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ABSTRACT A mobile app for smartphones and tablets to document pressure ulcers was previously
developed. The mobile app is part of the rapidly growing field of mobile health. The mobile app replaces
paper-based documentation in a healthcare facility with an electronic record. In a user trial in 2013, a key
finding was the high value attributed to wound image (photograph) galleries in the mobile app and wound
tracking though graphing progression. Consequently, work was undertaken to enhance the imaging features
by developing image analysis algorithms for size and color determination of wounds from wound images
taken with an on-board smartphone or tablet camera, using no peripheral hardware or ancillary devices
in setting up the image. The reliance solely on the internal smartphone sensors to generate high-accuracy
measurements brings novelty to the work and specifically in the field of wound management. The work
includes three components. The first component, referred to as mask image, obtains the dimensions of an
object in the image. The second component, referred to as camera calibration, reconstructs an image taken on
an angle (3-D) referenced back to a 2-D plane. The third algorithm determines the range of colors present in
an image, separating the image into three component colors by extracting components from the Red Green
Blue format of the image, and converting output to red yellow black. An expert system and/or machine
learning is recommended to enhance the correlation of wound color to wound stage.

INDEX TERMS Algorithms, image analysis, smartphones, wound care.

I. INTRODUCTION & OBJECTIVE
The research group previously developed a mobile app called
SmartWoundCare for Android and iOS smartphones and
tablets to document and assess chronic wounds, specifically
pressure ulcers (bedsores) [1]. The mobile app is part of the
rapidly growing field of mobile health or mHealth, or the
delivery of healthcare and healthcare support through mobile
devices. Mobile consumer devices are increasingly capable
of meaningful applications in mHealth, and examples range
from apps that allow users to track diet and fitness, health
condition monitoring (e.g. diabetes [2]; arthritis [3]), and the
use of mobile devices to replace paper records and share
information between healthcare providers (see [4]).

This paper outlines the application of mobile consumer
devices to automated wound analysis and classification.
Specifically, work was undertaken to develop algorithms to
generate wound size and to analyze wound color from a
wound image taken by a smartphone or tablet camera, without
the use of peripheral or auxiliary devices such as positioning

templates, ultrasonic transducers, or additional lenses. This
is in contrast to work by others which, for example, controls
lighting and wound position with an image capture box when
performing image analysis of diabetic foot ulcers [5]. The
reliance on the internal smartphone sensors alone to generate
high-accuracy measurements brings novelty to the work and
specifically to the field of wound management.

II. BACKGROUND
A. PRESSURE ULCERS AS THE FOCUS AREA
Pressure ulcers, also known as bedsores or decubitus ulcers,
were chosen as the focus area for the mHealth app due to
their significant prevalence and associated impacts in health-
care. Pressure ulcers most commonly affect persons with
limited mobility and the elderly. The negative impacts of
pressure ulcers include impacts on patients’ recovery from
other conditions, mobility, social isolation and quality of life
factors, secondary infections, and mortality. Concomitantly,
there is an increasing emphasis on electronic communication
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in pressure ulcer management to improve the efficiency of
care, the patient and caregiver experience, and ultimately the
clinical outcomes. EHealth and mHealth initiatives in wound
care are conjectured to assist in pressure ulcer prevention
and treatment by facilitating different types of healthcare
interventions, changing user behaviors, enhancing com-
munication between patients and providers, and providing
education [6]–[9].

B. PRIOR WORK IN THE RESEARCH
GROUP: SMARTWOUNDCARE
SmartWoundCare, an existing mobile app for wound
documentation developed in the research group, replaces the
patient’s paper-based chart in a hospital or personal care home
with an electronic record [1]. SmartWoundCare was devel-
oped to improve patient/caregiver communication as well
as communication between multiple healthcare providers,
facilitate patient engagement in their own care, and improve
wound management and outcomes. In addition to repli-
cating the paper-based chart, SmartWoundCare also offers
alerts/alarms for user-set conditions, automatically generates
wound histories in text, graph, and image (photos) formats,
and is positioned for telehealth.

