
Received August 11, 2015, accepted August 29, 2015, date of publication September 15, 2015, date of current version October 8, 2015.

Digital Object Identifier 10.1109/ACCESS.2015.2478793

Non-Dominated Quantum Iterative Routing
Optimization for Wireless Multihop Networks
DIMITRIOS ALANIS, (Student Member, IEEE), PANAGIOTIS BOTSINIS, (Student Member, IEEE),
ZUNAIRA BABAR, SOON XIN NG, (Senior Member, IEEE), AND LAJOS HANZO, (Fellow, IEEE)
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

Corresponding author: L. Hanzo (lh@ecs.soton.ac.uk)

This work was supported in part by the European Research Council Advanced Fellow Grant and in part by the Royal Society’s Wolfson
Merit Award.

ABSTRACT Routing in wireless multihop networks (WMHNs) relies on a delicate balance of diverse
and often conflicting parameters, when aiming for maximizing the WMHN performance. Classified as
a non-deterministic polynomial-time hard problem, routing in WMHNs requires sophisticated methods.
As a benefit of observing numerous variables in parallel, quantum computing offers a promising range
of algorithms for complexity reduction by exploiting the principle of quantum parallelism (QP), while
achieving the optimum full-search-based performance. In fact, the so-called non-dominated quantum
optimization (NDQO) algorithm has been proposed for addressing the multiobjective routing problem
with the goal of achieving a near-optimal performance, while imposing a complexity of the order of
O(N ) and O(N

√
N ) in the best and worst case scenarios, respectively. However, as the number of nodes in

the WMHN increases, the total number of routes increases exponentially, making its employment infeasible
despite the complexity reduction offered. Therefore, we propose a novel optimal quantum-assisted algorithm,
namely, the non-dominated quantum iterative optimization (NDQIO) algorithm, which exploits the synergy
between the hardware and the QP for the sake of achieving a further complexity reduction, which is on the
order of O(

√
N ) and O(N

√
N ) in the best and worst case scenarios, respectively. In addition, we provide

simulation results for demonstrating that our NDQIO algorithm achieves an average complexity reduction
of almost an order of magnitude compared with the near-optimal NDQO algorithm, while having the same
order of power consumption.

INDEX TERMS WMHNs, quantum computing, Pareto optimality, BBHT-QSA, DHA, NDQO.

LIST OF ACRONYMS
ACO Ant Colony Optimization
BBHT Boyer, Brassard, Høyer and Tapp
BER Bit Error Ratio
BF Brute Force
BSC Binary Symmetric Channel
BW-BBHT Backward BBHT-QSA
CD Classical Domain
CDMA Code-Division Multiple Access
CF(E) Cost Function (Evaluation)
CLT Central Limit Theorem
CNOT Controlled-NOT quantum gate
CPU Central Processing Unit
DF Decode-and-Forward
DCCP Dynamic Coverage and Connectivity

Problem
DHA Durr-Høyer-Algorithm

DN Destination Node
DSS Direct-Sequence Spreading
GA Genetic Algorithm
GPU Graphics Processing Unit
HGR Hybrid Geographic Routing
HIHO Hard-Input Hard-Output
HP Harware Parallelism
HYMN HYbrid Multihop Network
MODE Multi-Objective Differential

Evolution
MUD Multi-User Detection
NDQO Non-Dominated Quantum Optimization
NDQIO Non-Dominated Quantum Iterative

Optimization
NP Non-deterministic Polynomial-time
NSGA-II Non-dominated Sort Genetic
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OF Objective Function
OFDM Orthogonal Frequency-Division

Multiplexing
OPF Optimal Pareto Front
(G/L)OW (Global/Local) Oracle Workspace
PF Pareto Front
PLR Packet Loss Ratio
QAE Quantum Amplitude Estimation
(G/L)QCR (Global/Local)Quantum Control

Register
QC Quantum Counting
QD Quantum Domain
QFT Quantum Fourier Transformation
QGOA Quantum Genetic Optimization

