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ABSTRACT Enterprises exist in a competitive manufacturing environment. To reduce production costs and
effectively use production capacity to improve competitiveness, a hybrid production system is necessary. The
flexible job shop (FJS) is a hybrid production system, and the FJS problem (FJSP) has drawn considerable
attention in the past few decades. This paper examined the FJSP and, like previous studies, aimed tominimize
the total order completion time (makespan). We developed a novel method that involves encoding feasible
solutions in the genes of the initial chromosomes of a genetic algorithm (GA) and embedding the Taguchi
method behind mating to increase the effectiveness of the GA. Two numerical experiments were conducted
for evaluating the performance of the proposed algorithm relative to that of the Brandimarte MK1–MK10
benchmarks. The first experiment involved comparing the proposed algorithm and the traditional GA. The
second experiment entailed comparing the proposed algorithm with those presented in previous studies. The
results demonstrate that the proposed algorithm is superior to those reported in previous studies (except
for that of Zhang et al.: the results in experiment MK7 were superior to those of Zhang, the results in
experiments MK6 and MK10 were slightly inferior to those of Zhang, and the results were equivalent in
other experiments) and effectively overcomes the encoding problem that occurs when a GA is used to solve
the FJSP.

INDEX TERMS Flexible job shop, genetic algorithm, optimization, Taguchi method.

I. INTRODUCTION
The flexible job shop scheduling problem (FJSP) has received
considerable attention in recent years, because advanced
machines have become prevalent. Assigning job operations
to different machines for processing yields different results,
and operations may be assigned incorrectly because of
differences in machine type. In addition, the time for
each operation required by different machines is different,
and some machines can execute only specific operations.
Therefore, an effective scheduling method is required for
increasing the productivity of enterprises.

In the traditional manual scheduling approach, managers
rely on their experience or relatively simple dispatching
rules, and the result often is limited. For practical use,
a set of nonhomogeneous and conflicting targets must be
optimized; therefore, increasing complexity of scheduling
problems has rendered manual scheduling and traditional
metaheuristic algorithms inadequate, and developing a new

scheduling method is necessary. In general, the FJSP involves
the assumption that multiple parallel machines exist in a fac-
tory. Each type of machine has a different processing time for
different operations; each job comprises several operations
with a fixed route; and each machine can execute several
operations.

