
SPECIAL SECTION ON BIG DATA SERVICES AND COMPUTATIONAL INTELLIGENCE
FOR INDUSTRIAL SYSTEMS

Received October 7, 2015, accepted October 25, 2015, date of publication November 2, 2015,
date of current version November 13, 2015.

Digital Object Identifier 10.1109/ACCESS.2015.2496959

An Adaptive Framework for Improving Quality
of Service in Industrial Systems
GANGYONG JIA1,2, (Member, IEEE), GUANGJIE HAN3, (Member, IEEE),
DAQIANG ZHANG4, (Senior Member, IEEE), LI LIU3, and LEI SHU5, (Member, IEEE)
1Department of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
2Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China
3Department of Information and Communication Systems, Hohai University, Changzhou 213022, China
4School of Software Engineering, Tongji University, Shanghai 200092, China
5Guangdong Petrochemical Equipment Fault Diagnosis Key Laboratory, Guangdong University of Petrochemical Technology, Guangdong 525000, China

Corresponding author: G. Han (hanguangjie@gmail.com)

This work was supported in part by the Qing Lan Project, in part by the National Science Foundation of China under Grant 61572172,
Grant 61472283, Grant 61401147, and Grant 61401107, in part by the Educational Commission of Guangdong Province, China, under
Project 2013KJCX0131, in part by the Fok Ying-Tong Education Foundation, China, under Grant 142006, in part by the Fundamental
Research Funds for the Central Universities under Grant 2013KJ034, Grant 2100219043, and Grant 1600219246/001, and in part by the
Zhejiang Provincial Natural Science Foundation under Grant LQ14F020011.

ABSTRACT Limited memory bandwidth is considered as the major bottleneck in multimedia cloud
computing for more and more virtual machines (VMs) of multimedia processing requiring high memory
bandwidth simultaneously. Moreover, contending memory bandwidth among parallel running VMs leads
to poor quality of service (QoS) of the multimedia applications, missing the deadlines of these soft real-
time multimedia applications. In this paper, we present an adaptive framework, Service Maximization
Optimization (SMO), which is designed to improve the QoS of the soft real-time multimedia applications in
multimedia cloud computing. The framework consists of an automatic detection mechanism and an adaptive
memory bandwidth control mechanism. With the automatic detection mechanism, the critical section to the
multimedia application performance in the VMs is detected. Then, our adaptive memory bandwidth control
mechanism adjusts the memory access rates of all the parallel running VMs to protect the QoS of the soft
real-time multimedia applications. From the case studies with real-world multimedia applications, our SMO
significantly improves the QoS of the soft real-time multimedia applications with a negligible penalty on
system throughput.

INDEX TERMS Memory bandwidth, multimedia application, memory access, quality of service,
soft real-time.

I. INTRODUCTION
With the better and better in scaling computing resources
and providing a simple pay-as-you-go business model for
customers, cloud computing is a promising economical com-
puting paradigm, and has gained much attention in the
industry [1]. Currently, a number of big companies such
as Netflix and Foursquare [2] have successfully moved
their business services from the dedicated computing infras-
tructure to Amazon Elastic Computing Cloud (EC2) [3].
Undoubtedly, services based on cloud computing is the dom-
inate model in the future for both flexibility and budget,
the International Data Corporation (IDC) has reported that
the business revenue brought by cloud computing will reach
$1.1 trillion in 2015 [4].

In cloud computing, a single physical server can collocate
multiple virtual machines (VMs), and through the virtual-
ization technology VMs can operate independently [5], [6].

Virtualization technology provides flexible allocation, migra-
tion of services, and better security isolation. In the
virtualization environment, hypervisor (or Virtual Machine
Monitor, VMM) manages physical resources (such as
memory bandwidth). The primary goal of a hypervisor is to
provide efficient resource sharing amongmultiple co-running
virtual machines [7].

However, with the number of VMs keep increasing on
one physical server (it will be up to 8 VMs on one physical
core in desktop cloud environment), meanwhile the VMs
of multimedia applications require high memory bandwidth,
therefore, the soft real-time multimedia applications have
poor QoS for serious contending memory bandwidth with
parallel running VMs. The demand for memory bandwidth
is much advance to the increasing speed, so the limited
memory bandwidth is the major bottleneck to the QoS of the
multimedia applications.

VOLUME 3, 2015
2169-3536
 2015 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2129

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

In order to address the limited memory bandwidth induced
soft real-time multimedia applications poor QoS problem,
there are some strategies:

1) Disable all VMs of non-real-time applications to
eliminate the shared memory bandwidth contention
problem [8], which decreases the whole system per-
formance seriously, it is unacceptable in normal cloud
computing.

2) Reduce memory access from shared last level cache.
This strategy can be achieved through improving uti-
lization of the last level cache, such as optimizing the
cache replacement policy, and so on.

3) Place VMs of different multimedia applications run-
ning parallel for both different memory bandwidth
requirements and different QoS requirements. Due to
the heterogeneity of the media applications, such as
streaming service, video transcoding services, render-
ing services and so on, media cloud has brought up the
need for an efficient VM allocation in the cloud plat-
form to utilize the memory bandwidth efficiently and
satisfy the QoS requirements of the media applications,
especially when different atomic media applications
are composed to meet the customer demands [10].
These VMs of different media applications have dif-
ferent memory bandwidth and QoS requirements, and
need VM placement at the run-time. In addition, the
dynamic of the media services demands makes it dif-
ficult to efficiently allocate VM in the cloud platform,
while fulfilling QoS demands.

4) Optimize the memory scheduling, maximizing the effi-
ciency of the memory bandwidth. Utilize the signifi-
cant amount of parallelism, such as out-of-order cores,
multi-bank DRAM, and so on, which can process a
considerable degree of concurrent accesses without any
noticeable performance impacts [9]. Therefore, it is
highly desirable to develop a solution that can provide
better QoS of multimedia applications while protecting
the whole system performance through leveraging both
the parallelism multi-bank and memory scheduling.

