
Received October 14, 2015, accepted November 2, 2015, date of publication November 9, 2015,
date of current version November 24, 2015.

Digital Object Identifier 10.1109/ACCESS.2015.2498764

Efficient Identification of Core and Dead Features
in Variability Models
HECTOR PEREZ-MORAGO, RUBEN HERADIO, DAVID FERNANDEZ-AMOROS,
ROBERTO BEAN, AND CARLOS CERRADA
Department of Software Engineering and Computer Systems, Universidad Nacional de Educacion a Distancia, Madrid 28040, Spain

Corresponding author: R. Heradio (rheradio@issi.uned.es)

This work was supported in part by the Spanish Ministry of Economy and Competitiveness through the CICYT Project under
Grant DPI-2013-44776-R and in part by the Comunidad de Madrid within the RoboCity2030 Excellence Research Network
under Grant S2013/MIT-2748.

ABSTRACT Mass customization enables the creation of personalized products that fulfill the features
desired by specific customers. In this context, variability models are used to specify which configurable
features are supported and which constraints among the features must be satisfied to guarantee the validity
of the derived products. As the market demand grows and evolves, variability models become increasingly
complex. In such entangled models, it is hard to identify which features are absolutely essential or
dispensable because they are required to be included or excluded from all the possible products, respectively.
This paper exposes the limitations of existing approaches to automatically detect those features and provides
an algorithm that efficiently performs such detection.

INDEX TERMS Mass customization, product platform, variability model, configuration model, feature
model, dead feature, core feature.

I. INTRODUCTION
To increase variety, improve customer satisfaction, reduce
lead-times, and shorten costs, many companies have shifted
frommass production tomass customization [1]. This shift of
paradigm enriches the economies of scale with custom
manufacturing flexibility by developing families of related
products instead of single products [2], [3]. From this
perspective, designing a product family is the process of
capturing and modeling multiple product variants to satisfy
different market niches. A generic architecture, named
product platform, is designed to support the creation of
customized products called derivatives.

Derivatives are usually specified as combinations of
features demanded by the customers (e.g., get a car
with cruise control, speed limiter, directional stability
control, etc.) [4], [5]. As product platforms grow and evolve,
the need for feature variability increases, and managing that
variability becomes increasingly difficult. For instance, the
number of derivatives for product platforms in the automotive
industry may range from 103 for the smallest Peugeot and
Nissan car models, to 1016 or 1021 for the BMW 3-Series and
Mercedes C-Class, respectively [6]. Typically, not all feature
combinations are valid. There may be feature incompati-
bilities (e.g., manual transmissions are not compatible with
V8 engines), feature dependencies (e.g., sport cars require
manual gearbox), etc. The features supported by a product

platform and their inter-relations are often specified with
variability models (also known as feature models, decision
diagrams, configuration models, etc.) [7].

Features in a product platform usually have varying
degrees of importance. Some features may be highly
demanded by the market and so most derivatives should
include them. Other features may become dispensable as the
market demand evolves. In addition, there may be features
that indirectly become of key importance because other
essential features need them, or features that cannot be
included in any derivative due to their incompatibility with
highly required features. In particular, this paper is focused
on the identification of features that must appear in all
derivatives, and features that cannot be included in any
derivative. In the software product line literature,
those features are known as core and dead, respec-
tively [8]–[10].

Identifying core and dead features by hand is both unfea-
sible and undesirable for all but the most trivial variability
models, so their automated computation is required. The
usual way to perform that computation is to translate the
models into Boolean formulas and use off-the-shelf logic
tools, such as SAT solvers [11] or Binary Decision
Diagram (BDD) engines [12]. Unfortunately, current
algorithms have poor time performance and thus impose long
response times, hindering user interactivity [13].
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To overcome this problem, this paper proposes a faster
algorithm, which identifies dead and core features using
BDDs. Since more complex logics than the Propositional
one, which include integer arithmetic, transitive closure, etc.,
can be reduced to Boolean functions [14], and thus encoded
as BDDs, our algorithm is general enough to support most
variability model notations. + The remainder of this paper is
structured as follows. Section II presents the running example
that wewill use tomotivate and illustrate our work. Section III
summarizes related work. Section IV describes our approach.
Section V reports an experimental validation of our approach.
Finally, Section VI outlines the conclusions of our
work.