For searching for solutions to solve the FJSP, this study
proposes an algorithm in which a Taguchi–genetic method
is embedded in the evolution phase to facilitate obtaining
a high-quality offspring and effectively increase the con-
vergence speed of the genetic algorithm (GA); therefore,
the proposed algorithm is more likely to identify a near-
optimal solution and avoid local optimal solutions. In recent
years, numerous studies have used the GA to solve the FJSP.
Borne et al. (2002) [5] proposed a localization approach
to enable a user to assign each operation according
to the process time and workloads of machines. They
then applied advanced genetic manipulation based on
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their assignment schema to improve the solution quality.
To determine a robust and stable solution for the FJSP,
Hinai and ElMekkawy (2011) [1] used a two-stage hybrid
GA to generate a predictive schedule. The first stage involves
optimizing the makespan, and the second stage involves
optimizing the bi-objective function and integrating machine
assignments and operations in sequence with the expected
machine breakdown in the decoding space. The results indi-
cated that different measures exhibited substantially different
performance. Wang and Chu (2012) [13] proposed a novel
encoding method that divides a chromosome into two parts,
operation assignment (OA) and machine selection (MS), and
designed different strategies for the crossover and mutation
operators. A scenario with eight jobs and eight machines
was used to test the application of the approach. The results
showed that the proposedmethod can effectively solve FJSPs.
Tung-Kuan et al. (2014) [11], [12] used two GAs to solve
FJSPs for a midscale screw manufacturer. The proposed
refined GA was evaluated, and satisfactory results were
obtained through two-stage validation; in the first stage, a
classical DFJSP was used to show the effectiveness of the
algorithm, and in the second stage, the algorithm was used
to solve a real-world case. The results for the real-world
case were satisfactory. Karimi-Nasab [6] proposed amodified
particle swarm optimization (PSO) algorithm for the FJSP.
He tested various benchmark data from the literature. Li [7]
presented a novel discrete artificial bee colony algorithm.
This is a unique solution representation in which a food
source is represented by two discrete vectors, and a tabu
search (TS) is applied to each food source to generate neigh-
boring food sources for employed bees, onlooker bees, and
scout bees. Nasiri suggested a modified ABC algorithm. The
effective neighborhood of the stage shop problem and PSO
were used for the employed and onlooker bee phases, respec-
tively [9]. Zeng proposed two-integer nonlinear programming
models that combine an improved timetabling method and
local search for solving the blocking job shop automated
guided vehicle problem [14]. Zhao proposed an intelligent
algorithm called the improved shuffled complex evolution
algorithm. However, this algorithm obtains a poor solution
and low convergence rate. Therefore, a new strategy was
used to change the individual’s evolution in the basic shuffled
complex evolution algorithm. This strategy makes the new
individual closer to the optimal individual in the current popu-
lation [16]. Moin et al. presented multiparent crossover in the
hybrid GA. The multiparent crossover operator recombines
more than two parents to generate a single new offspring [17].
Xiong et al. solved the job shop problem (JSP) by using a
novel quadspace cultural genetic tabu algorithm. This
algorithm provides a structure different from the origi-
nal cultural algorithm with respect to double brief spaces
and population spaces [18]. Tasi et al. proposed a hybrid
Taguchi–genetic algorithm (HTGA) for solving the JSP [4].
Xu et al. proposed a two-level batch chromosome coding
scheme for solving the FJSP by using the hybrid discrete
differential evolution algorithm [19]. Tasi et al. used the

Taguchi method to solve global numerical optimization prob-
lems with continuous variables [20].

In contrast to the traditional JSP, the FJSP considers the
selection of a machine, which increases the complexity of
the scheduling problem. This makes encoding solution spaces
into the initial chromosome difficult, causing the gener-
ation of an infeasible solution; in other words, incorrect
machine assignment easily occurs during evolution. There-
fore, a special mechanism is required for crossover and
mutation. In addition, although the traditional genetic algo-
rithm (TGA) has a strong search capability, its performance
can be improved further when the problem scale is large;
thus a method for determining an effective near-optimal solu-
tion with robust and rapid convergence should be developed.
Therefore, this study proposes a refined HTGA to address
these concerns. The Taguchi method is used to identify the
optimal chromosome combination after crossover for expe-
diting convergence.

To verify the performance of the proposed refined
HTGA, 10 benchmarks proposed by Brandimarte [2],
MK1–MK10, were used. Overall, the results of this
study were more favorable than those of previous
studies [3], [4], [10], [15]. The remainder of this paper
is organized as follows: Section 2 reviews studies on the
FJS. Section 3 describes the HTGA and explains how our
algorithm is used to solve the FJSP. Section 4 discusses the
results obtained using the MK1–MK10 benchmarks and a
comparison of convergence speeds and optimal fitness values.
Section 5 concludes the paper and provides suggestions for
future research.

II. PROBLEM FORMULATION AND HYPOTHESIS
The FJSP entails organizing the execution of N jobs on M
machines. A set of machines is represented by U . Each job
Ji contains a number of unchangeable ordered operations
Oi,j ⊆ Oi, where Oi,j represents the jth operation of the ith
job. Each Oi,j requires at least one machine for processing
from a set of available machines Ui,j ⊆ U . The processing
time of operation Oi,j assigned to machine Mk (Mk ∈ Ui,j)
is represented as Pi,j,k [5], where job Ji = {1 ≤ i ≤ N},
operations Oi,j = {1 ≤ i ≤ N ; 1 ≤ j ≤ Oi}, and machines
Mk = {1 ≤ k ≤ M}.

