37)

Similarly, we can evaluate (37) for all the applications in
N and find the minimizer. Since the computational capability
of the CPU cannot be increased indefinitely, we set an upper
bound for the CPU power, e.g., 10 W in this paper.

For the term {VppO(t)− (Qi(t)− QDi (t))B
O
i (t)|i∈αO(t)}, we

can minimize it by tuning αO(t). Denoting

ξOi = VppO(t)− (Qi(t)− QDi (t))B
O
i (t) < 0, (38)

an application i ∈ N ′ with smaller offloading data size and
greater Qi(t) − QDi (t) will achieve a smaller ξOi . Also note
that {VppO(t) − (Qi(t) − QDi (t))B

O
i (t)|i∈αO(t)} = 0 when

αOi =
′ idle′. Thus a task can be offloaded only when ξOi < 0.

Then the min{H2} term can be rewrite as

min{H2} = min

 ∑
i∈αL (t)

ξLi + ξ
O
j |j∈αO(t),αO(t)∩αL (t)=∅

.
According to the above evaluation, the problem becomes

N∑
i=1

Qi(t)Ai(t)+min{H1} +min{H2}

=

N∑
i=1

Qi(t)Ai(t)+min
{
ξDi

}

+ min

 ∑
i∈αL (t)

ξLi + ξ
O
j |j∈αO(t),αO(t)∩αL (t)=∅

, (39)

where ξDi , ξ
L
i , and ξ

O
j are defined in (35), (37) and (38),

respectively. We also have αO(t)∩αL(t) = ∅, since the same
application cannot be executed locally and offloaded to the
cloud in the same time slot. The proposed task scheduling
algorithm is presented in Algorithm 1, where all computa-
tions except Step 2 are simple operations.

Algorithm 1: Task Scheduling Algorithm
1 Update all the task queues and estimate wireless link capacities
at the beginning of time slot t ;

2 Find the minimum combination of
∑

i∈αL (t) ξ
L
i + ξ

O
j , where

αO(t) ∩ αL (t) = ∅ and j ∈ N ′ ;
3 if ξOj < 0 then
4 Offload tasks of application j to the cloud ;
5 end
6 for i ∈ αL (t) do
7 if ξLi < 0 then
8 Execute tasks of application i locally, with CPU

capacity 2i(t) =
Qi(t)

2Vpηθ̄i(t)
;

9 end
10 end
11 Find the minimum ξDi ;
12 if ξDi < 0 then
13 Fetch the output data for application i tasks from the

cloud ;
14 end

VOLUME 3, 2015 2311



Z. Jiang, S. Mao: Energy Delay Tradeoff in Cloud Offloading

FIGURE 2. Task scheduling as a minimum weighted matching of a
bipartite graph (illustrated for N = 4 and M = 2).

For Step 2 in Algorithm 1, the task scheduling can be
illustrated as a minimum weighted matching of a bipartite
graph as shown in Fig. 2. In the graph, vertex Application i,
i = 1, 2, · · · ,N represent the applications, vertex Core i,
i = 1, 2, · · · ,L stands for the cores in the CPU, and vertex
OffLoad stands for the offloading link. The edge between
vertice Application i and Core j means that it can be exe-
cuted locally on core j and the weight of the edge is ξLi .
Correspondingly, the edge between vertice Application i and
OffLoad means that it can be offloaded to cloud, while the
weight of the edge is ξOi . In Step 2, we need to find the
selection edges with minimum weight, and according to
constraint (21) and (22), each vertex can only be connected
with one selected edge. Then it is a maximum weighted
bipartite matching problem and can be solved with
Hungarian algorithm [15] with complexity O(N ∗ (M + 1)2)
if (M + 1 < N ), or O((M + 1) ∗ N 2) otherwise.
In Algorithm 1, at the beginning of each time slot t ,

the mobile device first updates the queues of tasks
and estimates the capacity of wireless capacities to
compute ξLi , ξ

O
i , and ξ

D
i . In Step 2, it finds out smallest

combination of
∑

i∈αL (t) ξ
L
i + ξ

O
j , where α

O(t) ∩ αL(t) = ∅,
since a task should not be computed locally and offloaded to
cloud at the same time. Then it offloads the corresponding
task of application j if ξOj < 0 and computes the tasks of

application i ∈ αL(t) if ξLi < 0, with 2i(t) =
Qi(t)

2Vpη2̄i(t)
.

At last, the mobile user makes the decision on downloading
the output of cloud computing. It first finds the smallest ξDi
for all applications inN ′. If ξDi < 0 for the smallest ξDi , then
it downloads the corresponding output of cloud computing.