II. MOTIVATIONAL EXAMPLE
Figure 1 depicts a variability model written as a directed
graph where the nodes represent features and the edges
represent constraints related to dependencies or incompati-
bilities between features. A dashed-line arrow depicts that
the two connected features are incompatible. A solid-line
arrow from a feature f to another feature f ′ represents that
f requires f ′.

FIGURE 1. A small variability model represented as a directed graph. Each
node represents a feature and arrows depict dependencies.

Each derivative is characterized by a selection of features.
Feature interdependencies reduce the 26 potential derivatives
in Figure 1 to just the 6 ones enumerated in Equation 1.
For instance, {f1, f3, f4, f5} is discarded because it violates the
constraint f4 L9999K f5.

valid derivatives =
{
{f1}, {f1, f3}, {f1, f3, f6}, {f1, f3, f5},

{f1, f3, f5, f6}, {f1, f3, f4}
}

(1)

As product platforms grow, variability models become
bigger and harder to understand. Therefore, an automated
mechanism is needed to provide information regarding the
role of each feature in a variability model [15]. In particular,
features that appear in all or none of the valid derivatives are
essential or dispensable, respectively. For instance, according
to Equation 1, f1 is included in all derivatives and so it is a
core feature. As f2 is missing in every derivative, it is a dead
feature.

III. RELATED WORK
A number of diferent notations are available to model the
configurable options of a product family. Namely, Feature

Diagrams (FD) [16], the Configit language,1 the SAP
Product Configurator language,2 etc. Interestingly, most of
those notations are semantically equivalent [17]. In fact,
instead of processing models directly, automated tools for
variability management usually translate them into a propo-
sitional logic representation, such as a logic formula in con-
junctive normal form, a BDD, etc. That logic representation is
then processed using off-the-shelf tools, such as SAT solvers,
BDD engines, etc [15], [18].

For instance, Equation 2 shows the Boolean encoding
of Figure 1. The first row means that at least one of the
six features has to be selected. The second and third rows
encode constraints between those features. The second row
encodes five dependencies, for example ¬f2 ∨ f3 means that
f2 requires f3. The third row encodes three incompatibilities,
for example ¬f1 ∨ ¬f2 means that f1 is incompatible
with f2.

ψ = (f1 ∨ f2 ∨ f3 ∨ f4 ∨ f5 ∨ f6) ∧ (¬f2 ∨ f3)

∧(¬f3 ∨ f1) ∧ (¬f4 ∨ f3) ∧ (¬f5 ∨ f3) ∧ (¬f6 ∨ f3)

∧(¬f1 ∨ ¬f2) ∧ (¬f4 ∨ ¬f5) ∧ (¬f4 ∨ ¬f6) (2)

The most straightforward approach to detect the core and
dead features of a model is calling a SAT-solver to enumerate
all valid derivatives, and then inspecting the derivatives to
identify what features appear in all and none of them,
respectively. Unfortunately, the number of derivatives repre-
sented by a variability model grows exponentially with the
number of features. For instance, a model with 260 inde-
pendent optional features (i.e., features without dependencies
with the remaining ones) represents more combinations than
the number of atoms in the observable universe [19]. So, this
method, which is used for instance by the FAMA tool [20],
has serious scalability limitations.

If ψ is a Boolean formula encoding a variability model,
a feature f is core iff ψ → f is a tautology or, in other words,
iff¬f ∧ψ is unsatisfiable [14]. Similarly, f is dead iff f ∧ψ is
unsatisfiable. Thus, all core and dead features can be detected
by calling repeatedly a SAT-solver (or a BDD engine), which
is the method proposed in [21] and [22].

As Lesta et al. [23] note, this approach can be improved for
the case of dead features by reducing the number of checks
as follows: whenever f ∧ψ is satisfiable, the SAT-solver not
only returns ‘‘satisfiable’’, but also a valid assignment;
all features f ′ that are true in that assignment cannot be dead
(since, at least, they are included in the derivative returned by
the solver). Therefore, checking the satisfiability of f ′ ∧ ψ
can be avoided.

Although Lesla et al.’s work does not deal with core feature
detection, their reasoning can be applied to that kind of
features as well: whenever f ∧ ψ or ¬f ∧ ψ are satisfiables,
none of the features f ′ that are false in the satisfying
assignment returned by the solver can be core.