SmartWoundCare was trialed at a personal care home in
Winnipeg, Canada in summer 2013. A key finding of this
user trial was the high value attributed to wound images
(photographs) [6]. The value of the photographs extended to
the patient, the patient’s family, and the healthcare providers.
The benefits included the ability to show patients wounds that
they could not otherwise see (e.g. wounds on buttocks, back
of legs, or under the foot), patients’ and families’ enhanced
understanding of the wounds and subsequent compliance
with wound care directives, consultation with other health-
care providers with a wound photograph which then saved
time otherwise needed to undress and redress a wound, and
the value of the image in augmenting the written chart as part
of the overall patient record.

This finding is congruent with others’ findings on the value
of wound photography in other types of chronic wounds.
Two separate studies compared the measurement accuracy of
venous leg ulcers and diabetic foot ulcers, respectively, made
via traditional measurement techniques vs. measurements
taken from digital images [10], [11]. Traditional methods of
wound measurement are to trace the margin of a wound on
transparent film, and then overlay the transparent film on to
graph paper and count the number of squares. Comparing
this method to measurements of tracings taken from
digital images, researchers reported better accuracy, less
inter-observer variations in measurements, and better ease
of use with the computer-aided method. As a non-contact
method, the researchers also reported an improved patient
experience. In another study examining the outcomes of
pressure ulcer assessment done via videoconferencing
relative to in-person assessment, researchers found very
strong agreement in the staging of the wound between
the two approaches, but the assessment of wound volume

to be somewhat larger when assessed via videoconference
than when assessed in person [12]. In general, these find-
ings are consistent with research that highlights the value
of visual information in mHealth to user engagement and
compliance [3].

Given the finding of the high value of wound photographs,
initial work was undertaken to develop algorithms that would
add intelligence to the SmartWoundCare app by automati-
cally generating the wound size from the image. In this way,
a chronology of wound size would provide information on
wound status and healing. The objective was scoped such that
the image analysis algorithm(s) would facilitate non-contact
measurements of irregularly-shaped images taken with a sole
smartphone or tablet camera, using only the sensors inte-
grated in the smartphone or tablet with no auxiliary or add-on
instrumentation on the device, and where the measurements
have less than 10% error, for images taken from distances of
up to 30 centimeters. Initial research explored one method
for determining distance to the wound (camera to wound)
and two algorithms to determine wound size. Although both
showed promise, the specifications for error were not met [7].

The objective of the current work was to develop
algorithms that auto-generate wound size (relative and abso-
lute) and an analysis of wound color, without the use of
peripheral devices on the smartphone or tablet to either record
or manipulate the image. In downstream use, the develop-
ment of a wound image library generated by a collection of
images generated by the community of users of the app would
allow for potential Big Data applications, such as mining
and analyzing the data to develop predictive inferences that
can eventually feed into the body of knowledge for wound
treatment and prevention.

C. IMAGE ANALYSIS FROM PHOTOGRAPHY
Although smartphone and tablet cameras are universally
used for recreational photo capture and sharing, the built-in
cameras are not generally used for applications that require
high accuracy, precision, and resolution. This is changing
rapidly, with each new smartphone release boasting higher-
resolution cameras.

Our prior work reviewed the current state of image
analysis from photography [7]. In that publication, an
overview was provided for mobile apps for Android and iOS
for mid-range object measurement applications (generally
0.5m to 20m) [13], [14], ultrasonic-transducer rangers [15]
for objects at shorter distances (1cm – 6m), infrared distance
measuring [16] to measure shorter distance (4cm – 30cm)
and laser rangers. Outside of the smartphone / tablet domain,
depth-of-field cameras were also reviewed [17]–[19].

At time of writing, it is anticipated that smartphones with
integrated dual-lens cameras are poised for mass market
entry in the foreseeable future [20]. This would add inherent
capability of offering enhanced, accurate and high precision
imaging amenable to follow-on analysis and characteriza-
tion, building on the technology expertise and applications of
stereoscopic cameras in other fields such as manufacturing.
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Google’s Project ARA, a collaborative effort to develop
modular smartphone hardware may also provide a future
framework by which to include dual-lens cameras in mobile
devices.