Algorithm
(G/L)QIR (Global/Local) Quantum Index Register
QMA Quantum Mean Algorithm
QoS Quality of Service
QP Quantum Parallelism
QPE Quantum Phase Estimation
QR Quantum Register
QSA Quantum Search Algorithm
QWSA Quantum Weighted Sum Algorithm
RN Relay Node
SDMA Spatial-Division Multiple Access
SISO Soft-Input Soft-Output
SN Source Node
SR Self-Repair
SSH Slow Sub-carrier Hopping
UF Utility Function
UV Utility Vector
VoIP Voice over Internet Protocol
VANET Vehicular Ad-hoc Network
WMHN Wireless Multihop Networks
WSN Wireless Sensor Network
XOR Exclusive OR gate

LIST OF SYMBOLS
C Pareto Completion Ratio
CL Overall Route Power Dissipation
CD Overall Route Delay
f(x) Utility Vector of the x-th route
fk (x, i) Lower Comparison Function Between the

x-th and the i-th Routes
G Grover’s QSA Operator
g(x, i) Dominance Operator Function Between the

x-th and the i-th Routes
H Quantum Hadamard Gate
LdB Path Loss per Individual Link in dB

LQD,max
BBHT BBHT-QSA time-out in G Applications

LQD,max
DHA DHA time-out in G Applications

LT max
NDQIO,tot Upper Complexity (Execution Time)

Bound of the NDQIO Algorithm
LT ,min
NDQIO,tot Lower Complexity (Execution Time)

Bound of the NDQIO Algorithm

LPmax
NDQIO,tot Upper Power Consumption Bound of the

NDQIO Algorithm
LP,min
NDQIO,tot Lower Power Consumption Bound of the

NDQIO Algorithm
L tot,max
NDQO Upper Complexity Bound of the NDQO

Algorithm
L tot,min
NDQO Lower Complexity Bound of the NDQO

Algorithm
Lqr Length of a Quantum Register in qubits
λc Carrier Frequency
N Total Number of Legitimate Routes
O Grover’s QSA Quantum Oracle Gate
Pd Pareto Distance
Pe Bit Error Ratio
S Set of Legitimate Routes
Tn n-qubit Quantum Toffoli Gate
Uf Generic Quantum Unitary Operator

implementing the function f (x)
Ufk Quantum Unitary Operator implementing

the Comparison Operator fk (x, i)
Ug Quantum Unitary Operator implementing

the Dominance Operator g(x, i)
Ug′ Parallel Quantum Unitary Operator

implementing the Dominance
Operator g(x, i)

UG Quantum Unitary Operator for Parallel
Activation of Multiple Ug′ Operators

x Index of the Legitimate Route in the
Route List

|ψ〉 Quantum State ψ

I. INTRODUCTION
Wireless Multihop Networks (WMHNs) [1] facilitate both
direct and indirect communication between the source and
the destination nodes, since each WMHN node is capable of
relaying its message using a series of intermediate nodes to
reach its destination. Explicitly, this concept can be readily
applied to all networks ranging from Wireless Sensor Net-
works (WSNs) [2] and wireless ad-hoc networks [3] to smart
grid networks [4]. Furthermore, each WMHN node attempts
to optimize its performance in terms of different and often
conflicting Quality of Service (QoS) parameters, such as the
Bit Error Ratio (BER), the Packet Loss Ratio (PLR) and the
end-to-end delay, while having access to a restricted amount
of power. Therefore, optimal routing is essential for satisfying
the aforementioned QoS criteria. Nevertheless, as the number
of WMHN nodes involved escalates, the total number of
potential routes increases exponentially, turning the routing
optimization problem into a Non-deterministic Polynomial-
time hard (NP-hard) one [5], hence requiring sophisticated
heuristic methods. Let us now proceed by presenting the
related work carried out in the field of routing.