B. PERFORMANCE ANALYSIS
Following the framework of Lyapunov optimization [7],
we derive the upper bounds for the expected average power
consumption and the expected average queue length achieved
by the proposed algorithm, which are summarized in the
following theorem. The proof is presented in the Appendix.
Theorem 1: Assume that the arrival rate of tasks
Eλ is strictly within the system capacity region. That
is, the system can maintain stability under certain

{αL(t), αO(t), αD(t),2(t)}. Then the bounds on average
energy consumption and queue length under Algorithm 1 can
be written as

lim sup
T→∞

1
T

T−1∑
t=1

E{P(t)} ≤ Popt +
8

Vp
(40)

lim sup
T→∞

1
T

T−1∑
t=1

N∑
i=1

E{Qi(t)+ QDi (t)} ≤
1
ε
(8+ VpP),

(41)

where Popt is the minimum energy consumption a stable
system can achieve, P is the average energy consumption
under the proposed algorithm, and ε > 0 is the distance
between the data arrival rate vector Eλ and the system capacity
region under the proposed algorithm.

Theorem 1 demonstrates the trade-off between energy con-
sumption and queue length (or, delay). The upper bound of
the average energy consumption is O(1/Vp) and the upper
bound of the average queue length is O(Vp). Therefore these
are conflicting objectives. We can tune Vp to flexibly trade
off between energy consumption and queue length. When the
power supply is not so limited (e.g., a charger is available),
the user can decrease Vp to reduce the queue length (and
thus delay) and enjoy better quality of experience (QoE).
On the other hand, if the power constraint is stringent (e.g.,
the mobile device is running out of battery and no charger
is available), the user can increase Vp to save energy at the
expense of longer average queue length and larger delay.

IV. TRACE-DRIVEN SIMULATION VALIDATION
We evaluate the performance of the proposed algorithm with
trace-driven simulations. In the simulations, we adopt the
wireless network measurement data gathered by testing the
data rate of the LTE/WiFi networks while walking around
the Auburn University campus with an iPhone5. The LTE
carrier is AT&T and theWiFi network is deployed by Auburn
university. In particular, half of the LTE rate tests are con-
ducted outdoor and half of the tests are conducted indoor. The
WiFi rate tests are conducted in Broun Hall in the Auburn
University Campus.

In the simulations, the wireless link data rate is randomly
selected from themeasured trace. For power consumption, we
adopt the power models for LTE and WiFi proposed in [16].
For the uplink, the LTE power model can be approximated as
pO = aLTE ·ωO+bLTE , where aLTE = 0.5W, bLTE = 1.25W,
and ωO is the wireless network data rate in Mbps. For WiFi,
the power consumption mode is p = aWiFi ·ωO+bWiFi, where
aWiFi = 0.24 W and bWiFi = 0.125 W. For downlink, the
power model for LTE can be approximated as pD = aDLTE ·
ωD + bDLTE , where a

D
LTE = 0.042 W, bDLTE = 1.25 W. For

WiFi, the power consumptionmode is pD = aDWiFi ·ωD+b
D
WiFi,

where aDWiFi = 0.12 W and bDWiFi = 0.125 W.
We consider a scenario with five applications running

in the mobile device and all of them can be offload. The
task arrival rate of each application ranges from 0.5 to 2.0.
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The offloading data size of the tasks follows a truncated
Exponential distribution with means ranging from
60 KB to 300 KB. For local execution, η was set to
0.6 corresponding to the normalized computation complex-
ity 2. The normalized computation complexity of each task
follows an Exponential distribution with means ranging from
0.1 to 1. In the simulations, Vp is increased from 1 to 200. For
each Vp value, the simulation runs for 50,000 time slots.

We compare the following four schemes in the simulations:
(i) the proposed scheme with single core CPU, (ii) the pro-
posed scheme with dual core CPU, (iii) the proposed scheme
with single core CPU, and with Large Output of Cloud Com-
puting (LOCC) (i.e. the average data size of cloud computing
is twice of that of offloading), and (iv) the ‘‘eTime’’ strategy
proposed in [14] with LOCC.

FIGURE 3. Average queue length of the four schemes.

FIGURE 4. Average power consumption of the four schemes.

