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ABSTRACT An ultrawideband (UWB) radar-based breast cancer detection system, which is composed of
complementary metal-oxide—semiconductor integrated circuits, is presented. This system includes Gaussian
monocycle pulse (GMP) generation circuits, switching (SW) matrix circuits, equivalent-time sampling
circuits, and a compact UWB antenna array. During the detection process, the GMP signal with the center
frequency of 6 GHz is first generated and transmitted with a repetition frequency of 100 MHz. The
GMP signal is sent to a selected transmitter antenna by the SW matrix module, and the reflected signal
is captured by the receiver antennas. Next, the high-speed equivalent-time sampling circuits are employed
to retrieve the reflected GMP signal. A confocal algorithm is used to reconstruct the breast image. The total
size for the prototype module is 45 cm x 30 cm x 14.5 cm in length, width, and height, respectively, which is
dramatically smaller than the conventional detection systems. Using our proposed system, we demonstrate
a successful detection of 1-cm cancer target in the breast phantom.

INDEX TERMS Breast cancer, CMOS, microwave imaging, ultrawideband, confocal algorithm.

I. INTRODUCTION

To date, the most commonly used method for breast screening
is mammography because it has a relatively high accuracy.
However, there are some drawbacks such as exposure to
ionizing radiation and compressing of breast which will make
the patients feel uncomfortable. What is even worse is that
the ionizing radiation will increase the probability of getting
cancer, resulting in the limitation of the frequent use [1].

To overcome the shortage of the existing method, some
complementary methods have been proposed and studied
such as the electrical impedance tomography (EIT) and
microwave imaging. The EIT method exploits very low
frequency wave to draw the conductivity distribution of the
breast [2]-[5]. The microwave imaging employs the high
frequency wave. This method is based on the difference in
the dielectric properties between the normal breast tissues
and cancer tissues [6]-[8]. At present, many research groups
which are devoted to develop microwave imaging [9]-[21].

Some groups focus on the microwave sensors and hardware
components [22]-[24]. However the entire system has not
been developed. Some groups have developed many useful
signal processing and imaging algorithms but most of these
are studied in simulation cases [25]—[28].

There are groups who have developed the prototype detec-
tion systems, which reflect the state of the art in microwave
imaging [29]. Generally, there are two microwave imaging
methods regarding to the waveforms. One is called the radar-
based approach where the ultrawideband (UWB) signal is
used. Klemm and Craddock et al. have proposed a multi-static
radar-based detection system, where they fixed the antenna
array by using a hemispherical antenna dome [30], [31].
This system requires the woman to lie in prone position
and making the breast pendant into the dome. The anten-
nas are excited in turn and reflections are collected by the
other ones. This experiment is conducted by using of a VNA
and bank switches. Fear et al. have proposed a mono-static
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radar-based system, where only one Vivaldi antenna is used
to both emit and receive signals [32], [33]. By changing
the position of the antenna, all necessary data set can be
collected and used to generate the breast image. This system
uses the VNA to transmit and receive the signal and a
tank with matching liquid media is employed where the
breast is immersed. Both of the mentioned systems use the
delay and sum approach in the imaging process. The other
mostly studied approach is called microwave tomography,
where multi-frequencies are used to reconstruct the whole
distribution of the breast dielectric property [34]-[36].
Meaney et al. have developed a 3D parallel-detection system
with 16 vertically-oriented monopole array antennas [37].
This system uses signal generator to transmit continuous
single frequency signal. A 3D iterative Gauss-Newton algo-
rithm is utilized to reconstruct the dielectric distribution in the
breast. All the aforementioned systems have achieved some
good results of detecting the breast tumor in clinical use.
However, these systems are established by large and relatively
expensive commercial equipments.

For the purpose of frequent use of microwave imaging,
by which women can conduct self-examination at home, the
miniaturization and reasonable price of the detection system
is highly desired. To achieve this goal, the complementary
metal-oxide-semiconductor (CMOS) integrated circuits are
developed to be able to replace the large equipment.