The assumptions regarding the FJSP are listed as follows:

1) The job J has N operations that must be processed
according to a predefined sequence.

2) During the operation of a machine, regardless of
crashes, damage, or material shortages, once each oper-
ation is in line, neither stop action nor reprocessing is
allowed.

3) The execution of operation Oi,j ∈ Oi, Oi ={Oi,1,
Oi,2, . . . ,Oi} of job Ji ∈ J , J ={J1, J2, . . . , J} selected
from a set of available machines Ui,j.

4) Each machine can perform only one operation Oi,j at
a time and the transportation times between machines
are neglected.
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FIGURE 1. HTGA flow chart.

5) All operations with the same job number enter the
production facility in sequence.

6) Time is discretized into the set di,j,k of time slots.

III. PROPOSED APPROACH
This study aimed to minimize the total order completion
time (makespan) by using the HTGA to solve the FJSP.
The results obtained using TGAs to solve JSPs are usually
satisfactory. However, because FJSPs belong to a more com-
plex scheduling problem category (FJSs involve unrelated
parallel machines), the method used for solving FJSPs must
consider constraints; for example, a specific machine can
execute only specific operations rather than all operations.
Therefore, TGAs cannot be used to solve the FJSP. Thus,
for solving the GA problem in FJS scenarios, we propose
a novel method that involves encoding the FJSP solution
in the initial chromosome. In addition, we investigated the
difference between the HTGA and the TGA. Fig. 1 shows a

flow chart of the proposed HTGA. The entire procedure of
the proposed algorithm is detailed as follows:

A. ENCODING THE PROBLEM
A chromosome comprises two sections: OA and MS. In OA,
each gene represents an operation of a job; in MS, each gene
represents amachine number. The lengths of bothOA andMS
chromosomes are equal to the total number of operations of
jobs. OA and MS then merge to form a single chromosome,
and each chromosome represents a feasible solution.

The encoding of the FJSP solutions into the
GA chromosome is detailed as follows.

In the OA encoding method, the first step is ranking all
operations of jobs according to the job and operation num-
bers. For example, the classic FJSP instance MK1 comprises
55 operations in 10 jobs; therefore, the OA length is 55, and
a number between zero and one is randomly generated for
each operation until the length of the gene is equal to the
OA length. Subsequently, rank and job numbers are assigned
to each OA gene. Fig. 2 shows the entire process and its
results.

Regarding the order of the process and initial OA chro-
mosome, Fig. 2 illustrates that the value of the second gene
is 0.0540 and the job number is 7 because job number 7
appears for the first time. This means that this gene represents
Operation 1 of Job 7, O71. The value of the third gene is
0.0759 and the job number is 7; thus, this gene represents
Operation 2 of Job 7, O72.

In the MS encoding method, the first step is the generation
of an initial array, the length of which is equal to the total
number of operations based on the order of job and operation
numbers. A number between zero and one is then randomly
generated for each operation to determine the probability for
selecting a feasible machine until a suitable length of MS is
obtained (Fig. 3(a)).

Fig. 3(b) shows the entire process and results. Operation 2
of Job 1, O12, can be performed by Machine 2, 3, or 5,
according to the MK1 instance. Three machines, ordered
from small to large, with the same probability can be used
to execute O12. The value of O12 was 0.0838, and Machine 2
was located between 0 and 0.333; therefore, Machine 2 was
selected.

B. FITNESS FUNCTIONS
In this study, we used makespan as a main parameter of the
fitness function; its formula is as follows:

Cmax = Min

Max.
n∑
i=1

m∑
j=1

(
Ti,j,k + Pi,j,k

), (3.1)

where Cmax represents the minimal total order makespan,
Ti,j,k represents the start time of operation j for job i in
machine k; and Pi,j,k represents the processing time of oper-
ation j for job i in machine k .