The simulation results are plotted in Figs. 3 and 4 for
average queue length and average power consumption,
respectively. It can be seen that there is a clear trade-off
between average energy consumption and average queue

length achieved by tuning Vp for both single core and
dual core CPU. When Vp is increased, the average energy
consumption is decreased but the average queue length is
increased. It confirms the findings in Theorem 1 that the
average queue length follows O(Vp) (see Fig. 3) and the
average energy consumption follows O(1/Vp) (see Fig. 4)
asymptotically. When Vp is smaller than 10, the energy con-
sumption decreases rapidly with Vp, while the average queue
length increases almost linearly with Vp. Therefore, users
can achieve big energy savings, while only suffers a linearly
increased delay, by increasing Vp in this region. From the
simulation, we can find clearly that for dual core CPU, the
queue length is much shorter than that of the single CPU
system. But the power consumption for dual core is much
higher with small Vp, but with high Vp (i.e., larger than 4), the
system with dual core CPU enjoy lower energy consumption.
It means that system with dual core system enhances the
system computation ability and show greater flexibility for
trade off between energy consumption and queue length.

For system with single core CPU with LOCC, it suffers
from longer queue length and greater energy consumption
with large Vp (i.e. greater than 4), as the downloading for
Output of Cloud Computing is more resource consumption.
The queue length of the single core CPU system with LOCC
suffers from a high queue length with the low Vp(ie. smaller
than 4), that is because the system offloading tasks aggres-
sively with low Vp and the downloading for output of cloud
is resource consuming, which increases the average queue
length. With low Vp (i.e. smaller than 4), the power consump-
tion of single core CPU system with LOCC consumes less
energy consumption than that of single core CPU system.
It is because that the single core CPU system with LOCC has
longer queue for downloading the output of cloud computing,
which results in a smaller ξOj and effects of Vp is enhanced.

The simulation results also demonstrate that the perfor-
mance of the proposed algorithm is better than that of the
strategy proposed in [14] with LOCC, which suffers higher
energy consumption. In addition, in the LOCC scenario,
eTime couldn’t stabilize the system with a low Vp. It is
because that with a low Vp, eTime aggressively offloads
tasks to the cloud but couldn’t download the output of cloud
execution.

V. RELATED WORK
Cloud offloading is regarded as an effective solution to save
energy, extend storage spaces, and enable computation inten-
sive applications at mobile devices [2]–[4]. There have been
many prior work addressing the various design issues of
cloud computing to fully harvest its potential [5], [17]–[20],
[23], [24]. In particular, considerable recent works have
focused on building the framework of enable mobile compu-
tation offloading [5], [20], [23], [24], suggesting for a mobile
device to execute codes remotely in resource-rich servers,
which connect the mobile device through LAN or wireless
link. Ref. [24] implemented method level offloading for
applications on Microsoft .NET, and Ref. [20] implemented
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a flexible application partitioner which enables seamlessly
offloading of part of the execution to the virtual machine.
On the other hand, many other works [17], [25], [28] have
focused on backing up data and applications to extend the
storage space of mobile devices. However, both computation
offloading and data/application backup involve considerable
energy consumption for data transmission between mobile
devices and the cloud, which maymakes some excellent tech-
niques [30] infeasible in practical implementation scenarios.

Researchers have started to investigate the energy cost
of offloading [10], [14], [18], [21], [22], [24], [26]–[29],
[31], [33]. Some techniques focused on reducing the energy
consumption during offloading [21], [24], [27]–[29], [31].
For example, in [21], the authors proposed a dynamic
offloading algorithm to save energy by offloading some
components of an application to the cloud, while Ref. [31]
proposed an algorithm to reduce energy consumption
by selecting the most energy efficient WiFi AP for
offloading. Furthermore, some researches have inves-
tigated the tradeoff between energy consumption and
delay [10], [18], [22], [26], [32]. For example, the
bandwidth and energy costs of cloud computing were
investigated in [10]. In [26], a heuristic algorithm was
proposed to jointly minimize the energy consumption and
delay. However, these works are based on static models of
application, and more important, the stochastic character-
istics of applications and network dynamics have not been
taken into consideration. The authors of [18] and [22] pro-
posed an energy-optimal mobile computing framework under
stochastic wireless channels, while considering the single
application scenario. In [14], an energy-efficient transmis-
sion algorithm between the cloud and mobile devices was
presented based on the Lyapunov optimizing framework [7].
However, the local computation resources in the mobile
devices has not been fully utilized, and it doesn’t consider
downloading the cloud execution output.

This work was motivated by the above interesting works
to investigate the energy-delay trade-off in cloud offload-
ing with a Lyapunov optimization approach. We explicitly
considered the stochastic nature of both user and applica-
tion behaviors, and network dynamics, and addressed the
more challenging case of multiple applications, thus greatly
extending the work in [18] and [22]. This work also extended
prior work [14] by considering multi-core CPUs and fully
utilizing the local computing capability, by making
offloading decisions based on both task queues and queues
for downloading the output of cloud execution. As in [14],
the online operation of the proposed scheme makes it highly
suitable for real-time applications.