To improve QoS of the soft real-time multimedia applica-
tions in the media cloud computing, we propose an adaptive
framework, SMO, which consists three parts: the first is the
memory deduplication to reduce memory access, because the
same contents have already been in the cache; the second is
the VM placement, place VMs of different memory band-
width requirements running parallel to satisfy QoS better; the
third is the memory scheduling, priority schedule memory
access from real-time applications, and protect the whole
system simultaneously. Our SMO has two mainly mecha-
nisms, the automatic detection mechanism and the adaptive
memory bandwidth control mechanism. With the automatic
detection mechanism, the critical section to the multimedia
applications performance in the VMs is detected. Then our
adaptive memory bandwidth control mechanism adjusts the
memory access rates of all the parallel runningVMs to protect
the QoS of the soft real-time multimedia applications.

In summary, the paper aims to make the following contri-
butions through the proposal of SMO:

1) We propose an adaptive framework to improve QoS
in multimedia cloud computing while protecting the
whole system performance simultaneously. SMO con-
sist memory deduplication, bandwidth-aware VM
placement and memory scheduling.

2) Our SMO can detect the critical section to the
multimedia applications performance in the VMs
automatically.

3) Experimental results show our SMO is well in both
improving QoS and maximizing performance of the
whole system.

The rest of this paper is organized as the follows.
Section II elaborates on essential background and the related
work. Section III discusses research motivations. Section IV
explains our adaptive framework, SMO. Section V describes
experimental methodology and section VI presents the results
of our experiments. Finally, section VII concludes this paper.

II. BACKGROUND & RELATED WORKS
In this section, we provide a review of DRAM system and
discuss how past research dealt with the challenges of pro-
viding QoS to the soft real-time multimedia applications in
multimedia cloud computing.

A. DRAM SYSTEM
DRAM Organization: Figure 1 demonstrates the organiza-
tions of multiple levels memory subsystem. After receiving
the memory accesses fromCPU, the memory controller (MC)
sends corresponding commands to the off-chip memory sub-
system through the bus. Normally, the MC is integrated into
the same package of the CPU recently [26]. In order to
improve parallelism, a memory subsystem consists multiple
channels, which can act independently, and each channel
connects multiple DIMMs.Moreover, eachDIMMcomprises
multiple DRAM chips. The DRAM chips are the ultimate
destination of the MC commands. According to the partici-
pation of each access, the DRAM chips are partitioned into
ranks. However, how many chips a rank contains are depend-
ing on CPU. Recently, a DIMM can have up to 16 chips,
organized into 1-4 ranks [11].

FIGURE 1. Organization of a modern memory subsystem.

In order to access parallel, each DRAM chip has many
banks (8 or more banks nowadays). Every bank contains
multiple two-dimensional memory arrays. The basic unit is
the DRAM cell which is one bit of the storage and a sim-
ple capacitor. Thus, in a DRAM chip of x8, which means

2130 VOLUME 3, 2015

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

every bank has 8 arrays. So, each array in the bank accesses
one bit at a time. However, when an array is accessed, its
corresponding entire multi-KB row is transferred to the row
buffer. This operation is called a row opening or activation.
Then, any column of the row can be read/written in one burst.
Otherwise, the row needs to be written back. After so, new
row and column can be accessed.

B. RELATED WORKS
There are a number of related studies to our proposed
framework.
Memory Deduplication: Waldspurger introduced content-

based page sharing in a commodity virtual machine moni-
tor [18]. It finds out identical pages andmerges them based on
the contents of pages. It based on scanning, which can adjust
the scanning speed to reduce overhead. This scheme also uses
a hash table to reduce the number of memory comparisons.
When two pages have the same hash value, then it compares
both pages in byte granularity.

Kernel same page merging (KSM) is memory deduplica-
tion technique used in Linux kernel [13]. This scheme uses a
red-block tree to reduce the number of memory comparisons.
But the comparisons are still too many.

To reduce scanning overhead, Sharma and Kulkarni [19]
proposed only scanning dirtied pages. Once the clean
pages are scanned, no additional scanning is required.
Chen et al. [14] exploit page access characteristics to reduce
the number of memory comparisons during memory dedupli-
cation. Pages having similar access patterns have high prob-
ability to share. This scheme, however, requires hardware
modification. Our CMDP neither modifying hardware nor
adding additional information, it is really light scheme.
VM Scheduling: Scheduling algorithms aimed to distribute

VMs to get an even distribution of miss rate among multiple
caches are proposed in [20] and [27], which avoid severe
contention on shared resource of cache, memory controller,
memory bus and prefetching hardware. Similar mechanisms
are also proposed in [21] and [22]. Although these methods
can alleviate contention, they hardly eliminate the bank inter-
ference among VMs [28].
Thread-Based Memory Scheduling: Memory controllers

are designed to distinguish the memory access behavior at
VM-level in [23], [24], and [29], so that scheduling mod-
ules can adjust their scheduling policy at the running time.
TCM [25], which dynamically groups VMs into two clusters
(memory intensive and CPU intensive), and assign different
scheduling policy to different group, is the best scheduling
policy, which aim to address fairness and throughput at the
same time. Yet, this method needs modification to mem-
ory controller, and the overhead at running time cannot be
neglected.

III. MOTIVATIONS
A. PROFILING OF MEMORY SHARING
Basically, memory deduplication of reducing memory band-
width, which many contents have been in the last level cache

from other VMs access, is based on the assumption that a
system has many identical contents. However, in the virtual-
ization, a physical server mostly hosts multiple VMs to run
simultaneously for different VMs of different applications.
The software as well as the data used in VMs can be simi-
lar [12]. Therefore, through merging those identical contents
pages, the physical system can share those pages to reduce
requirements of the memory bandwidth.