Fig. 4 shows a Gantt diagram of instance MK1. In the
first pink rectangle of Fig. 4, ‘‘1-1’’ represents the first
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FIGURE 2. OA chromosome of the instance MK1.

FIGURE 3. (a) MS chromosome of the instance MK1. (b) MS chromosome (second gene) of the instance MK1.

operation of Job 1. Among all machines in Fig. 4, the
maximum completion time occurs on the second and fourth
machines. The time (makespan) is 74 time units, meaning that
the fitness value is 74 time units.

This study proposes a method for optimizing the permuta-
tion and combination of machine operations and optimizing
the makespan.

C. INITIAL POPULATION
Calculating the initial population is crucial for GAs because
it directly influences the convergence rate of fitness values
and the quality of optimal solutions. Two selection methods

(global selection and random selection) are embedded in the
initial population of the proposed HTGA to generate the
initial population (parent chromosomes). These two methods
are used to generate 50% of the initial population.

1) GLOBAL SELECTION: THE GLOBAL SELECTION
METHOD IS AS FOLLOWS
Step 1: The sequential order of operations for individual

jobs is determined randomly.
Step 2: The matrix that shows processing times on all

machines is established with an initial value of
zero.
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FIGURE 4. Gantt diagram for the instance MK1 obtained using proposed algorithm.

Step 3: Genes in the chromosome are read sequentially.
Step 4: The processing times of the available machines

for the corresponding operations of the genes and
the current cumulative times of the corresponding
machines are shown in the matrix established in
Step 2. These times are then added to obtain the
cumulative matrix, Temp.

Step 5: Times on individual available machines in Temp
are compared, and the machine k with the
shortest length of cumulative time is selected.
If available machines have identical cumulative
and processing times, one of them is randomly
selected.

Step 6: The processing time of machine k selected in the
previous step is renewed and added to the matrix
in Step 2.

Step 7: The next gene in the chromosome is read.
Steps 3–6 are repeated until the last gene of the
chromosome is read.

Step 8: The process is repeated from Step 2 and all remain-
ing chromosomes are read.

2) RANDOM SELECTION: THE RANDOM SELECTION
METHOD IS AS FOLLOWS
Step 1: Identify all feasible machines for each operation

and compile them into set O.
Step 2: According to the number of operations, randomly

generate OA chromosomes until population N is
reached.

Step 3: On the basis of the number of OA chromosomes
and available machine table, randomly generate
MS chromosomes until population N is reached.

Step 4: Calculate the fitness of chromosomes according
to the OA chromosomes, MS chromosomes, and
processing time table.

D. REPRODUCTION
The roulette wheel method is used to generate an offspring;
the greater the fitness function value, the greater the area
of the wheel is. This means that higher fitness values have
a higher probability of being selected.

E. CROSSOVER
The two methods used to perform OA and MS are two-point
crossover and uniform crossover.

1) MS
(1) Two-point crossover:

Step 1: Two nonrepetitive genes are randomly selected
from the chromosome.

Step 2: The two genes and those between them are arrayed
in reverse order to generate a new chromosome.

(2) Uniform crossover:
Step 1: A number is randomly generated to determine the

even- or odd-numbered genes in the chromosome to be used
in the crossover operation.

Step 2: Another chromosome is randomly selected, and
genes at identical positions are exchanged.

2) OA
(1) Two-point crossover:

Step 1: Two nonrepetitive genes are randomly selected
from the chromosome.

Step 2: The two genes and those between them are arrayed
in reverse order to generate a new chromosome.

(2) Uniform crossover:
Step 1: A number is randomly generated to determine the

even- or odd-numbered genes in the chromosome to be used
in the crossover operation.

Step 2: Another chromosome is randomly selected, and
genes at identical positions are exchanged.