A. RELATED WORK
A plethora of single-objective optimization techniques
exist in the literature [6]–[15], each addressing different
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routing aspects. For instance, Zhu et al. [6] have
proposed a routing protocol that succeeds in minimizing the
energy consumption in WSNs by organizing the nodes using
Hausdorff clusters [16]. Additionally, Chen et al. [7] have
conceived a Hybrid Geographic Routing (HGR) scheme for
minimizing the total energy dissipation, while satisfying the
end-to-end delay constraints imposed. Abdulla et al. [8]
have maximized the lifetime of WSNs by introducing a
range of Hybrid Multihop Network (HYMN) parameters.
Furthermore, Al-Rabayah and Malaney [9] have designed a
hybrid routing protocol for minimizing the routing overhead
imposed for example by broken links in Vehicular Ad-hoc
Networks (VANETs). In a similar context, namely that
of the Aeronautical Ad-Hoc Networks (AAHN) [17],
Hoffmann et al. [10] proposed a routing scheme for AAHNs,
which employed a Genetic Algorithm (GA) [18] for the the
sake ofminimizing both the transmission delay and the packet
delivery ratio. Moving on to the concept of smart grids,
Li et al. [11] proposed a multicast routing protocol for
stabilizing a network of distributed energy generators.
Additionally, Shah et al. [12] improved the link quality of
the wireless sensors controlling a smart grid by employing
a distributed control algorithm for jointly optimizing the net-
work delay, the bandwidth usage and the network’s reliability.
Moreover, Canale et al. [13] conceived a joint routing and
resource allocation scheme for maximizing the reliability of
medium-voltage power-line networks.

On the other hand, the potential degradation of the routing
efficiency metrics can be mitigated by using a multi-objective
optimization approach [19] in the context of routing
problems, albeit at the expense of an increased complexity.
For this reason, several studies [20]–[23], involved this multi-
objective approach relying on near-optimal, evolutionary
methods for addressing the associated networking aspects.
To elaborate further, Yetgin et al. [20] have employed both the
Non-dominated Sort Genetic Algorithm II (NSGA-II) and the
Multi-Objective Differential Evolution (MODE) algorithm
for jointly optimizing both the energy dissipation and the end-
to-end delay, utilizing the concept of Pareto Optimality [19].
Camelo et al. [21] employed the NSGA-II for optimizing the
same QoS parameters both in the context of the Voice over
Internet Protocol (VoIP) and for file transfer in wireless mesh
networks. Moreover, a hybrid multi-objective evolutionary
algorithm has been employed by Martins et al. [22] for
addressing the so-called Dynamic Coverage and Connectivity
problem (DCCP) in WSNs exhibiting node failures.

The recent advances in quantum computing [24]–[36] and
quantum information theory [37]–[39] provide us with an
attractive framework of addressing NP-hard problems at a
full-search-based accuracy, despite imposing a reduced
complexity by exploiting the powerful concept of Quantum
Parallelism (QP) [40]. To elaborate further, Feynman [24]
proposed in 1981 a novel framework for simulating the
evolution of the quantum states. In the following year,
Benioff [25] proposed a technique of simulating quantum
systems on Turing machines. Several years later, the effect

of QP has been exploited by Deutch [26], who conceived an
algorithm, named after him as the Deutch’s Algorithm, for
determining whether a binary function f : {0, 1} → {0, 1}
has or has not one-to-one mapping by only using a single
call of the function. An extension of this algorithm, namely
the so-called Deutch-Jozsa Algorithm [27], was conceived
for determining whether a function f : {0, 1}n → {0, 1} is
balanced or constant. The Deutch-Jozsa Algorithm laid the
foundations for the development of the so-called Quantum
Oracle gates [41], which are quantum circuits implementing a
genericmapping function f : {0, 1}N → {0, 1}M and they are
capable of calculating all the pairs of possible inputs-outputs
of f using a single call of f by exploiting the QP.

Based on these gates, Grover [28] has proposed a
Quantum Search Algorithm (QSA), which has been shown
to be optimal by Zalka [42]. This QSA is capable of finding a
desired solution stored in an unsorted database by imposing
a low complexity, which is on the order of O(

√
N ), as long

as both the number of valid solutions and the solution to be
found are known to the optimization process. An even more
powerful extension of Grover’s QSA has been introduced
by Boyer et al. [29] in the form of the so-called
Boyer-Brassard-Høyer-Tapp QSA (BBHT-QSA), which is
applicable in the specific scenario, where the actual number
of valid solutions is unknown, whilst imposing the same order
of complexity, namely O(

√
N ). A further extension of the

BBHT-QSA has been conceived by Durr and Høyer [30],
where the Durr-Høyer Algorithm (DHA) is employed for
identifying the extreme values of an unsorted database, while
imposing a low complexity, which is on the order of O(

√
N ).

Subsequently, Malossini et al. [35] proposed the so-called
Quantum Genetic Optimization Algorithm (QGOA), which
constitutes a steady-state GA [43], in which the mating
process is enhanced by the DHA.