1http://configit.com/
2https://scn.sap.com/docs/DOC-25224
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IV. A BDD ALGORITHM TO DETECT CORE
AND DEAD FEATURES
A. A BRIEF INTRODUCTION TO BDDs
BDDs are a way of representing Boolean functions. They are
rooted, directed, acyclic graphs, which consist of decision
nodes and terminal nodes [24]. There are two types of
terminal nodes called 0-terminal and 1-terminal. Each
decision node v is labeled by a Boolean variable f and has
two children called low and high (the relation of a node with
its low and high children is usually depicted by dashed and
solid lines, respectively). The edge from node v to a low
(or high) child represents an assignment of f to 03 (resp. 1).
Such a BDD is called ordered if different variables appear
in the same order on all paths from the root. A BDD is
said to be reduced if the following rules are applied to its
graph [14]:
R1 Removal of duplicate terminals. If a BDD contains

more than one terminal 0-node, then all edges which
point to such a 0-node are redirected to just one of
them. We proceed in the same way with terminal nodes
labelled with 1.

R2 Removal of redundant tests. If both outgoing edges of a
node vi point to the same node vj, then vi is eliminated,
sending all its incoming edges to vj.

R3 Removal of duplicate non-terminals. If two distinct
nodes vi and vj in the BDD are the roots of structurally
identical subBDDs, then we eliminate one of them,
say vj, and redirect all its incoming edges to the
other one.

In popular usage, the term BDD almost always refers to
Reduced Ordered Binary Decision Diagram [14]. From here
on, we will follow that convention as well.

In its seminal paper, Bryant [24] provided an automated
procedure to build the BDD encoding of a Boolean formula
according to a particular variable ordering. For example,
Figure 2 is the BDD representation of Equation 2 using the
variable ordering f1 ≺ f2 ≺ f3 ≺ f4 ≺ f5 ≺ f6. To find
if a particular configuration is valid, start at the root of the
graph (v8 in Figure 2) and traverse the edges as follows:
if a feature appears in the configuration, then select its solid
edge; otherwise select its dashed edge. If the path ends up
in the 1-terminal node, the configuration is valid. Otherwise,
the configuration is invalid. For instance, imagine that f1 is not
included in a configuration, then the dashed line coming from
v8 must be followed, which goes directly to the 0-terminal
node. Hence, any configuration without f1 is invalid, consis-
tently with the fact that f1 is a core feature (see Section II).

As another example, lets see if configuration {f1, f3} is
valid. Starting from the root, as f1 belongs to the
configuration, then the solid line that goes from v8 to v7 is
selected. As f2 is not in the configuration, the dashed line that
goes from v7 to v6 is followed. f3 belongs to the configuration,
so the solid line from v6 to v5 is selected. Finally, as f5 is
not included in the configuration, the dashed line from v5

3throughout this paper false/true and 0/1 are used interchangeably

FIGURE 2. BDD for Equation 2 according to the variable ordering
f1 ≺ f2 ≺ f3 ≺ f4 ≺ f5 ≺ f6. Nodes are labeled with the variable they
encode and with a unique identifier vi . Edges to low children
(dashed lines) or high children (solid lines) represent variable
assignments to false or true, respectively.

to the 1-terminal node is followed. It is interesting to note
that, at this point the BDD does not need to know the values
of the remaining features f5 and f6 to determine that the
configuration is valid.

FIGURE 3. BDD for Equation 2 according to the variable ordering
f4 ≺ f5 ≺ f6 ≺ f3 ≺ f2 ≺ f1. This BDD is semantically equivalent
to the one in Figure 2.

BDDs depend on the variable ordering used to build
them. For instance, Figure 3 is the BDD representation
of Equation 2 using the variable ordering f4 ≺ f5 ≺ f6 ≺
f3 ≺ f2 ≺ f1. Note that this BDD requires traversing
more nodes to determine if {f1, f3} is a valid configuration
(i.e., v9 99K v6 99K v5 99K v3 99K v2 → v1). The
BBD in Figure 3 has more nodes, and so the encoding is less
efficient.

It is known that the size of a BDD is extremely sensitive to
the used variable ordering [24]. Unfortunately, it is also
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well-known that finding an optimal ordering is an
NP-complete problem [25]. Providing an heuristic to find
a good variable ordering is out of the scope of this paper.
Nevertheless, some heuristics specifically designed to deal
with variability models are available [12], [26], [27].