F. TAGUCHI OPTIMIZATION METHOD
Because the orthogonal arrays of the Taguchi method, the
Taguchi method is useful for reducing experiment time
and increasing convergence speed. It was used in the
proposed HTGA. The better combinations are decided by the
orthogonal arrays and the signal-to-noise (S/N) ratios. The
procedure is as follows:

Step 1: Select an appropriate two-level orthogonal array
for matrix experiments and two chromosomes for
eachmatrix experiment. The size of the orthogonal
array is determined according to the size of
the FJSP.

Step 2: Calculate the S/N ratios and the fitness values of
all combinations in the matrix experiments. Select
an optimal chromosome according to the S/N ratio.

Step 3: Verify that the generation of all populations in the
crossover operation is complete. If not, return to
Step 1.

Step 4: Generate a new population.
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FIGURE 5. (a) Two-point crossover of machine selection. (b) Two-point crossover of operation assignment. (c) Uniform crossover of
machine selection. (d) Uniform crossover of operation assignment. (e) Results obtained using the Taguchi method for selecting an optimal
chromosome combination based on the instance MK1.

Fig. 5(e) shows the result obtained using the Taguchi
method to select the optimal chromosome combination based
on the instance MK1. Because of the limitation of length, for
more Taguchi method detail please refer to [4] and [20].

G. MUTATION METHOD
The mutation approach changes specific genes in the
chromosome to increase the search space of the solution.
In this study, two OA mutation methods, random selection
and neighborhood search, were used for performing MS and
OA mutation, respectively.

1) NEIGHBORHOOD SEARCH
Step 1: A chromosome is randomly selected from parent

chromosomes, and a random number [0,1) is gen-
erated. If the corresponding random number of a
gene is smaller than the preset mutation rate, Step 2
is performed. Otherwise, Step 2 is skipped.

Step 2: The machine with the shortest processing time
among those available for the corresponding oper-
ation of the gene is selected, and the selected
machine is restored to the decimal range in which
the machine falls.

Step 3: A number N is randomly generated and must be
lower than the chromosome length.

TABLE 1. Parameters of the orthogonal array for benchmarks MK1–MK10.

Step 4: Permutations and combinations based on N genes
are assessed.

Step 5: The fitness values of all chromosomes are calcu-
lated after permutations and combinations, and the
optimal chromosome is selected for generation.
The process is now complete.

2) RANDOM SELECTION
Step 1: Genes on all parent chromosomes are read sequen-

tially, and random numbers [0,1) are generated.
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FIGURE 6. (a) Fitness values obtained using the TGA and HTGA for benchmarks MK1–MK10. (b) Comparison of convergence speed
among proposed enhanced HTGA, TGA and eGA.

If the corresponding random number of a
gene is smaller than the preset mutation rate,
Step 2 is performed. Otherwise, Step 2 is
skipped.

Step 2: The integer part of the gene is retained, and a
random number [0,1) is generated again for the
decimal.

Step 3: After all genes on all parent chromosomes are read,
the process is complete. Otherwise, the process is
repeated.

H. SELECTION
Step 1: A number X is predefined to perform chromosome

selection.

Step 2: The fitness values of all parent chromosomes
are calculated, and the chromosomes are sorted
according to these values.

Step 3: Chromosomes with poor fitness values (i.e., values
lower than X) are removed.

I. TERMINATION
Because of an excessive number of orders, determining the
optimal solution is impossible. Therefore, the iterations were
used as the termination conditions in this study.

IV. NUMERICAL EXPERIMENTS
Two experiments based on the classic FJSP Brandimarte [2]
benchmarks MK1–MK10 were performed to validate the
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TABLE 2. Comparison of the results obtained using the HTGA for benchmarks MK1–MK10 and those of algorithms developed in previous studies.

proposed HTGA. The first experiment was conducted to
illustrate the difference between the convergence speeds
obtained using the standard GA and HTGA. The second
experiment was conducted to evaluate the proposed HTGA
according to benchmarks MK1–MK10. In addition, sev-
eral algorithms were compared. The algorithms were imple-
mented inMatlab 7 on a CPU Intel R©Core TMi7-2630 running
Microsoft Visual Studio 2010 Express at 2.0 GHz. The visual
C # programming language was used to code the production
scheduling system.