Furthermore, several contributions exist, which
exploit the properties of the Quantum Fourier Transforma-
tion (QFT) [40], [44]. In particular, Shor [31] has proposed
a quantum algorithm for addressing the prime integer factor-
ization problem at a complexity on the order of O(log (N )3).
Shor’s algorithm formed the basis for the concept of Quan-
tum Phase Estimation (QPE), which was proposed by
Cleve et al. [32] and allowed the estimation of the
phase of a specific quantum eigenstate. This innovation
led, in turn, to the concept of both Quantum Counting
Algorithm (QCA) [33] as well as to that of Quantum
Amplitude Estimation (QAE) [34]. Based on these concepts,
Brassard et al. [36] proposed the so-called Quantum Mean
Algorithm (QMA) for calculating the mean of values found in
an unsorted database at a reduced complexity. The milestones
of quantum computing are summarized in the timeline
of Fig. 1.

Several studies [5], [45]–[49] exist that invoke
quantum algorithms for addressing diverse high-complexity
telecommunications problems as an explicit benefit of the
complexity reduction offered by QP. To elaborate fur-
ther, Botsinis et al. [45] have introduced an extension of
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FIGURE 1. Timeline of quantum computing milestones.

the QMA algorithm, namely the Quantum Weighted Sum
Algorithm (QWSA), which was employed for Soft-Input
Soft-Output Multi-User Detection (SISO-MUD) in the con-
text of Code Division Multiple Access (CDMA) systems.
Additionally, the impact of premature termination of the
DHA iterations used forHard-Input Hard-Output Multi-User
Detection (HIHO-MUD) has been investigated by the same
authors [46] in the context of Spatial Division Multiple
Access (SDMA) systems, while an improved version of
this algorithm invoked for SISO-MUD has been proposed
by Botsinis et al. in [47] for Direct Sequence Spread-
ing (DSS) and Spatial-DivisionMultiple Access - Orthogonal
Frequency-Division Multiplexing (SDMA-OFDM) systems.
As for the multi-objective routing problem, to the best of the
authors’ knowledge, there exists only a single comprehensive
study by Alanis et al. [5] benefiting of the QP, where the
so-called Non-Dominated Quantum Optimization (NDQO)
algorithm has been introduced for jointly optimizing the

transmission route in terms of the achievable BER, the total
power dissipation and the end-to-end delay using the prin-
ciple of Pareto Optimality of evaluating the routes, while
imposing a complexity on the order of O(N ) and O(N

√
N )

in the best- and the worst-case scenario, respectively.
Apart from those benefiting from the QP, there are several

contributions [50]–[56], which use another realm of
parallelism, namely that of the Hardware Parallelism (HP),
for achieving a complexity reduction, while addressing the
routing problem. The complexity reduction offered by HP
has been mainly enabled through the use of Graphics Pro-
cessing Units (GPU) [57] architectures for general purpose
programming [58] apart from Central Processing
Units (CPU). As for the routing problem, Han et al. [50]
introduced a hybrid GPU-CPU concurrent framework for
routers, which offered a substantial complexity reduction in
the context of the global routing problem. Additionally, both
Mu et al. [51] and Zhao et al. [52] proposed their routing
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FIGURE 2. Types of processing; inspired by [45, Fig. 1].

algorithms, which were tailored for Internet Protocol (IP)
routers having GPU architectures. In a similar context,
namely that of the Travelling Salesman Problem (TSP),
Uchida et al. [54] conceived a parallel implementation
of the Ant Colony Optimization (ACO) algorithm, while
Cekmez et al. [55] deployed a parallel version of the GA,
both for addressing the TSP problem using GPUs.

B. CONTRIBUTIONS AND PAPER STRUCTURE
Based on the aforementioned contributions conceived
for routing problems, three popular types of process-
ing have been advocated - namely serial processing,
parallel processing relying on hardware parallelism and
quantum processing relying on quantum parallelism - as
portrayed in Fig. 2, which might be visualized for the sake

of simplicity using the paradigm1 of unlocking a specific
lock. In serial processing the full set of available keys has
to be checked sequentially for each keyhole to ascertain as
to whether they do or do not unlock the door. This type
of processing is referred to as ‘‘Pure Serial Processing’’
in Fig. 2. The employment of graphics processing units in
routing [51]–[55] has unveiled a new perspective, where all
the keys can be simultaneously inserted into identical
keyholes for unlocking the door; this type of process
is referred to as ‘‘Pure Parallel Processing’’ in Fig. 2.
Nevertheless, there are practical cases, where the parallel pro-
cesses have to be synchronized [50], [54], [55], leading to an