III. IMAGE ANALYSIS
Algorithms were developed to determine the dimensions
of irregularly shaped images – in this case, wounds on
skin – and to determine the color breakdown of the wound.
The algorithms used data generated solely by the sensors
integrated on a smartphone, without the use of peripheral
or add-on devices or auxiliary devices such as positioning
templates or ultrasonic transducers. The reliance solely on
internal smartphone sensors to generate high-accuracy mea-
surements brings novelty to the work, and specifically to the
field of wound management.

Three components of the work are outlined below. In the
first component referred to as Mask Image, the objective is to
obtain the comparative dimensions of an object in the image.
The second component, referred to as Camera Calibration,
reconstructs an image taken on an angle (3D) referenced back
to a 2D plane. The third algorithm determines the range of
colors present in an image, separating the image into three
component colors by extracting components from the
RGB format of the image.

FIGURE 1. Basic Application Model.

The application model consists of different modules
including wound image acquisition, wound image prepro-
cessing, image segmentation, wound type recognition, and
classification. Figure 1 provides a top-level view of this
sequence. The Mask Image component is within the image
acquisition stage. Grabcut as a segmentation method [21]
and the Camera Calibration component are both a part of the
segmentation phase. The color analysis module is a part of
the segmentation and recognition phases.

All wound images are taken by smartphone on-board cam-
eras or by webcam as specified below. All images are cur-
rently processed on a computer rather than on the smartphone
itself. This enhances the robustness for the user, who is able to
select a webcam for use in a static environment like a hospital
or home, or to use the smartphone camera. This work supports
both of the cases with their associated benefits and liabilities.

A static environment includes a fixed camera setup and
a fixed wound position, and generally a more stable light
source. The Camera Calibration module only needs to be
done once on a plane. A dynamic environment denotes a
mobile camera (i.e. smartphone or tablet) and the patient in
a natural position without props or staging devices. Mask
image acquisition is needed, and the Camera Calibration
module will need to be carried out repeatedly if the actual
size of objects (as opposed to relative size) is needed.

For this work, the following hardware and software spec-
ifications were used (Table I), and computation times were
measured in seconds, rather than minutes or hours.

TABLE 1. Hardware and software specifications.
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FIGURE 2. Image acquisition and pre-processing flow chart.

A. MASK IMAGE
Figure 2 provides an overview of the first two segments of
the basic application model (Fig. 1), which includes theMask
Image component.

The Mask Image and the Camera Calibration compo-
nents focus on determining the relative and absolute size
of the wound. Currently, the most common way to measure
wound size is to apply a disposable adhesive measuring tape
alongside the wound, and by using a marked cotton-tipped
applicator to measure depth. By convention, wound length
is measured in the head to foot direction at the point of
maximum length; and the width is from one side of the wound
to the other side of the wound at the point of maximum
distance. Undermining refers to a wound that is larger in
area at its base than at the skin surface. It is a wound which
essentially is a larger cavity beneath a smaller opening at the
skin surface. A cotton-tipped applicator is used tomeasure the
deepest point of the wound, from the surface of the wound to
tip of the applicator at the deepest part of the wound. In some
cases, underminingwill be recorded according to a clock face,
where the head will be 12 o’clock and the foot will
be 6 o’clock.

Two existing approaches to automatically generate wound
size include grid capture and scanner capture. In the grid
capture approach, a transparent double layer film with a
marked grid (1×1cm) is placed on the wound and the wound
contour is traced with a black permanent marker [5], upon
which the length and the width can be easily calculated by a

smartphone application. The area of the wound can be
calculated by the factor between the grid and the pixel. The
advantage of this method is that the transparent film is placed
directly on the wound, keeping the traced wound at the near
dimension and orientation as the real wound underneath, min-
imizing distortion or uncertainty of the wound image area.