In this paper, a detection system is developed by use
of CMOS circuits. To the best of our knowledge, this
is the first complete breast cancer detection system using
CMOS circuits. This system does not need any off-the-shelf
large and expensive equipment. In this system, a UWB signal
generation circuits can generate and transmit the monocy-
cle Gaussian pulse without any transformation [38], [39].
The switching (SW) matrix circuits can choose the signal
channel to excite the UWB antenna array in turn [40]. The
equivalent time high-speed sampling circuits can sample and
digitalize the received signals [41], [42]. Then the digitalized
signals are stored into the PC for post-processing to gen-
erate the breast image. This paper is organized as follows.
Section II describes the composition of the system. Section III
presents the detection experiment setup to obtain the signals.
Section IV presents the confocal imaging results using
different signals and different artifact removal methods.
Finally, a conclusion is declared in the last section.

Il. HARDWARE COMPOSITION

The proposed system is comprised of several functional
modules. Among these, the key parts are the UWB signal
generation module, switching matrix module and the receiver
module. To control and coordinate these functional parts,
a control board is developed and consolidated into a box.
Meanwhile, the graphic user interface (GUI) software is
developed to let users adjust the output of the control board.
The essential components and the integrated system are
described in the following sections.
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A. TRANSMITTER MODULE

The concept about the generation of the UWB signal is to
combine the up and down slopes of the input signals to form
a Gaussian monocycle pulse (GMP). The entire schematic
diagram of differential GMP generator circuit is illustrated
in Fig. 1 [43]. The input clock and the data are transmitted
through some logic circuits and delay circuits and then the
GMP is generated.
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FIGURE 1. Block diagram of GMP signal generator module.

To form the GMP pulse, the up-pulse and down-pulse
should be generated separately. The relevant schematic
diagrams are detailed in Reference [44].

The output signals are shown in Fig. 2. The pulse width
is about 160 ps and the center frequency is about 6 GHz.
In implementation, a 100 MHz frequency clock is inputted
into the module and the output signals from OP and OM
are the differential GMP trains with the repetition frequency
of 100 MHz.
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FIGURE 2. The differential output GMP signals of the transmitter module
in time domain and frequency domain. (a) Time domain. (b) Frequency
domain.

B. SWITCHING MATRIX

This system is designed with the ability to transmit and
receive signals through 16 antennas, among which 8 antennas
are designated as transmitters and the other 8 antennas are
designated as receivers. To change the operating antenna pair,
a switching module is necessary. In our system, a single pole
eight throw (1P8T) switching matrix module is developed
and two separate modules are employed to select the trans-
mitter antennas and the receiver counterparts, respectively.
The schematic diagram of the switching matrix is shown
in Fig. 3 [40].
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FIGURE 3. Schematic circuit diagram of 1P8T switching matrix.

The input signal is transmitted to Tx port through the
SMA connector. A control board is developed to control the
switching matrix module and then the path to be used is
chosen to transmit and excite the corresponding antenna. The
switching matrix circuit is assembled by the flip-chip bonding
to the PCB and the 8 mini-SMP connectors are mounted to
connect with the antennas.

A4 x 4 planar UWB antenna array serves as the transmitter
and receiver of the signal [45]. The connection between the
antenna array and switching matrix is shown in Fig. 4. The
antenna 1~4 and 9~12 servers as the transmitters (Tx) and
the antenna 5~8 and 13~16 serves as the receivers (Rx).
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FIGURE 4. Photographs of switching matrix module and the antenna
array.

C. RECEIVER MODULE

To receive and record the reflected signal from the breast,
whose duration is very short, a high-speed sampling circuit
is necessary. However it is difficult to sample the signals
with the speed of tens GHz by CMOS technology.
We have developed a high-speed equivalent time sampling
circuits [41], [42]. This is realized based on the fact that our
system is operated at a repetition frequency of 100 MHz.
Therefore, the received GMP signal train is also repetitive
and the sampling timing can be at different period of the
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received signal with a precise phase difference. The concept
of this sampling structure is explained in this section. The
conceptual graph and schematic diagram is shown in Fig. 5.

64-Phase Clock

' ov]  [Gaun]
Sliding Clock m COUNT] |
il o TH | > Averals QUTPUT
GMP vl ADC 31" " [T
__________ circuit | ging ¥ a-bit Digital

FIGURE 5. Block diagram of equivalent time sampling circuits.