Moreover, the guest OS running on each VM also have
many identical contents. Figure 2 demonstrates the iden-
tical pages proportion between two VMs without applica-
tions running on them. In the figure, the x-axis presents

FIGURE 2. Identical pages proportion between two VMs without
applications.

the two guest OS which compares the identical pages, and
U12.04 presents Ubuntu 12.04 version, R6.0 presents Redhat
Linux 6.0 version, win7 presents windows 7 version, xp
presents windows xp version. The results of the figure 5
show two VMs of the same guest OS and same version
have a large proportion of the identical pages, even more
than 90%. Two VMs of the same guest OS but with different
versions also have a good proportion of the identical pages,
more than 75%. Although two VMs of the different guest
OS have not as many identical pages as above situations,
more than 40%. Normally, every server has only one kind
of guest OS for services. Therefore, it is a good opportunity
to alleviate memory bandwidth requestments using memory
deduplication.

B. COMPARISON OVERHEAD ANALYSIS OF KSM
Kernel Samepage Merging (KSM) [13], which is the
implementation of memory deduplication and adopted by
Linux kernel, is running transparently in the hypervisor
layer and requires none modification to guest operating
systems. KSM is the implementation of Content Based Page
Sharing (CBPS), which is base on scanning. KSM not only
targets kernel virtual machines (KVMs) but also processes
running on the host Linux kernel. This scheme uses two red-
black trees to detect identical pages, one is named stable
tree and the other is named unstable tree. Stable tree is used
for recording shared pages, and unstable tree is used for
recording single used pages. In each scan round, a candidate

VOLUME 3, 2015 2131

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

page is firstly compared with pages in the stable tree. If there
is a match, the candidate page will be merged and shared
times plus one. Otherwise, compare with the unstable tree:
If there is a match, the single used page is changed to
shared and inserted into stable tree; if there is no match
in the unstable tree, the candidate page is inserted into the
unstable tree.

As the increasing capacity of main memory, the size of
these two global trees expands proportionally. One candidate
page needs to be compared content with a large number of
pages, but those pages have low possibility to share with the
candidate page. For example, pages of hypervisor have low
possibility to share with VM and applications. In order to
reduce useless comparisons, we can take sharing possibility
into account. For a candidate page, it only compares with
pages of high possibility pages sharing with it. The figure 5
has shown VMs of the same guest OS have high possibility to
share pages. Therefore, only candidate pages of VMs need to
be compared with pages belonged to VMs, which can reduce
much useless comparisons.

Moreover, identical pages always have the same behav-
ior, especially access behavior. One page is used for storing
instructions is usually for reading, never for writing. Other-
wise, the data page contains a large proportion of writing.
So, different access behavior pages are hardly identical.
Before comparing page contents, check whether they have
different behaviors, give up comparing if their behaviors are
different for impossible identical. In this way, the compar-
isons are reduced further.

C. PROFILING OF VM PLACEMENT
VMplacement in themultimedia cloud computing, especially
with some VMs need satisfy soft real-time requirement, is
the key to meet the shared memory bandwidth requirement,
which is also the QoS. The multimedia cloud provides ser-
vices like image/video retrieval, video transcoding, stream-
ing, video rendering, media analytics, sharing and delivery
and so on, and these services are heterogeneous in shared
memory bandwidth demands. For example, the application
of video transcoding demands more CPU, but the application
of video streaming demands more bandwidth. If we place
two VMs of the same video streaming running parallel, the
memory bandwidth for each one will decrease seriously, but
place two VMs, one for video transcoding and the other
for video streaming, will satisfy both applications, the video
transcoding can use the whole CPU and the video streaming
can occupy almost the whole memory bandwidth. Figure 3
provides the average normalized performance with different
services and different numbers running parallel. In the figure,
x-axis provides the different configurations, vt represents
video transcoding, vs represents video streaming, vr rep-
resents video retrieval and vd represents video rendering.
n-name demonstrates n VMs of the name services running
parallel, for example, 2-vt demonstrates 2 VMs of video
transcoding services running parallel. Through the figure, we
can know if we place heterogeneous services parallel, the

FIGURE 3. The average normalized performance with different services
and different numbers running parallel.

performance will be improved, especially when more VMs
running parallel.

D. PROFILING OF MEMORY SCHEDULING
Memory scheduling is important to the performance of the
soft real-time multimedia applications after some applica-
tions running parallel. Figure 4 demonstrates two applica-
tions running parallel while sharing the off-chip memory.
If application 0 is soft real-time, and application 1 is not.
In current memory scheduling policy, first in first out (FIFO),
application 0 will miss the deadline seriously, while appli-
cation 1 can contribute more memory bandwidth. Therefore,
we can priority schedule memory access from soft real-time
application to meet deadline while protecting other parallel
running applications.

FIGURE 4. Two applications run parallel while sharing the off-chip
memory.

Moreover, memory scheduling can improve efficiency of
the memory bandwidth. Firstly, we use the memory access
trace: (0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 1, 0), (0, 0, 2), (1, 2, 0),
(0, 0, 3), (0, 0, 4), (0, 0, 5), (0, 0, 6), (0, 0, 7), (0, 0, 8) as
example to compare two different memory scheduling poli-
cies, in-order scheduling and burst scheduling. The triplet (x,
y, z) represents a memory access, and x stands for the id of the
bank, y stands for the row, and z stands for the column. One
memory access comes to the system every clock cycle. In this
example, bank precharge, row activate and column access
take Db = 3, Dr = 3 and Dc = 1 clock cycles respectively.
However, there are some rules in the memory scheduling:

1) every clock cycle there is only one micro operation can be

2132 VOLUME 3, 2015

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

issued; 2) for the bank activate needs 3 clock cycles, even two
accesses are in the same bank, row activate must be issued
two clock cycles after bank precharge; 3) for the row activate
needs 3 clock cycles, even two accesses are in the same row,
a column access must be issued two cycles after row activate;
4) for the column access only needs 1 clock cycles, if two
accesses are in the same column, column access can be issued
Immediately.

Figure 5 (left) and (right) show the result sequence of the
in-order memory access scheduling and bursts respectively.
The x-axis shows the scheduling order from left to right
and y-axis shows the execution clock cycles from top to
bottom. The in-order memory scheduling takes 36 clock
cycles to finish the example memory access and the burst
memory scheduling takes 30 cycles to finish the same
memory access. Therefore, the burst memory scheduling
reduces 16.67% clock cycles, which also means reduces
16.67% memory bandwidth. So, we can improve efficiency
of the memory bandwidth through memory scheduling to
improve QoS.