In the existing scanner capture approach, a box with
two mirrors inside is placed at 45 degrees relative to the
horizontal, with openings for a smartphone and an LED
light source [22] and this configuration acts as a scanner to
scan the wound. The configuration ensures a constant light
source location and intensity, and a constant known distance
is maintained between the camera and the wound, facilitating
area calculations. The image capture box will keep a constant
distance and will be known, hence the ratio of the size of
the wound image will be also constant. This method again
relies on auxiliary devices (the box and mirror) and will be
cumbersome or impractical for wounds on certain parts of the
body. As a contact-based design, this method may have less
utility when serving as a measurement procedure for a large
number of patients.

In our previous work, a ‘‘pinch-zoom’’ method of wound
size calculation was developed, using the device itself as a
reference and comparing it side by side with the object image
to achieve the size via the ratio [7]. The method has high
mobility; however, accuracy is somewhat user-dependent and
not systematic. The same person doing the same size estima-
tion with the new image may generate variable results.

In the current work, the first component is referred to as
Mask Image, where the objective is to obtain the comparative
dimensions (change in dimension) of an object in the image
relative to a previous image of the same wound. The user
aligns a transparent mask overlay of the wound from a previ-
ous assessment on the wound during the current assessment.
The algorithm compares the previous image to the subsequent
or new image by recognizing and aligning wound perimeters
where they have stayed constant and then estimates the rela-
tive size difference in order to infer healing or deterioration
(Fig. 3 and 4). The result is given as a percentage change in

FIGURE 3. Creating a mask image from the wound.
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FIGURE 4. Overlap of mask image to a new wound.

the area of the most current image relative to theMask Image.
If the real-world size of the wound is needed, then the pinch-
zoom method [7] and camera-calibration method discussed
in the subsequent section can be applied.

The transparent mask overlay does not need to be limited
to the wound image; for example, a medical tattoo can act as a
reference point for the Mask Image as well. A medical tattoo
is either a temporary or permanent tattoo or skin marker,
used to ensure targeted consistency in medical therapy or
treatment – in this case, the alignment of a camera relative to
a wound. For example, a tattoo of three dots or lines around
the wound can serve as a pattern to ensure alignment of
successive mask images. Invisible tattoos are also possible,
although they then require a peripheral device with UV light
during image capture.

The outcome is a relative dimension of the image (previous
assessment to current assessment) which leads to a better esti-
mation of whether the wound is healing. The error inherent
in this method is largely associated with the user, including
the sharpness of the mask and the user’s skill in aligning the
mask over the current wound. During image acquisition, the
image consistency should be maintained as high as possible
for image clarity and subsequent dimensional comparisons
and inferences of healing or deterioration. The depth of the
wound is also an important parameter to compare the status
of the wound from one assessment to the next. In the current
standard of smartphone cameras, it is not readily possible
to generate the depth of an image. Hence, instead of adding
an external device to potentially infer depth in an image, an
analysis of the wound color will help determine the stage of
the wound.

The advantage of the Mask Image approach over existing
approaches is that no peripheral devices to the smartphone
camera or staging props are required. One does not need a
ruler on the body part, as the outcome is the relative size of
the wound from one assessment to another, rather than the
actual size in the real world. When the algorithm is imple-
mented with a Camera Calibration component, an absolute
dimension is possible. However, the efficacy of the approach

may depend on the skin tone and how well the surrounding
skin is differentiated from the wound. In this case, a medical
tattoo may be used as the Mask Image.

B. CAMERA CALIBRATION
Figure 5 shows the Camera Calibration module within the
overall process outlined in Fig. 1.

FIGURE 5. Size estimation with segmentation flow chart.

The grabcut algorithm plays an important role in this appli-
cation, as a segmentation method by which to isolate the
wound from the background, producing what is referred to
here as a segmented image. This segmented image is further
used in the Camera Calibration module and the color analysis
module. Compared with other algorithms, grabcut provides
efficient results withminimal human interaction [21], and this
is its key benefit in the current work. A user is able to identify
and label the foreground and the background object through
the tool using the grabcut segmentation method (Fig. 6).
In this application, the foreground is the wound and the back-
ground is the surrounding skin or body part and surroundings.