The sampling module generates a 16-phase 1.6 GHz
shifting clock by a phase lock loop (PLL) with an 8-stage
ring-voltage control oscillator (VCO) of 1.6 GHz oscilla-
tion frequency with the reference clock of 100 MHz. Then,
a two-stage phase interpolator (PHI) is employed to further
improve the resolution of the clock, which makes the clock
have 64 phases in one period. This means 64 samples can
be obtained in duration of 0.625 ns. Eventually, a sampling
clock which has a phase shift resolution of 9.77 ps is obtained.
Using this clock with a 9.77 ps shift in each 10 ns period
to control the track and hold (T/H) circuit and analog-
to-digital (ADC) circuit, the equivalent time sampling rate
of 102.4 GS/s is achieved. Figure 6 shows the simulation
results of the T/H circuit. It can be seen that the input signal
is sampled in a slow mode and the duration of output signal
is about 1000 times of the original one.
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FIGURE 6. The simulation results of the T/H circuit. (a) Input signal.
(b) Output signal.

At present, the accuracy of the ADC is 4-bit and the range
covered can be changed from OV to 1.4V.

D. INTEGRATED SYSTEM DESIGN

The complete breast cancer detection system is integrated
by combing the essential function modules, amplifier parts,
antenna array and the control board. The block diagram of
the system is shown in Fig. 7.
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FIGURE 7. Block diagram of breast cancer detection system.

SW Matrix

FIGURE 8. Photograph of the functional parts of the detection system.

Figure 8 shows the functional parts of the system. The
Tx Amp. module consists of a DC cut (ST159-0002-000,
Sharp Takaya Electronic Industry), a fixed attenuator
(BW-S3W2+, Mini-circuits), two power amplifier
(HMCG659LC5, Hittite Microwave Corporation) and a step
attenuator (HMC424LP3, Hittite Microwave Corporation).
The operation frequency range of this module is from
2GHz to 12 GHz. The total size of the Tx amp module is about
300 mm x 50 mm x 35 mm. As the reflected signal is weak,
an Rx AMP module is configured between the receiver and
Rx module. This module consists of two LNAs (HMC424LP3
and HMC1049LP5, Hittite Microwave Corporation), a step
attenuator (HMC424LP3, Hittite Microwave Corporation)
and a DC cut (ST159-0002-000, Sharp Takaya Electronic
Industry). The operation frequency is 2GHz to 12GHz.
The total size of the Rx AMP module is 200 mm X
50 mm x 40 mm.

A control board is developed to coordinate the operation
of the system. The control board is connected with the PC
through a UWB port and GUI software is developed to give
command to the whole system. The power supply of the
control board is 12V DC from an adaptor and the power
supply block provides power to all other parts with corre-
sponding voltages. The reference voltages for ADC can be
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adjusted by the software. The clock generator block feeds
the inputs (DATA, DATA, CLK, CLK) to the Tx module. The
digital & RF control block manages the gain of amplifiers and
attenuators to regulate the output amplitude of the system.
Meanwhile, it stores and sends the digitalized data to the
PC for post-processing. The photo of the entire system is
shown in Fig. 9.

FIGURE 9. Photograph of the entire system.
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FIGURE 10. The level diagram of the system.

The level diagram of the system is shown is Fig. 10. The
peak-to-peak amplitude of the GMP signal from Tx module
is 210 mV which is about —10dBm. The input signal
goes through the amplifier and SW matrix and emitted
by the antenna array. The amplitude of the emitted signal
is —13.5 dBm. As the signal is generated with a period of
10 ns and the duration of each pulse is 160 ps, the duty of
the signal is 1.6%. Therefore, the actual emission power is
—31.5 dBm. The bandwidth of the signal is about 6.7 GHz
and then the emission level is —69.5 dBm/MHz which is
lower than the FCC regulation for UWB (—41.25 dBm/MHz).
The system noise (KTB+NF) for the LNA is calculated by the
equations,

KTB = 1.38 x 1072 x 309.15 x 6.7 GHz

=28 x 1077 mW = —75.44 dBm 1)
Noise Level = kTB + NF = —75.44 dBm + 2.5 dBm
= —73 dBm )
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where k is Boltsmann constant, 7 is the human body temper-
ature, B is the bandwidth of the signal and NF is noise figure,
respectively.