FIGURE 5. In-order memory accesses scheduling (left) and burst memory
accesses scheduling (right).

IV. THE ADAPTIVE FRAMEWORK (SMO)
In this section, we firstly introduce the overview of the adap-
tive framework (SMO) in subsection 3.1. Then we introduce
the automatic detection mechanism to determine the mem-
ory bandwidth requirement of every VM in subsection 3.2,
introducing a lightweight page behavior-basedmemory dedu-
plication approach in subsection 3.3. In subsection 3.4, we
introduce VM placement policy. Finally, we introduce the
adaptive memory bandwidth control mechanism through
memory scheduling in subsection 3.5.

A. OVERVIEW OF SMO
To improve QoS of the soft real-time multimedia applica-
tions in multimedia cloud computing while protecting the

whole systems performance, we propose an adaptive frame-
work (SMO). It contains four parts of the SMO.

First, to estimate VMs needs for shared memory band-
width, the automatic detectionmechanism is tomainly profile
VMs memory intensity.

Second, to reduce memory access from shared last level
cache, improve efficiency of the last level cache, propose
a lightweight page behavior-based memory deduplication
approach. Through sharing pages, more contents will be in
the cache.

Third, propose a memory bandwidth-aware VM placement
policy to reduce competition among parallel running VMs on
memory bandwidth.

Finally, we propose an adaptive memory bandwidth con-
trol mechanism through memory scheduling, which priority
schedules memory accesses from soft real-time multime-
dia applications while improving efficiency of the mem-
ory bandwidth. Figure 6 demonstrates our SMO adaptive
framework.

FIGURE 6. The adaptive framework of SMO.

B. AUTOMATIC DETECTION MECHANISM
We define a VMs requirements of the memory bandwidth
using memory intensity. Memory intensity, the frequency
of a VM misses in the last-level cache or generates mem-
ory requests, is used to distinguish between low memory
intensity and high memory intensity. In this paper, we use
last-level cache misses per thousand instructions (MPKI) to
represent memory intensity. The more MPKI, the VM is

VOLUME 3, 2015 2133

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

higher in memory intensity. The low memory intensity VMs
are sensitive to the respond time, which will reduce serious
performance if waiting times is longer, however, they have
low requirements in memory bandwidth for seldom gener-
ating memory requests. Therefore, in order to protect the
performance of the whole system, we need to retain as many
required memory accesses as possible. The high memory
intensity VMs with non-soft real time are unsensitive to the
respond time, which will keep performance after decreasing
memory bandwidth. Therefore, in order to improve QoS of
the soft real-time applications, we need to both retain as
many required memory accesses as possible from low mem-
ory intensity VMs with non-soft real-time applications and
decrease as many accesses as possible from high memory
intensity VMs with non-soft real-time applications while
meeting the deadline of the soft real-time applications.

C. BANDWIDTH-AWARE VM PLACEMENT
Our bandwidth-aware VM placement is based on both
the VMs memory bandwidth requirements and real-time
requirements. Place the VMs of different memory bandwidth
requirements and different real-time characteristics parallel
to improve the utilization of all hardware resources, espe-
cially memory bandwidth, therefore, improve the QoS of the
soft real-time applications while protecting the whole system
performance. If one VMs load is mainly bandwidth with soft
real-time, the parallel running VMs can be CPU-bound with
non-soft real-time, or VMs of high memory intensive with
non-soft real-time.

We define some parameters in our algorithm. C1, if
the applications MPKI <C1, it is a low memory inten-
sive VM. C2, if the applications MPKI >C2, it is a high
memory intensive VM. In this paper, we dont consider the
real-time of the low memory intensive VM, so we distin-
guish the high memory intensive VM with soft real-time
and high memory intensive VM with non-soft real-time.
Otherwise, all other applications are normal VMs, which
their C1 <MPKI <C2. And all normal VMs are partitioned
into soft real-time and non-soft real-time. In this paper, we
specify the C1= 3, C2= 8.
So, our bandwidth-aware VM placement policy will

consider the five types VMs: low memory intensive (rep-
resented by L-VM), high memory intensive with soft real-
time (represented by HR-VM), high memory intensive with
non-soft real-time (represented by HN-VM), normal memory
intensive with soft real-time (represented by NR-VM), nor-
mal memory intensive with non-soft real-time (represented
by NN-VM). We will place one HR-VMwith some VMs like
L-VM, NN-VM, or HN-VM parallel, but we would not like
to place some HR-VMs or NR-VMs parallel.

D. PAGE BEHAVIOR-BASED MEMORY DEDUPLICATION
Since the KSM simply maintains two global comparison
trees for all memory pages of a hosting server. To detect
page sharing opportunities, each candidate page needs to
be compared with a large number of uncorrelated pages

in the global trees repeatedly, which will induce massive
futile comparisons [14]. The key innovation to reduce futile
comparison is to reduce the comparison memory domain
and break the comparison trees into multiple small trees
simultaneously. The most possibility to have same content
is the different VMs. In the SMO, we allocate one memory
bank group for all VMs. Therefore, we only need to compare
page content within the memory domain for all VMs called
comparison domain to reduce futile comparison.

Moreover, pages within the comparison domain are
grouped into multiple classifications, with dedicated local
comparison tree in each page classification. A candidate page
which is belonged to the comparison domain, needs only to
be compared with pages in its local comparison tree of its
classification, which contains less page nodes. But the pages
in its local tree are having much higher probability to have
same content with the candidate page, thus it can reduce futile
comparisons meanwhile detect page sharing opportunities
efficiently.

In order to partition pages into different classifications to
reduce comparisons, the page classification approach needs
to consider below problems: 1) pages with high probability
to have the same content should be partitioned into the same
classification, which can detect page sharing in the local
tree. 2) pages with low probability to be shared should be
partitioned into different classification, which prevents futile
comparisons occurring in the local tree. 3) the overhead of the
page classification needs to be low.