B. THEORETICAL BASIS OF OUR APPROACH
A valuation of a formula ψ is an assignment of each variable
in ψ to a truth value. For instance, a possible valuation for
Equation 2 is {f1 = 1, f2 = 0, f3 = 0, f4 = 0, f5 = 0,
f6 = 0}, which evaluates ψ to true. If ψ encodes a variability
model, the valid products of the model are represented by the
valuations that make ψ true [11]. For example, the former
valuation represents the first derivative in Equation 1, which
just includes the feature f1.
In BDDs, valuations are represented as paths from the root

to the terminal nodes. For instance, the BDD in Figure 2
encodes the aforementioned valuation as v8 → v7 99K
v6 99K v4 99K v3 99K v2 99K 1. A valuation is true if its
corresponding path ends in the 1-terminal node.
Definition 1: Let f →+ 1 and f 99K+ 1 be two

predicates. f →+ 1 is true iif the 1-terminal node is
reachable from the root traversing the high edge of some
node labelled with f ; f 99K+ 1 is true iif the 1-terminal
node is reachable through a low edge of some node labelled
with f .

For example, in Figure 2, f3 →+ 1 is true due to the path
v8 → v7 99K v6 → v5 99K 1. Nevertheless, f1 99K+ 1 is
false because v8 is the only node labeled with f1 and, once
the low edge of v8 is traversed, it is not possible to reach the
1-terminal node.
Lemma 1:A feature f is core iff f →+ 1 is true and f 99K+

1 is false.
Lemma 1: A feature f is dead iff f →+ 1 is false and

f 99K+ 1 is true.
Proof: By definition: a feature f (i) is core iff all valid

products include f , and (ii) it is dead iff no valid derivative
includes f . That is, when determining if f is core or dead,
only the valid products are of interest or, in BDD terms,
the paths from the root to the 1-terminal node. So, we are
just concerned about the cases where f is traversed and the
1-terminal node is reached, i.e., when f →+ 1 is true or
f 99K+ 1 is true:
1) If f →+ 1 = true and f 99K+ 1 = true, the 1-terminal

node may be reached traversing high and low edges of
nodes labelled with f . That is, f is included in some
valid products, but not in another valid ones. Therefore,
f neither is core, nor is dead.

2) If f →+ 1 = true and f 99K+ 1 = false, the 1-terminal
node cannot be reached traversing low edges of nodes
labelled with f (due to f 99K+ 1 = false). All the paths
that end in the 1-terminal node go across a high edge
of f . In other words, all valid products include f and so
f is core.

3) If f →+ 1 = false and f 99K+ 1 = true, the 1-terminal
node cannot be reached traversing high edges of nodes

TABLE 1. Content of the bdd array for Figure 2.

TABLE 2. Content of the var_ordering array for the Figure 2.

Algorithm 1 get_core_and_dead_features (Our
Approach)

1 Input bdd and var_ordering arrays
2 Output two lists : one with all the core features, and
3 another one with all the dead features
4 var core_features, dead_features : list; i: int;
5 through_high_array, through_low_array :
6 array[0..n-1] of boolean;
7 it_reaches_the_1_terminal_array : array[0..m− 1]

of boolean
8 begin
9 core_features = {}

10 dead_features = {}
11 through_high_array = [false, false, . . ., false]
12 through_low_array = [false, false, . . ., false]
13 it_reaches_the_1_terminal_array = [false, false, . . .,

false]
14 does_it_reach_the_1-terminal?(length(bdd)-1,
15 through_high_array, through_low_array,
16 it_reaches_the_1_terminal_array)
17 for

(
i=0; i < length(var_ordering); i++

)
do

18 if
through_high_array[i] ∧ ¬through_low_array[i]
then

19 core_features.insert(var_ordering[i])
20 else if

¬through_high_array[i] ∧ through_low_array[i]
then

21 dead_features.insert(var_ordering[i])

22 return core_features, dead_features

labelled with f (due to f →+ 1 = false). All the paths
that end in the 1-terminal node go across a low edge
of f . As, f is disabled in all valid products, f is dead.
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Algorithm 2 does_it_reach_the_1-terminal?
1 Input v: index of a node in the bdd (i.e., 0..m-1);
2 through_high_array, through_low_array :
3 array[0..n-1] ofboolean;
4 it_reaches_the_1_terminal_array :array[0..m− 1] of boolean
5 Output the algorithm returns true if v can reach
6 the 1-terminal. Otherwise, it returns false;
7 through_high_array and through_low_array are passed
8 by reference
9 begin
10 if ¬bdd[v].mark then
11 bdd[v].mark = true

// does v reach the 1-terminal through
high?