To estimate size, the segmentation method compares pixels
of two images, which assumes that the dimension of the
image captured is close to the previous image. The algo-
rithm then calculates the relative change in size between the
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FIGURE 6. Grabcut applied as a segmentation method.

two images. If an actual dimension is needed, then this seg-
mented result is sent to the Camera Calibration component.
A demonstration of the grabcut algorithm applied to wound
care is available at https://youtu.be/Iyvochswrws.

The Camera Calibration module reconstructs an image
taken on an angle (3D) and references it back to a
2D plane. The algorithm uses a designated pattern with at
least 13 known reference points and applies the Tsai2D algo-
rithm [23], [24] to obtain a reconstructed image of the wound.
Since the distance between the points are known from the
calibration model, the view angle can be calculated and the
image can be reconstructed on a 2D plane. The outcome is
a reconstructed 2D image and the size of the wound can be
calculated from that 2D image. This method can be partnered
with the Mask Image method to get the actual size of the
wound. This algorithm cannot identify depth nor volume of
wounds with significant undermining.

In this work, a chess board pattern was used in the Camera
Calibration module, which worked effectively in both the
static and dynamic environments. In traditional wound mea-
surement, a paper ruler would be placed near the wound to
determine size, with the assumption that the wound is in a
2D plane, and that the wound and the ruler are in the same
2D plane. In this work, the chess board pattern is placed close
to the wound in order to obtain the size of the wound on the
same plane as a ruler, and where the planar orientation of
the chess board pattern was also able to be calculated and
corrected. This method adopted from Baltes & Anderson’s
work [25], in which Camera Calibration was used to achieve
the dimension of a soccer field, reconstructed in a top view
based on extrinsic parameters achieved after the Camera
Calibration. In the current application, the sticker will be the
calibration pattern to obtain the extrinsic matrix of the wound,
allowing for systematic size estimation (Fig. 9). The extrinsic
matrix describes the camera’s location and view direction,
including a rotation matrix and a translation matrix. Extrinsic
values can be generated, for example, formed by Fig. 7a or 7b,
provided the chess board pattern exists.

FIGURE 7. a & b Detected image points and re-projected points in
two different planes.

FIGURE 8. Mean re-projection error per image.

FIGURE 9. Extrinsic parameters from camera calibration.

Although the Mask Image method and the Camera
Calibration method serve different purposes in the applica-
tion, they both increase the applicability of the application
and allow more systematic size estimates. Using these meth-
ods, the actual size of a dollar coinwas estimatedwith an error
of <1% (Figs. 7-9). Figures 7a and 7b demonstrate that the
algorithm can be applied at various angles, rather than only
at the perpendicular to the object being measured.

Figures 10-12 demonstrate the original and re-projected
planes (red vs. green lines), applied to the reconstruction of
a wound in the Camera Calibration module. The red lines
represent the detected objects (block). The algorithm grabs
the centre of each object and sends the image coordinates to
be processed via the Tsai2D algorithm. The blue color lines
denote the scanning sequence. Because the pattern size is
fixed and known, the algorithm can generate model coordi-
nates of each block, which can be converted back to image
coordinates to confirm the result. In Fig. 10, the green lines
are the re-projected lines from the model points to the real
world coordinates, which show how effective the camera
calibration method was. Curved or other irregularly shaped
green lines would indicate a problem with the re-projection.
In application, a wound photographed on an angle (Fig. 11)
is reconstructed and re-projected on a plane perpendicular to
the viewer (Fig. 12).
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FIGURE 10. Original and re-projected planes.

FIGURE 11. Wound image before reconstruction.

FIGURE 12. Wound image after reconstruction.

A demonstration of the Camera Calibration module is
available at https://youtu.be/OiJk3nMymSE.