Our SMO contains amemory access behavior collector and
a page classification manager. The memory access behavior
collector captures the access behavior of all pages within
comparison domain. And the page classification manager
groups pages within comparison domain into different clas-
sifications based on page access behavior, pages with similar
access behavior are grouped into the same classification. The
page classification are performed in each scan round, which
means that the access behavior of pages captured during the
last scan round are used to guide page classification in this
scan round. And the memory access collector continues to
capture access behavior of pages during this scan round,
which will be used in the next scan round.

Page access behavior collector. In this paper, in order
to reduce the overhead of collecting page access behavior,
we capture page access behavior within comparison domain
based on the page table. The page table is mainly used to
transfer the virtual address into physical address, and at the
same time, it will show the access behavior of the physical
page. Every entry in the page table shows the information of
the corresponding physical page, containing the read, modify
and so on of the physical page.

Page classification. In this work, we use the read and
modify information in the entry of page table. We partition
all pages within comparison domain into 4 classifications: the
first classification is not read and not modified; the second
classification is read but not modified; the third classifica-
tion is not read but modified; the last classification is read

2134 VOLUME 3, 2015

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

and also modified. In this way, we neither modifying the
hardware nor collecting additional information. It is easy to
realize and the overhead is low.

E. MEMORY SCHEDULING
Based on the memory access requirements of all parallel
running VMs and the deadline of the soft real-time multi-
media applications, we determine all parallel non-soft real-
time applications memory access ratio. In order to meet the
deadline to improve QoS of the soft real-time VM, our mem-
ory scheduling policy need to satisfy the bandwidth from soft
real-time VMs firstly. Next, protect the L-VM to improve the
whole system performance, so satisfy the memory accesses
from L-VMs as much as possible. Finally, the remainder
bandwidth is allocated to other VMs.

In order to improve efficiency of the memory bandwidth,
we combine the BFS Algorithm, demonstrated in figure 7.
Thememory accesses to be scheduled are the input of the BFS
algorithm. The (x, y, z) triplet represents a memory access.
And the sequence of the fulfilling the memory accesses is the
output of the algorithm. List all micro operations and empty
operations referring to the same bank in a bank list according
to their sequence. Define i and the number of empty clock
cycles of the list as the bank weight and operation weight
of bank list. Similarly, the waited clock cycles is the age
weight of bank list, the value is reset to 0 whenever it is
scheduled. Schedule a micro operation from bank list based
on age weight once after using operation weight Q times.

FIGURE 7. BFS memory access scheduling.

The BFS algorithm is described in the Algorithm 1.
In order to prevent starvation, each bank list consists of
two queues: Queue1 and Queue2, and each queue can take
P memory accesses. Initially, both Queue1 and Queue2
are empty, but after P memory accesses has been directed

Algorithm 1 BFS algorithm
Input: memory accesses.
Output: scheduled memory micro operations.
Begin
loop
if new (x, y, z) comes
add it into row list y of bank list z;
move row list y to the right position according
ascending order in the bank list z;

if clock cycle % (Q+1) = 0
use age weight as priority;

else
use operation weight as priority;

for all bank list do
chose a ready micro operation based on priority;
add micro operation to to_be_scheduled;

if to_be_scheduled not null
schedule to_be_scheduled and delete it from its bank
list;
clock cycle ++;

End

to a queue, which becomes full, therefore, new memory
accesses will go to the other queue. And then both queues
are full, new memory access will go to a buffer associated
with each bank list. During scheduling, memory accesses are
scheduled from one of the queues until empty, after that mem-
ory controller will pick memory access from the other queue.

V. EXPERIMENTAL SETUP
We carried out our experiments with one 2.00GHz Intel Xeon
E5504 processors with EPT enabled. Each E5504 proces-
sor has 4 physical cores and we have disabled the Hyper-
Thread. There are 3-level caches in the processor, the L1
instruction and data caches are 32KB each and the L2 cache
is 256KB, both the L1 and L2 are private in each core. The
L3 cache is 16-way 8MB and shared by all four cores in the
processor. The cache block size is 64-Byte for all caches in
the hierarchy. The total capacity of physical memory is 8GB
with one dual-ranked of DDR3-800MHz. The host server
runs Ubuntu-12.04 with Linux kernel 3.6.0. We implement
SMO based on KSM of Linux 3.6.10. We use QEMU [15]
with KVM [16] (qemu-kvm-1.2.0) to support guest VMs.
Each guest VM is configured with 1 virtual CPU, we boot
8 VMs simultaneously in the experiment to evaluate our
bandwidth-aware VM placement of SMO. We also boot
more VMs in parallel for further evaluation. The guest VMs
are running 64-bit Linux-10.10 with Linux kernel 2.6.32.
We choose to run the following workloads inside guest VMs:
image/video retrieval, video transcoding, streaming, video
rendering, media analytics, sharing and delivery.

VI. EXPERIMENTAL SETUP
In this section, we present case-study results using one soft
real-time VM, video player, to evaluate the effectiveness
of SMO.

VOLUME 3, 2015 2135

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

A. QoS OF THE VIDEO PLAYER VM
In this paper, we use the reciprocal of the average frame
processing time as themetric of QoS for the video player VM.
In this experiment, our video player plays a H264 movie
clip with a frame resolution of 1920*816 and a frame rate
of 24fps [17].

To investigate the effectiveness of SMO, we conducted a
set of experiments. We run video player VM with other VMs
parallel. In order to reflect the random placement of the VM,
we average as many situations as possible.

Figure 8 shows the results. In the figure, QoS is normalized
to the running solo and the x-axis demonstrates some default
situations with random VM placement. In default, the video
player VMs performance is significantly degraded, dropped
by 54% due to memory bandwidth contention. As expect,
video player VMs QoS improves significantly after using our
SMO.

FIGURE 8. Normalized QoS of the video player VM.

Figure 9 demonstrates the results of normalized QoS
of the video player VM using SMO without bandwidth-
aware VM placement. Comparing to the figure 8, SMO with
bandwidth-aware VMplacement is better than the SMOwith-
out bandwidth-aware VM placement. This result proves our
bandwidth-aware VM placement is good for improving QoS
of the soft real-time multimedia applications.