1We note that in Fig. 2 the keys symbolize the set of routes, while the
event of inserting a specific key in the keyhole represents processing the
corresponding route.
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inevitable decomposition of the task into a series of carefully
coordinated parallel steps. This type of processing is referred
to as ‘‘Hybrid Parallel-Serial Processing’’ in Fig. 2, where
the consecutive doors denote the decomposition of the
task. Subsequently, quantum processing has been brought
to the limelight, as a benefit of the advances in quantum
computing [24]–[36]. In fact, there are algorithms relying
solely on the philosophy of QP [26]–[28], [31], [33], which
are classified as ‘‘Pure Quantum Processing’’ in Fig. 2.
Explicitly, a ‘‘quantum’’ keyhole is represented as an elab-
orate single lock having multiple keyholes for portraying the
principles of the QP [41]. On the other hand, some other
quantum algorithms [5], [29], [30] decompose the overall task
into sequential sub-problems, which are individually handled
with the aid of the QP. This decomposition is inherently
necessary, since these algorithms involve the measurement
or observation operation [40], which terminates the quantum
processes by collapsing the effect of the QP [41]. This type
of processing is termed as ‘‘Hybrid Quantum-Serial Process-
ing’’ in Fig. 2. Additionally, some independent processes may
be simultaneously invoked for the sake of achieving either a
further complexity reduction by benefiting both from the QP
and from the HP, or a more coherent entanglement [41] of
the outputs of the independent processes. This specific case
is referred to as ‘‘Hybrid Parallel-Quantum Processing’’
in Fig. 2. Nevertheless, further decomposition of the overall
task into sequential steps may be inevitable due to the
measurement or observation operations that the task may
involve. Therefore, this latter type of processing involves a
synergy of all the potential processing types and it is hence
referred to as ‘‘Hybrid Parallel-Quantum-Serial Processing’’
in Fig. 2.

Returning to our multi-objective routing problem, namely
to the NDQO algorithm [5] - albeit near-optimal, when
compared to the full-search-based method - offers fruitful
ground for improvement, since it is classified as a ‘‘Hybrid
Quantum-Serial Processing’’ algorithm. This suggests that a
further reduction of its complexity is possible by exploiting
the potential synergies between the QP and the HP.
Furthermore, one of its features is that its complexity is on
the order of O(N ) [5]. Whilst this complexity increase is
indeedmuchmoremoderate than the exponentially escalating
Maximum Likelihood (ML) complexity, this linear complex-
ity increase may become prohibitive in the context of the
NDQO algorithm for high dimensionality problems, where
the total number of routes is excessively high [20]. Therefore,
with the goal of achieving a further complexity reduction,
we propose a novel quantum-assisted algorithm, namely the
Non-Dominated Quantum Iterative Optimization (NDQIO)
algorithm. Our contributions related to the latter algorithm
may be summarized as follows:
1) We have developed a novel framework both for

combining quantum unitary operators and for activat-
ing them in parallel, with the goal of achieving a further
reduction in the complexity by exploiting the synergies
between QP and HP.

2) The proposed NDQIO algorithm exploits this
parallelism with the aid of the algorithms
of [29] and [30] for finding the optimum of a multi-
objective routing problem in WMHNs. We have also
derived the algorithm’s upper and lower complexity
bounds.

3) We have further reduced the complexity of the NDQO
algorithm by introducing the novel element of elitism,
which allows the NDQIO algorithm to be terminated
once it concludes that the entire OPF has been
identified.

4) We have characterized the performance versus
complexity of the NDQIO algorithm and have
demonstrated that it achieves the full-search-based
optimal performance at a normalized complexity,
which is several orders of magnitude lower than that
of the NDQO algorithm.