12 if bdd[v].high == 1 then // the 1-terminal is
reached

13 through_high_array[bdd[v].index] = true
14 it_reaches_the_1_terminal_array[v] = true
15 update_reduced_nodes(v, ‘‘high’’,
16 through_high_array, through_low_array)
17 else if bdd[v].high 6= 0 then // keep searching
18 it_reaches_the_1_terminal_array[v] =
19 does_it_reach_the_1-terminal?(
20 bdd[v].high,
21 through_high_array, through_low_array,
22 it_reaches_the_1_terminal_array)
23 if it_reaches_the_1_terminal_array[v] then
24 through_high_array[bdd[v].index] = true
25 update_reduced_nodes(v, ‘‘high’’,
26 through_high_array, through_low_array)

// does v reach the 1-terminal through
low?

27 if bdd[v].low == 1 then // the 1-terminal is
reached

28 through_low_array[bdd[v].index] = true
29 it_reaches_the_1_terminal_array[v] = true
30 update_reduced_nodes(v, ‘‘low’’,
31 through_high_array, through_low_array)
32 else if bdd[v].low 6= 0 then // keep searching
33 it_reaches_the_1_terminal_array[v] =
34 does_it_reach_the_1-terminal?(
35 bdd[v].low,
36 through_high_array, through_low_array,
37 it_reaches_the_1_terminal_array)
38 if it_reaches_the_1_terminal_array[v] then
39 through_low_array[bdd[v].index] = true
40 update_reduced_nodes(v, ‘‘low’’,
41 through_high_array, through_low_array)

42 return it_reaches_the_1_terminal_array[v]

C. DATA STRUCTURES
Following the directions given by Bryant [24], let us represent
a BDD that hasm nodes and encodes a Boolean formula with
n variables by using the following data structures:
• The variable ordering used to synthesize the BDD is
represented by an array declared as follows:

var_ordering: array[0..n-1] of string

• Each node is represented by a record declared as follows:

type node = record
index: 0..n
low, high: node
mark: Boolean

end

Algorithm 3 update_reduced_nodes

1 Input v: 0..m-1; direction : string ∈ {‘‘high’’, ‘‘low’’};
2 through_high_array, through_low_array : array

[0..n-1] of
3 boolean
4 Output
through_high_array and through_low_array are passed

5 by reference
6 var i: int
7 begin
8 if direction == ‘‘high’’ then
9 for

(
i = bdd[v].index+ 1;

i < bdd[bdd[v].high].index; i++
)
do

10 through_high_array[i] = true
11 through_low_array[i] = true

12 else // direction == ‘‘low’’
13 for

(
i = bdd[v].index+ 1;

i < bdd[bdd[v].low].index; i++
)
do

14 through_high_array[i] = true
15 through_low_array[i] = true

FIGURE 4. Algorithm 3 updates the 1-reachability for features whose
nodes has been removed from the BDD due to Reduction R2
(i.e., because their low and high outgoing edges point to
the same node).

Where:
1) index is the index of the variables in the ordering.

The terminal nodes of the BDD (i.e., 0 and 1) have
index n.

2) low and high are the low and high node successors
3) mark is used to mark which nodes have been

visited during a traversal of the graph. As we will
see, our algorithm is called at the top level with the
root node as argument and with the mark fields of
the nodes being either all true or all false. It then
systematically visits every node in the graph by
recursively visiting the subgraphs rooted by the
two children low and high. As it visits a node,
it complements the value of the mark field, so that
it can later determine whether a child has already
been visited by comparing the two marks.
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TABLE 3. Summary of the experimental results.

• The BDD is represented by an array declared as follows:
bdd: array[0..m] of node
The terminal nodes of the BDD, 0 and 1, are stored at
positions 0 and 1 of the bdd array, respectively.

For instance, Tables 1 and 2 represent the content of bdd
and var_ordering for the BDD in Figure 2, respectively.