A. RESULTS AND DISCUSSION
1) COMPARISON OF THE CONVERGENCE SPEED
OBTAINED USING THE GA AND HTGA
The problem sizes of benchmarks MK1–MK10 are intro-
duced in the first, second, third, and fourth columns
of Table 1. Table 1 lists the parameters of the orthog-
onal array for benchmarks MK1–MK10. For example,
two 2-level orthogonal arrays, L16(215) and L64(263), were
used for OA andMS inMK1 because it comprised 16 jobs and
55 operations (16 × 55), and two 2-level orthogonal arrays,
L32(231) and L256(2255), were used for OA and MS in MK8
because it comprised 20 jobs and 225 operations. The size
of the selected orthogonal table corresponds to the size of
the problem.

The general symbol for two-level standard orthogonal
arrays is [4]

Ln(2n−1), (3.2)

where

n = 2k number of experiment runs;
k a positive integer greater than 1;
2 number of levels for each factor;
n− 1 number of columns in the orthogonal array.

The letter ‘‘L’’ is derived from ‘‘Latin,’’ the concept of
using orthogonal arrays for experimental design having been
associated with Latin square designs from the outset.

Fig. 6(a) shows fitness value and convergence speed
diagrams obtained using the TGA and HTGA. The results

indicate that the HTGA outperformed the TGA in both
convergence speed and makespan. This experiment proved
that embedding the Taguchi method can increase the conver-
gence rate and the opportunity to discover near-optimal or
optimal solutions.

2) COMPARISON OF THE MAKESPANS OBTAINED USING
THE PROPOSED HTGA AND THOSE OF ALGORITHMS
DEVELOPED IN PREVIOUS STUDIES
Table 2 shows a comparison of the results obtained using the
HTGA for benchmarks MK1–MK10 and those obtained in
previous studies.

Figs. 7–16 show the results for benchmarks MK1–MK10
obtained using the HTGA, respectively. The results indicate
that the results obtained using the eGA [15] algorithm were
the most satisfactory.

First, the HTGA and TGA were compared. The results
obtained using these two algorithms were identical for MK3
and MK8. However, for MK1, MK2, MK4–MK7, MK9,
and MK10, the makespans obtained using the TGA were
41, 28, 66, 178, 73, 150, 327, and 257, respectively, and
those obtained using the HTGA were 40, 26, 60, 173, 61,
141, 307, and 213, respectively, indicating that the HTGA
outperformed the TGA.

Second, the HTGA and EDPSO algorithm were compared,
and the results obtained using these two algorithmswere iden-
tical for MK2, MK3, MK6, MK8, and MK9. For MK5, the
makespans obtained using the EDPSO algorithm and HTGA
were 171 and 173, respectively. Thus, the EDPSO algorithm
is superior to the HTGA in this scenario. However, for MK1,
MK4, MK7, and MK10, the makespans obtained using the
EDPSO algorithm were 41, 65, 173, and 312, respectively,
and those obtained using the HTGA were 40, 60, 141, and
213, respectively, indicating that the HTGA outperformed the
EDPSO algorithm.

Third, the HTGA and TS algorithms were compared. The
results obtained using these two algorithms were identical
for MK8. However, for MK1–MK7, MK9, and MK10, the
makespans obtained using the TS algorithm were 42, 32,
211, 81, 186, 86, 157, 369, and 296, respectively, and those
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FIGURE 7. Gantt chart for MK1.

obtained using the HTGA were 40, 26, 204, 60, 173, 61,
141, 307, and 213, respectively, indicating that the HTGA
outperformed the TS algorithm.