Figure 10 shows the normalized bandwidth occupancy rate
of the different parallel running VMs in different frameworks.
The QoS improvement of video player is mainly from the
high occupancy rate.

B. WHOLE SYSTEM PERFORMANCE ANALYSIS
Figure 11 shows the normalized whole system performance.
The x-axis demonstrates some random VM placement situa-
tions with default management and our SMO. In the figure,
the whole system performance of our SMO is better than the
default management.

FIGURE 9. Normalized QoS of the video player VM using SMO without
bandwidth-aware VM placement.

FIGURE 10. Normalized bandwidth occupancy rate of the different
parallel running VMs in different frameworks.

FIGURE 11. Shows the whole system performance normalized.

Figure 12 shows normalized whole system performance
using SMO without bandwidth-aware VM placement.
The results demonstrate SMO with bandwidth-aware

2136 VOLUME 3, 2015

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

FIGURE 12. The normalized whole system performance using SMO
without bandwidth-aware VM placement.

VM placement is better than the SMO without bandwidth-
aware VM placement, although the SMOwithout bandwidth-
aware VM placement is better than the default management.
This result proves our bandwidth-aware VM placement is
good for not only improving QoS of the soft real-time mul-
timedia applications but also improving the whole system
performance.

Figure 13 demonstrates the reduced last level cache misses
normalized to the default. Our SMO can reduce the last level
cache misses compared with the default. The result proves
our memory deduplication policy can improve the efficiency
of the last level cache, which improves the whole system
performance.

FIGURE 13. The reduced last level cache misses normalized to the
default.

Figure 14 shows the improved bandwidth efficiency nor-
malized to the default. In this paper, we use the completed
memory accesses per second. Our SMO can optimize the
bandwidth efficiency compared to the default. The improve-
ment of the bandwidth efficiency is mainly from the memory
scheduling, which reduces the average memory access time.
Figure 15 demonstrates the reduced average memory access

FIGURE 14. The improved bandwidth efficiency normalized to the
default.

FIGURE 15. The reduced average memory access time normalized to the
default.

time normalized to the default, which shows our SMO can
reduce the average memory access time. Therefore, our BFS
memory scheduling can optimize the bandwidth utilization to
improve the whole system performance.

C. OVERHEAD ANALYSIS
Software Support. There are three parts which requires sys-
tem software support, the first one is the bandwidth-aware
VM placement, is based on both the VMsmemory bandwidth
requirements and real-time requirements. In this paper, we
use memory intensity as the VMs requirements of memory
bandwidth, which needs to count last-level cache misses
per thousand instructions (MPKI). Place the VMs of dif-
ferent memory bandwidth requirements and different real-
time characteristics parallel to improve the utilization of all
hardware resources, especially memory bandwidth, there-
fore, improve the QoS of the soft real-time applications while
protecting the whole system performance.

The second one is the page behavior-based memory dedu-
plication, in order to reduce memory requirements, we need
to detect content of pages to determine whether pages can be
shared. But our page behavior-based memory deduplication
reduces futile comparison through reducing the comparison

VOLUME 3, 2015 2137

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

memory domain and breaking the comparison trees into
multiple small trees simultaneously. So, we add the page
access behavior collector which is based on reading the page
table and page classification which partitions pages into
4 classifications behaving the same status.

The third one is the memory scheduling, which is based
on the memory access requirements of all parallel running
VMs and the deadline of the soft real-time multimedia appli-
cations, we determine all parallel non-soft real-time applica-
tions memory access ratio. In order to improve efficiency of
the memory bandwidth, we combine the BFS Algorithm.

Performance Overhead. In order to evaluate the per-
formance overhead after adopting our SMO, we compare
our SMO with the default method, and the experimental
results show the performance of our SMO is negligible,
below 2%; we compare our bandwidth-aware VM placement
with the default method, our bandwidth-awareVMplacement
improves more than 25% performance; also, we compare our
page behavior-based memory deduplication with the default
method without KSM, although our page behavior-based
memory deduplication decreases 8% on average, increase the
memory sharing by more than 30%; moreover, our memory
scheduling improves more than 10% performance. All above
results have shown our SMO behave well.

VII. CONCLUSION
To improve quality of service (QoS) of soft real-time mul-
timedia applications in multimedia cloud computing while
improving the whole system performance, we propose an
adaptive framework, SMO, which consists three parts: the
first is the memory deduplication to reduce memory access,
because the same contents have already been in the cache;
the second is the VM placement, place VMs of different
memory bandwidth requirements running parallel to satisfy
QoS better; the third is the memory scheduling, priority
schedule memory access from real-time applications, and
protect the whole system simultaneously. Our SMO has two
mainly mechanisms, the automatic detection mechanism and
the adaptive memory bandwidth control mechanism. With
the automatic detection mechanism, the critical section to the
multimedia applications performance in the VMs is detected.
Then our adaptive memory bandwidth control mechanism
adjusts the memory access rates of all the parallel running
VMs to protect the QoS of the soft real-time multimedia
applications. The experiments have proven the effectiveness
of the SMO.

REFERENCES
[1] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, ‘‘Managing performance over-

head of virtual machines in cloud computing: A survey, state of the art, and
future directions,’’ Proc. IEEE, vol. 102, no. 1, pp. 11–31, Jan. 2014.

[2] Amazon.com. Customer Success. Powered by the AWS Cloud. [Online].
Available: http://aws.amazon.com/solutions/case-studies/, accessed
May 2014.

[3] Amazon.com. Amazon Elastic Compute Cloud (Amazon EC2). [Online].
Available: http://aws.amazon.com/ec2/, accessed Oct 2014.

[4] J. F. Gantz, S. Minton, and A. Toncheva. (Mar. 2012). Cloud Computing’s
Role in Job Creation. [Online]. Available: http://www.microsoft.com/en-
us/news/features/2012/mar12/03-05cloudcomputingjobs.aspx

[5] R. P. Goldberg, ‘‘Survey of virtual machine research,’’ Computer, vol. 7,
no. 9, pp. 34–45, Sep. 1974.