Ill. DATA ACQUISITION

A. BREAST PHANTOM AND EXPERIMENT SETUP

In order to demonstrate the performance of the developed
system, a homogeneous breast phantom is used in this exper-
iment. Bacon with the size of 10 mm x 10 mm x 10 mm is
placed at the depth of 20 mm below the antenna array as a
target. The breast phantom is made of rubber and the total
size is 15 cm x 15 cm x 4 cm. The dielectric properties of
the rubber are similar to those of the fatty tissue. The bacon
also has similar properties to those of the tumor tissue. The
measured dielectric properties of rubber, bacon, fatty tissue
and tumor are shown in the Fig. 11.
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FIGURE 11. The measured dielectric properties of bacon, tumor,
rubber and fatty tissures. (a) Permittivity. (b) Conductivity.

The detection system is connected to the antenna array
by 16 cables and the antenna array is placed on the breast
phantom as shown in Fig. 12.

Phantom

Antenna array

Tx cables

Rx cables

FIGURE 12. Breast phantom and experiment settings.

B. MEASURED WAVEFORMS

During the experiment, the Tx antennas are excited in turn
and the reflected signals are captured by the Rx antennas.
The receiving signals are then amplified and sampled by
the Rx module. For the experiment case in this article, the
reference voltages of the ADC are chosen as 330 mV and 690
mV, respectively. Thus the LSB is 22.5 mV. Figure 13 shows
the measured signals by some antenna pairs.
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FIGURE 13. The measured digitalized signals from different Tx and
Rx antenna pairs. (a) Tx1-Rx5. (b) Tx2-Rx6. (c) Tx3-Rx7. (d) Tx4-Rx8.
(e) Tx9-Rx5. (f) Tx10-Rx6. (g) Tx11-Rx7. (h) Tx12-Rx8. (i) TX9-Rx13.
(j) Tx10-Rx14. (k) Tx11-Rx15. (I) Tx12-Rx16.

IV. IMAGE RECONSTRUCTION

To extract the tumor response from the raw data, the
artifacts which contain early reflections and direct waves
should be removed. There are many artifacts removal
algorithms [46]—[48]. For the ideal case, detection is carried
out with the tumor-free breast phantom to get the reference
signals and then subtract reference signals from raw data.
This method is not practical in clinical case. However, we
can use it as a preliminary way to test the performance of the
entire system. Meanwhile, it can be regarded as a criterion
to evaluate other algorithms. In this section, both ideal and
averaging algorithms are used to remove the artifacts and the
imaging results are presented.

A. IMAGING FROM RAW DATA

In this case, the ideal artifact removal algorithm is used.
As there are some vibrations caused by physical movement
or temperature change between the original and reference
experiments, offsets sometimes exist between the two kinds
of received signals. Figure 14 shows the sampled 4-bit digital
signals which is emitted by transmitter antenna 1 (Tx1) and
received by receiver antenna 5 (Rx5). It is can be seen that
the offset exists. As shown in Fig. 15, the offsets also can
be observed in other antenna pairs such as Tx1-Rx6 and
Tx10-Rx6. Thus, it is necessary to align the sampled signals
in the two experiments.

The concept of the alignment is to adjust the peaks of the
signals. However, it is difficult to recognize the signal peak in
some antenna pairs. Figure 16 shows some examples of the
signals where the peaks cannot be confirmed. This is caused
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FIGURE 16. The sampled digital signals. (a) Tx4-Rx14. (b) Tx9-Rx16.

by the accuracy of the ADC. As the signals in some antenna
pairs are very weak, the 4-bit ADC failed to differentiate
them. Since the alignment cannot be done in the cases where
the signal peak cannot be found and the subtracted signals
may be only noise, the signals from these antenna pairs are
ignored in the following processing procedure and confocal
imaging. Contrarily, the signals where the peak can be recog-
nized are chosen.
To correct the offset in ‘with target” and ‘reference’ signals,
the signal adjustment procedure is carried out. The procedure
of the adjustment is as follows, for each selected signal
in turn:
1. Find the first continuous peaks of the received signal
when tumor exists. And then calculate the average time
of the peaks t;.