FIGURE 8. Gantt chart for MK2.

Fourth, the HTGA and PSO algorithms were compared.
The results obtained using these two algorithms were
identical for MK1, MK3, and MK8. However, for
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FIGURE 9. Gantt chart for MK3.

MK2, MK4–MK7, MK9, and MK10, the makespans
obtained using the PSO algorithm were 27, 62, 178, 78,
147, 341, and 252, respectively, and those obtained using
the HTGA were 26, 60, 173, 61, 141, 307, and 213,

FIGURE 10. Gantt chart for MK4.

respectively, indicating that the HTGA outperformed the
PSO algorithm.

Fifth, the HTGA and PSO+TS algorithms were
compared. The results obtained using these two algorithms
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FIGURE 11. Gantt chart for MK5.

were identical for MK1, MK3, MK5, and MK8. However,
for MK2, MK4, MK6, MK7, MK9, and MK10, the
makespans obtained using the PSO+TS algorithm

FIGURE 12. Gantt chart for MK6.

were 27, 63, 65, 145, 331, and 223, respectively, and those
obtained using the HTGAwere 26, 60, 61, 141, 307, and 213,
respectively,
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FIGURE 13. Gantt chart for MK7.

indicating that the HTGA outperformed the PSO+TS
algorithm.

Sixth, the HTGA and MATSLO algorithms were com-
pared. The results obtained using these two algorithms were

FIGURE 14. Gantt chart for MK8.

identical for MK1 and MK8. However, for MK2–MK7,
MK9, and MK10, the makespans obtained using the
MATSLO algorithm were 32, 207, 67, 188, 85, 154, 437,
and 380, respectively, and those obtained using the HTGA
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FIGURE 15. Gantt chart for MK9.

were 26, 204, 60, 173, 61, 141, 307, and 213,
respectively, indicating that the HTGA outperformed the
MATSLO algorithm.

FIGURE 16. Gantt chart for MK10.

Finally, the HTGA and eGA algorithms were compared.
The results obtained using these two algorithms were iden-
tical for MK1–MK5, MK8, and MK9. For MK6 and MK10,
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the makespans obtained using the eGA algorithm
were 58 and 198, respectively, and those obtained using the
HTGA were 61 and 213, respectively. Thus, the eGA algo-
rithm is superior to the HTGA in these scenarios. However,
for MK7, the makespans obtained using the eGA algorithm
and HTGA were 145 and 141, respectively, indicating that
the HTGA outperformed the eGA algorithm.

The results demonstrate that the proposed algorithm is not
only relatively superior to previous studies reported except
Zhang et al. [15] (the result of experiment MK7 is better
than Zhang, the results of experiments MK6 and MK10 are
slightly inferior to Zhang, the others are same), but also
effective for overcoming the encoding problem that occurs
when a GA is used to solve the FJSP; we also compared the
convergence speed between HTGA and eGA, by coding the
program based on the algorithm of eGA in [15]; the results
show the HTGA outperformed eGA. The simplest instance
MK3 was showed in Fig. 6(b). In addition, Figure 6 shows
the convergence speed is outperformed TGA in numerical
experiments MK1-Mk10 of FJSP.

V. CONCLUSION
In this study, an enhanced HTGA embedded a novel encoding
method for FJSP has been proposed. The enhanced HTGA,
were developed. The HTGA overcomes the limitation of
the TGA in solving the FJSP; that is, it avoids unfeasi-
ble solutions and has an increased GA convergence speed.
Although the optimal solution determined in this study is
close to that determined by Zhang, but the scheduling results
of the enhanced HTGA were presented by using Gantt chart
(Figs 7 - 16), it proved the solutions are available. Our pro-
posed algorithm is superior to other algorithms.

We successfully solved the FJSP and produced a feasible
solution; however, in practice, some aspects of the method are
still inadequate and thus much work, such as multiobjective
optimization, remains for enhancing practicality.
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