[6] M. Rosenblum and T. Garfinkel, ‘‘Virtual machine monitors: Current
technology and future trends,’’ Computer, vol. 38, no. 5, pp. 39–47, 2005.

[7] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao, ‘‘CMD:
Classification-based memory deduplication through page access charac-
teristics,’’ in Proc. 10th ACM SIGPLAN/SIGOPS Int. Conf. VEE, 2014,
pp. 65–76.

[8] O. Kotaba, J. Nowotsch, M. Paulitsch, S. M. Petters, and H. Theiling,
‘‘Multicore in real-time systems—Temporal isolation challenges due
to shared resources,’’ in Proc. Workshop Ind.-Driven Approaches
Cost-Effective Certification Safety-Critical, Mixed-Criticality Syst., 2013,
pp. 1–6.

[9] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative
Approach. San Mateo, CA, USA: Morgan Kaufmann, 2011.

[10] Q. Lin, D. Tretter, J. Liu, and E. O’Brien-Strain, ‘‘Multimedia analysis and
composition cloud service,’’ in Proc. 3rd Int. Conf. Internet Multimedia
Comput. Service (ICIMCS), 2011, pp. 55–58.

[11] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
‘‘MemScale: Active low-power modes for main memory,’’ in Proc.
ASPLOS, 2011, pp. 225–238.

[12] G. Jia, X. Li, J. Wan, L. Shi, and C. Wang, ‘‘Coordinate page allocation
and thread group for improving main memory power efficiency,’’ in Proc.
HotPower, 2013, pp. 7:1–7:5.

[13] A. Arcangeli, I. Eidus, and C. Wright, ‘‘Increasing memory density by
using KSM,’’ in Proc. Linux Symp. (OLS), 2009, pp. 19–28.

[14] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao, ‘‘CMD:
Classification-based memory deduplication through page access charac-
teristics,’’ in Proc. VEE, 2014, pp. 65–76.

[15] F. Bellard, ‘‘QEMU, a fast and portable dynamic translator,’’ inProc. Annu.
Conf. USENIX Annu. Tech. Conf. (ATEC), Sep. 2013, pp. 41–46.

[16] KVM-Kernel Based Virtual Machine. [Online]. Available:
http://www.linux-kvm.org/page/Main_Page, accessed Sep. 2013.

[17] H. Yun, S. Gondi, and S. Biswas, ‘‘BWLOCK: A dynamic memory access
control framework for soft real-time applications on multicore platforms,’’
Univ. Kansas, Lawrence, KS, USA, Tech. Rep.

[18] C. A. Waldspurger, ‘‘Memory resource management in VMware ESX
server,’’ ACM SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194,
Dec. 2002.

[19] P. Sharma and P. Kulkarni, ‘‘Singleton: System-wide page deduplication
in virtual environments,’’ in Proc. 21st Int. Symp. High-Perform. Parallel
Distrib. Comput., 2012, pp. 15–26.

[20] S. Zhuravlev, S. Blagodurov, and A. Fedorova, ‘‘Addressing shared
resource contention in multicore processors via scheduling,’’ in Proc.
ASPLOS XV, 2010, pp. 129–142.

[21] G. Dhiman, G. Marchetti, and T. Rosing, ‘‘vGreen: A system for energy
efficient computing in virtualized environments,’’ in Proc. Int. Symp. Low
Power Electron. Design (ISLPED), 2009, pp. 243–248.

[22] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, ‘‘Using OS
observations to improve performance in multicore systems,’’ IEEE Micro,
vol. 28, no. 3, pp. 54–66, May/Jun. 2008.

[23] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, ‘‘Fairness via
source throttling: A configurable and high-performance fairness substrate
for multi-core memory systems,’’ in Proc. 15th Ed. ASPLOS, 2010,
pp. 335–346.

[24] D. Kaseridis, J. Stuecheli, and L. K. John, ‘‘Minimalist open-page:
A DRAM page-mode scheduling policy for the many-core era,’’ in Proc.
MICRO-44, 2011, pp. 24–35.

[25] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, ‘‘Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,’’ in Proc. 43rd Annu. IEEE/ACM Int. Symp. MICRO, Dec. 2010,
pp. 65–76.

[26] G. Jia, G. Han, J. Jiang, and J. J. P. C. Rodrigues, ‘‘PARS:
A scheduling of periodically active rank to optimize power effi-
ciency for main memory,’’ J. Netw. Comput. Appl. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2015.08.001

[27] G. Jia, G. Han, J. Jiang, and A. Li, ‘‘Dynamic time-slice scaling for
addressing OS problems incurred by main memory DVFS in intelligent
system,’’ Mobile Netw. Appl., vol. 20, no. 2, pp. 157–168, 2015.

[28] G. Jia, G. Han, L. Shi, J. Wan, and D. Dai, ‘‘Combine thread with memory
scheduling for maximizing performance in multi-core systems,’’ in Proc.
IEEE 20th ICPADS, Dec. 2014, pp. 298–305.

[29] G. Jia, X. Li, C. Wang, X. Zhou, and Z. Zhu, ‘‘Memory affinity: Balancing
performance, power, thermal and fairness for multi-core systems,’’ in Proc.
IEEE Int. Conf. Cluster Comput. (CLUSTER), Sep. 2012, pp. 605–609.

2138 VOLUME 3, 2015

G. Jia et al.: Adaptive Framework for Improving QoS in Industrial Systems

GANGYONG JIA (M’13) received the Ph.D.
degree from the Department of Computer Science,
University of Science and Technology of China,
Hefei, China, in 2013. He is currently an Assis-
tant Professor with the Department of Computer
Science, Hangzhou Dianzi University, China. He
has authored over 20 papers in related international
conferences and journals. His current research
interests are power management, operating sys-
tem, cache optimization, and memory manage-

ment. He has served as a Reviewer of Microprocessors and Microsystems.