2. Find the first continuous peaks of the received
signal when tumor doesn’t exist. And then calculate
the average time of the peaks t;.
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3. Calculate the offset between the two signal peak time:
dt =t — 1t (3)

4. Offset the ‘reference’ signal S,,s to match the ‘with
target’ signal and set the new ‘reference’ signal as:

Sref_new(t) = Sref(t +dt) )
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FIGURE 17. The signal adjustment procedure from Tx1-Rx5. (a) Peak of
‘with target’ signal. (b) Peak of ‘reference’ signal. (c) Alignment of the
signals.

An example of adjustment procedure is shown in
the Fig. 17. To express the concept clearly, the x axis is
shown as time step, where each time step stands for 9.77 ps.
It can be seen the two signals are aligned after this process.
The original signals and subtracted signals before and after
adjustment are shown in Fig. 18. The noise caused by the
offset between signals is reduced.

The confocal imaging algorithm is applied to the
subtracted signals to reconstruct the image of the breast [46].
The basic concept of the algorithm is to add the reflected
signals from the target coherently and the other signals or
noise incoherently, to identify the position of the target. The
equation to calculate the intensity of a certain position is
shown as follows:

Emitter Detector

I(P) = Z Z / ’j( 8r(Ll+L2)> 5)

where I (P) stands for the intensity of a certain point P and the
L1, L are the distance between the point P and the emitter and
detector antenna. &, is the assumed relative permittivity of the
breast. c is the speed of light.

The imaging result of the detection experiment is shown
in Fig. 19. Before the adjustment, as the noise caused by
the offset is relatively large, it is hard to recognize the target
position from the reconstructed image. After the adjustment,
the noise caused by the offset is reduced dramatically and
the target can be confirmed in the image. From the imaging
results, the estimated position of the target is (20, 25, 20) mm.
The target is physically located in (28, 31, 20) mm in the
x-y-z coordinate system. The offset error in y direction
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FIGURE 19. Confocal imaging results using row data. (a) y-z cross section
before adjustment. (b) x-y cross section before adjustment. (c) y-z cross
section after adjustment. (d) x-y cross section after adjustment.

is 6 mm and the error in x direction is 8 mm. This may be
caused by the precision of the system.

B. IMAGING FROM 16 TIMES MEASUREMENT DATA

As the ADC is only 4-bit at present, it is sometimes not
precise enough to recover the tumor response. However, if the
measurement time is increased and then average the signals,
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more precise signals can be obtained. Because there are jitters
in the sampling timing, the sampled points in the real signal
change in different measurements. By averaging the data
from several measurements, the effective resolution of the
ADC can be improved. In implementation, the signal is trans-
mitted and received at the repetition of 100 MHz. For each
Tx-Rx antenna pairs, the sampling and recording operation
is taken 16 times. Then the measurement goes for the next
Tx-Rx pair. Figure 20(a) shows the measurement data from
Tx1-Rx5 which is taken 16 times and Figure 20(b) shows the
averaged data. These results demonstrate the averaged signal
has a higher resolution.
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FIGURE 20. The measurement signals from Tx1-Rx5 antenna pair.
(a) Raw data for 16 times. (b) Averaged signal.

The image reconstruction is firstly carried out by using
the ideal artifacts removal. The reference signals are also
measured for 16 times and averaged. Figure 21(a) shows
the averaged signals with target and reference signals. The
offset between the two signals still exists and the alignment
is applied. Figure 21(b) shows the signals after alignment and
the subtracted signal is shown in Fig. 21(c).

By use of the averaged signals, the breast image is recon-
structed. Figure 22 shows the imaging results. The estimated
position of the target is almost the same as the target real
position. These results demonstrate that by increasing the
measurement time and averaging, the signal accuracy can be
improved.

As the ideal artifact removal algorithm is impractical in
real case, the averaging artifact removal algorithm is applied
to the averaged signals [46]. In implementation, the antenna
array is moved in both x and y positions every 20 mm.
In total, the experiment is carried out in nine positions.
As the relative positions of the antennas are not changed,
the waveform of early reflection should be the same.
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