C. COLOR ANALYSIS
The third algorithm determines the range of colors present in
an image, separating the image into three component colors
by extracting components from the RGB format of the image
and presenting them in a histogram. Each component has a
defined range, and a template palette can calibrate the colors
under different lighting conditions. These data can then serve
as input into a determination of the stage thewound. Figure 13
shows the Color Analysis module within the overall process
outlined in Fig. 1.

Pressure ulcers fall into six potential stages
(stage I through IV, Suspected Deep Tissue Injury, and
Unstageable) [26]. Due to the limitation of our work in
assessing depth of wounds, the last two categories are com-
bined into a single Unstageable category. Parameters that
determine wound staging include whether the skin is intact

FIGURE 13. Color analysis flow chart.

or broken, tissue loss, skin, tissue, and wound bed color, and
the presence of slough and eschar.

The algorithm separates the image into three component
colors by extracting components from the RGB format of the
image. Each component has a defined range, and a template
palette can calibrate the color under different lighting condi-
tions. To avoid lighting problems, natural light and the use
of camera flash is recommended, to maintain the consistency
of the light. However, the user can also re-define the color
parameters through an interface when required for different
lighting in different environments.

Color analysis greatly improves after segmentation is
carried out (Fig. 14 and 15). After segmentation with the
grabcut algorithm, the background noise has been cleared
and the user interface shows the model colors properly.
Although the RGB format is used in this application, the
Hue, Saturation, Value (HSV) format is also a good option
because it responds to lighting and may be more amenable
to tuning color. The images used here were acquired from
http://reference.medscape.com/features/slideshow/pressure-
ulcers.

The RGB results can also be converted to RYB (red yellow
black) ratios, which have a more direct relationship to wound
classifications. Further, Figure 16 demonstrates a prelimi-
nary classification of RYB output to wound stage. Wound
stages I and II are differentiated by the intensity of red, while
wound stages III through V rely on relative prevalence of red,
yellow, and black in the image.
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FIGURE 14. Histogram results on different stages before segmentation.

FIGURE 15. Histogram results on wounds of different stages after segmentation.

The error inherent in this method depends to some extent
on the definitions of colors that the user sets, and therefore it is
recommended to use a large data set to define the parameters
and to partner this module with machine learning.

After the color is extracted, results can be sent to an expert
system to determine the wound stage. Currently, the expert
system framework has been developed, but has not been
populated with training data. As such, the work here was
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FIGURE 16. RYB output correlated to wound stage.

limited to the development of the algorithms to extract and
present color components. Systematically evaluating wound
staging based on a statistically significant set of wound
images, and then comparing the results to traditional methods
of wound classification by manual inspection by a practi-
tioner are future work. As an alternative to an expert system,
results could be fed to a machine learning algorithm like
SVM (Support Vector Machine) or decision tree to help
determine the wound stage.

A demonstration of the color analysis module is available
at https://youtu.be/Iyvochswrws.

IV. CONCLUSION
This paper has presented a prototype to automate chronic
wound analysis and classification using readily-available
consumer mobile devices, specifically smartphones and
tablets. Previous work resulted in a mobile app for electronic
documentation of chronic wound management. This work
focussed on maximizing the value of wound images gener-
ated within the mobile app. Algorithms were developed to
automatically detect size of wounds both relative to previous
assessments and real-world size, as well as an analysis of
color(s) present in a wound in order to ultimately correlate
color to wound stage.

Future work will focus on the training of an expert sys-
tem and the development of machine learning elements to
determine the wound stage, based on the outputs of the other
modules which determine size and color of the wound.

The algorithms developed in this work are not limited to
pressure ulcers but can also be applied to other wounds,
moles, or other objects on patients. The analysis and extrac-
tion of color can be also applied on other kind of medical
images to feed expert systems or machine learning algo-
rithms. In mobile healthcare apps, there is a growing aware-
ness of the ability to crowdsource data (in this case, images)
from other app users which can increase the robustness of
expert systems.
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