GUANGJIE HAN (S’03–M’05) received the Ph.D.
degree from the Department of Computer Sci-
ence, Northeastern University, Shenyang, China,
in 2004. He was with ZTE Company from 2004 to
2006, where he was a Product Manager. He was
a Visiting Research Scholar with Osaka Univer-
sity from 2010 to 2011. He finished the work as
a Post-Doctoral Fellow with the Department of
Computer Science, Chonnam National University,
Korea, in 2008. He is currently a Professor with

the Department of Information and Communication System, Hohai Uni-
versity, China. He has authored over 130 papers in related international
conferences and journals. He holds 55 patents. His current research interests
are sensor networks, computer communications, mobile cloud computing,
multimedia communication, and security. He is a member of Association
for Computing Machinery (ACM). He has served as a Co-Chair for more
than 20 international conferences/workshops and a TPC Member of more
than 70 conferences. He received the ComManTel 2014 and Chinacom
2014 Best Paper Awards. He has served on the Editorial Board of up to 14
international journals, including the Journal of Internet Technology and the
KSII Transactions on Internet and Information Systems. He has served as a
Reviewer of more than 50 journals.

DAQIANG ZHANG (M’09–SM’14) received the
joint Ph.D. degree in computer science from
Shanghai Jiao Tong University and Hong Kong
Polytechnic University. From 2011 to 2012, he
held a post-doctoral position at Telecom SudParis,
Institut Mines-Telecom, France. He is currently
an Associate Professor with the School of Soft-
ware Engineering, Tongji University. His research
includes mobile computing, distributed comput-
ing, andwireless sensor networks. He has authored

over 80 papers in major journals and international conferences in those
areas. He has got papers published at the ACM Transactions on Embedded
Computing, the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON EMERGING

TOPICS IN COMPUTING, the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,
the IEEE Wireless Communication, the IEEE NETWORK, the IEEE SYSTEMS

JOURNAL, the IEEE WIRELESS COMMUNICATIONS, the IEEE Communications,
the IEEE COMMUNICATIONS LETTERS, ACM International Conference on Ubiq-
uitous Computing, IEEE International Conference on Mobile Ad hoc and
Sensor Systems, Global Communications Conference, Exhibition and Indus-
try Forum, Ieee International Conference on High Performance Comput-
ing and Communications, International Conference on Parallel Processing,
IEEE International Conference on Communications, and IEEE Wireless
Communications and Networking Conference. He is a Senior Member of
China Computer Federation. He got one most downloaded paper up to 2014
atMobile Networks and Applications (ACM/Springer), one most viewed
paper up to 2013 at Pervasive and Mobile Computing (Elsevier), and the
best paper award from ACCV’09 and the IEEE UIC’12. He is an Editor of
Telecommunication Systems (Springer), European Transactions on Telecom-
munications (Wiley),KSII Transactions on Internet and Information Systems

(Korea Society of Internet Information) , and New Review of Hypermedia
and Multimedia (Taylor & Francis). He was the Guest Editor of the IEEE
SYSTEMS JOURNAL, the IEEE ACCESS,Computer Networks (Elsevier), the Jour-
nal of Universal Computer Science, and Mobile Networks and Applications
(ACM/Springer).

LI LIU received the B.S. degree from Hohai Uni-
versity, Changzhou, China, in 2014, where he
is currently pursuing the M.S. degree with the
College of Internet of Things Engineering. His
research interests include coverage and connectiv-
ity for wireless sensor networks.

LEI SHU (M’07) received the Ph.D. degree from
the National University of Ireland, Galway, Ire-
land, in 2010. Until 2012, he was a Specially
Assigned Researcher with the Department of Mul-
timedia Engineering, Graduate School of Infor-
mation Science and Technology, Osaka Univer-
sity, Japan. Since 2012, he has been with the
Guangdong University of Petrochemical Technol-
ogy, Maoming, China, as a Full Professor. Since
2013, he has been a Ph.D. Supervisor with the

Dalian University of Technology, Dalian, China, and a Master Supervisor
with the Beijing University of Posts and Telecommunications, Beijing,
China. He has also been the Vice Director of the Guangdong Provincial
Key Laboratory of Petrochemical Equipment Fault Diagnosis with the
Guangdong University of Petrochemical Technology. He is the Founder of
the Industrial Security and Wireless Sensor Networks Laboratory. He has
authored over 200 papers in related conference proceedings, journals, and
books. He has an h-index of 25. His research interests include wireless
sensor networks, multimedia communication, middleware, security, and fault
diagnosis. He is a member of the IEEE Communication Society, the Euro-
pean Alliance for Innovation, and the Association for Computing Machin-
ery. He received the 2010 IEEE Global Communications Conference and
the 2013 IEEE International Conference on Communications Best Paper
Awards. He served as a Co-Chair of more than 50 various international
conferences/workshops, such as the IEEE International Wireless Commu-
nications and Mobile Computing Conference (IWCMC), the IEEE Inter-
national Conference on Communications (ICC), the IEEE Symposium on
Computers and Communications (ISCC), the IEEE International Conference
on Computing, Networking and Communication, and the International Con-
ference on Communications and Networking in China. He also served/will
serve as a Symposium Co-Chair of IWCMC 2012 and ICC 2012, a General
Chair of Chinacom 2014 and the 2015 International Conference on Het-
erogeneous Networking for Quality, Reliability, Security, and Robustness, a
Steering Chair of the 2015 International Conference on Industrial Networks
and Intelligent Systems, and a Technical Program Committee Member of
more than 150 conferences, including the IEEE International Conference on
Distributed Computing in Sensor Systems, the IEEE International Confer-
ence on Mobile Ad Hoc and Sensor Systems, ICC, Globecom, the IEEE
International Conference on Computer Communications and Networks, the
IEEE Wireless Communications and Networking Conference, and ISCC.
He currently serves as the Editor-in-Chief of the European Alliance for
Innovation Endorsed Transactions on Industrial Networks and Intelligent
Systems, and the Associate Editor of a number of renowned international
journals.

VOLUME 3, 2015 2139