VI. CONCLUSIONS
In this paper, we proposed a scheduling scheme for energy-
efficient cloud offloading for muti-core mobile devices,
while considering downloading the cloud execution output
in the model. Based on Lyapunov optimization, we devel-
oped an online algorithm that does not require information

about stationary distribution of applications and the
network condition, making it amenable to real-time imple-
mentation for practical scenarios. We proved theoretical
bounds for the proposed algorithm and validated its perfor-
mance with trace-driven simulations.

APPENDIX
A. PROOF OF THEOREM 1
According to (29) and (32), we have

min{ϕ + VpP(t)}

= min

{
VpP(t)+

N∑
i=1

Qi(t)Ai(t)−
N∑
i=1

QDi (t)B
D
i (t)

−

∑
i/∈αO(t)

Qi(t)Bi(t)− (Qi(t)− QDi (t))B
O
i (t)|i∈αO(t)


= min

{
VpP(t)+

N∑
i=1

QDi (t)(B
O
i (t)− B

D
i (t))

+

N∑
i=1

Qi(t)(Ai(t)− Bi(t)− BOi (t))

}

≤ VpP∗(t)+
N∑
i=1

QDi (t)(B
∗O
i (t)− B∗Di (t))

+

N∑
i=1

Qi(t)(Ai(t)− B∗i (t)− B
∗O
i (t)), (42)

where P∗(t), B∗i (t), B
∗O
i (t) and B∗Di (t) are the terms corre-

sponding to any other (possibly randomized) feasible sched-
ule. Now consider a randomized scheduling policy that
achieves the following for Application i ∈ N .

E{P∗(t)} = Popt (43)

E
{
B∗Oi (t)− B∗Di (t)

}
≤ 0 (44)

E
{
Ai(t)− B∗i (t)− B

∗O
i (t)

}
≤ 0, (45)

where Popt is the minimum power consumption a stable
system can achieve and (44) and (45) stabilize the queues.
For the proposed algorithm, we have

1(L(t))+ Vp · E{P(t)}
≤ Vp · E{P(t)} +8+ E{ϕ}

≤ Vp · E{P∗(t)} + E

{
N∑
i=1

QDi (t)(B
∗O
i (t)− B∗Di (t))

}

+E

{
N∑
i=1

Qi(t)(Ai(t)− B∗i (t)− B
∗O
i (t))

}
+8

≤ Vp · Popt + 0+8, (46)

where

E

{
N∑
i=1

QDi (t)(B
∗O
i (t)− B∗Di (t))

}
≤ 0 (47)
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E

{
N∑
i=1

Qi(t)(Ai(t)− B∗i (t)− B
∗O
i (t))

}
≤ 0, (48)

according to (43) and (44).
Then we have

1(L(t))+ Vp · E{P(t)} ≤ Vp · Popt +8, (49)

and
∑T−1

k=0 1(L(t)) = L(T ) < ∞ for a stable system.
It follows that

lim sup
t→∞

1
T

T−1∑
k=0

1(L(T ))+ lim sup
t→∞

Vp
T

T−1∑
k=0

E{P(t)}

= 0+ lim sup
t→∞

Vp
T

T−1∑
k=0

E{P(t)}

≤ Vp · Popt +8.

Then we have that (40) holds true.
Suppose for Application i ∈ N , there exist some real

number ε > 0, such that

E
{
BOi (t)− B

D
i (t)

}
≤ −ε (50)

E
{
Ai(t)− Bi(t)− BOi (t)

}
≤ −ε. (51)

According to (42), we have

1(L(t))+ Vp · E{P(t)}

≤ Vp · E{P(t)} + E

{
N∑
i=1

QDi (t)(B
O
i (t)− B

D
i (t))

}

+E

{
N∑
i=1

Qi(t)(Ai(t)− Bi(t)− BOi (t))

}
+8

≤ Vp · E{P(t)} +8− ε · E

{
N∑
i=1

(Qi(t)+ QDi (t))

}
. (52)

As
∑T−1

i=0 {1(L(t))+ Vp · E{P(t)}} ≥ 0, we have

E

{
N∑
i=1

(Qi(t)+ QDi (t))

}
≤

1
ε
{Vp · E{P(t)} +8}. (53)

It follows that

lim sup
T→∞

1
T

T−1∑
t=1

N∑
i=1

E{Qi(t)+ QDi (t)} (54)

≤
8

ε
+

1
ε
lim sup
T→∞

1
T

T−1∑
i=0

{Vp · {P(t)}}

=
1
ε
(8+ VpP),

and we conclude that (41) holds true.
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