D. ALGORITHMS
Algorithm 1 computes the core and dead features from an
input formula ψ , which represents a given variability model.
To do so, the algorithm builds the BDD that encodes ψ
according to an input variable ordering (line 10). Two arrays
named through_high_array and through_low_array are used
to store in position i− 1 the values of fi→+ 1 and fi 99K+ 1,
respectively. The computation of such arrays is performed
by Algorithm 2 (lines 13-14). For instance, after executing
Algorithm 2 for Figure 2,

through_high_array = [true, false, true, true, true, true]
through_low_array = [false, true, true, true, true, true]

So,

through_high_array[1] = f2→+ 1 = false

through_low_array[1] = f2 99K+ 1 = true

Then, Algorithm 1 applies Lemmas 1 and 2 to identify the
core and dead features according to through_high_array and
through_low_array (lines 15-19). For instance, since
f2 →+ 1 = false and f2 99K+ 1 = true, Algorithm 1
determines that f2 is dead.
To compute f →+ 1 and f 99K+ 1, Algorithm 2 follows

the procedure proposed by Bryant [24] for traversing a BDD
and performing operations on its nodes. The algorithm is

FIGURE 5. Graphical representation of the experimental results.

called at the top level with the root node as argument and
with the mark fields of the nodes being all false. It then
systematically visits every node in the graph by recursively
visiting the subgraphs rooted by the two children. As it visits
a node, it sets to true the value of the mark field, so that it
can later determine whether a child has already been visited.
For each node, it is checked if the 1-terminal node is reached.
If so, Algorithm 3 is called to update arrays through_high_
array and through_low_array to account for the nodes that
have been removed from the BDD due to Reduction R2
(see Section IV-A). For instance, as Figure 4 shows, the edge
v5 99K 1 in Figure 2 is the result of erasing nodes vx and vy
from the BDD because their high and low outgoing edges
point to the same node. Taking that removal into account and
as f4 99K+ 1 is true, then it follows that f5 →+ 1, f5 99K+ 1,
f6→+ 1 and f6 99K+ 1 are also true.

V. EXPERIMENTAL EVALUATION
This section reports the time-performance comparison of our
approach with respect to Tartler.’s [22] and Lesta et al.’s [23]
procedures.
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A. EXPERIMENTAL DESIGN
Table 3 summarizes the benchmark we used to validate our
approach. Variability modelsm1−m10 come from the SPLOT
repository,4 modelsm11−m14 come from She et al. [28], [29],
and models m15−m19 come from Bak [30], being m16−m19
randomly generated. All tests were conducted on an Intel˙

CoreTM i7-3537v 2.00 GHz with 8GB RAM. To improve the
accuracy of the experimental results, we tried to minimize
the operating system interference in the tests (e.g., due to
interrupts to update internal OS kernel clock, automated task
management and planing, memory garbage-collection, etc.)
by repeating each experiment 50 times.

Our algorithm was implemented as an extension of the
BDD library BuDDy.5 As the implementation of alternative
approaches to ours relies on SAT-technology, just comparing
the performance of our algorithm to that implementation
could skew the experimental validation to a SAT versus
BDD contest. To overcome this problem, we also evalu-
ated the performance of a BDD implementation of related
work as well. In particular, Tartler.’s and Lesta et al.’s
approaches were implemented with the SAT-solver
minisat6 and BuDDy. Finally, the orderings of the variables
for all BDDs were computed using the heuristic proposed by
Narodytska and Walsh [27].

The implementation of our algorithm and the benchmark
used to validate its performance are available at:

http://hperez30.github.io/
CoreAndDeadFeatures/

B. EXPERIMENTAL RESULTS
Table 3 and Figure 5 summarize the results of the con-
ducted experimental evaluation. Note that, as each test was
run 50 times, both the table and the figure show averaged
data.

According to the results, our approach outperforms related
work in every variability model, being its benefits more
apparent as models are larger. It is worth noting that the
BDD implementation of related work runs faster than the
SAT implementation.

VI. CONCLUSIONS
Existing approaches to identify core and dead features in
variability models rely on the use of logic engines as
‘‘black boxes’’. They follow the strategy of repeatedly calling
predefined functions in the engines. We have shown that such
strategy has poor performance and hinders user interactivity.

This paper has presented a new algorithm that directly
interacts with the BDD that encodes a variability model.
By efficiently traversing the BDD, we have been shown, both
theoretically and experimentally, that our algorithm outper-
forms related work in terms of scalability and performance.

4http://www.splot-research.org/
5http://buddy.sourceforge.net/manual/main.html
6http://minisat.se/
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