The rest of this paper is organized as follows. In Section II,
we present the WMHN architecture along with the optimiza-
tion objectives considered, while in Section III we provide
an introduction to quantum-assisted optimization algorithms,
leading to a succinct characterization of the NDQO algo-
rithm. In Section IV, we present our parallel quantum oracle
design conceived for the NDQIO algorithm, followed by its
performance versus complexity trade-offs as well as by our
conclusions in Sections V and VI, respectively. We note that
a more detailed structure of this paper is portrayed in Fig. 3.
Notation: Throughout this paper, the lower (upper)

boldface letters represent vectors (matrices), while the
superscripts ()† and ()T denote the complex conjugate and
simple matrix or vector transposition, respectively.Moreover,
the upper case italic letters denote the transfer matrices of
quantum unitary operators. A single subscript in the quan-
tum register state is used for the global quantum registers
of the quantum circuit, whereas two subscripts, separated
by comma, are used for the local quantum registers. Addi-
tionally, in the discussion of the algorithms the notation
‘‘Step X .Y ’’ is used, in order to refer to the Y -th step of the
X -th algorithm.

II. SYSTEM OVERVIEW
We have adopted the network model presented in [5], where
we have considered the route’s overall Bit Error Ratio (BER),
its overall power dissipation as well as its overall delay as
our Utility Functions (UF). To elaborate further, the WMHN
examined is a fully interconnected network and its coverage
area is a (100 × 100) m2 square block, with the source
node (SN) and the destination node (DN) located at the
block’s opposite corners. The relay node (RN) locations
within the block are random, obeying a uniform distribution.
We have imposed the plausible constraint that the routes must
not form loops, i.e. each RN is only visited once, hence avoid-
ing potentially excessive power consumption or PLR [20].
An 8-nodeWMHN topology is exemplified in Fig. 4.We have
assumed that the WMHN is coordinated by a cluster head
node, which is the DN relying on a quantum computer.
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FIGURE 3. The structure of this paper.

FIGURE 4. The 8-node WMHN topology considered [5]. The WMHN is
controlled by a cluster head (DN), which is assumed to be in
possession of a quantum computer.

Moreover, we have assumed that the nodes transmit
their messages using QPSK modulation over uncorrelated
Rayleigh channels [59] using the classic Decode-and-
Forward (DF) scheme [60]. Hence, for the calculation of
overall BER,we have utilized the two stageBinary Symmetric

Channel (BSC) method presented in [5], where each link’s
BER Pe versus the Bit-Energy-to-Noise Ratio Eb/N0 is given
by the formula [59]:

Pe =
1
2

(
1−

√
Eb/N0

Eb/N0 + 1

)
, (1)

while the overall BER is given by the recursive formula of [5]:

Pe,12 = Pe,1 + Pe,2 − 2Pe,1Pe,2. (2)

As for the interference experienced at each receiver node, its
power N0 is assumed to obey a randomGaussian distribution,
owing to the Central Limit Theorem (CLT) [59], with its
mean set to -90 dBm and its standard deviation to 10 dB.
Still referring to the physical layer, each node transmits at
a power set to PTx = 20 dBm. The transmitted signal
experiences path-loss obeying the inverse-power path-loss
model [59], having a path-loss exponent of α = 3, which is
formulated as:

LdB = PTx − PRx = 10α log
(
4πd
λc

)
[dB], (3)

where LdB is the path-loss of an individual link, d corresponds
to the distance between the nodes and λc is the
carrier’s wavelength. The carrier frequency was set
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to fc = 1.8 GHz, corresponding to a wavelength of
λc ∼= 0.167 m. Then, assuming that the power dissipation
of signal processing is negligible compared to the power
dissipation owing to the path-loss, the route’s total power
dissipation becomes proportional to the linear-domain sum
of its constituent path-losses.

TABLE 1. WMHN specification parameters [5].

Moving on to the network layer, for the sake of simplicity,
we have assumed that all the messages are forwarded by the
RNs instantly as soon as they are decoded. Therefore, the
route’s overall delay is quantified in terms of the number of
hops incorporated by a specific route. The network specifi-
cations are summarized on Table 1. Finally, the optimization
Utility Vector (UV) f(x) is defined as [5]:

f(x) =
[
Pe,x ,CLx ,CDx

]
, (4)

where Pe,x , CLx and CDx correspond to the overall BER,
the overall power dissipation and the overall delay of the
x-th route, respectively. Therefore, we can characterize the
routes based on their respective UVs using the principle of
Pareto Optimality, which is incorporated by Defs. 1, 2 and 3.
Definition 1 (Pareto Dominance [20]): Aparticular route-

solution x1 associatedwith theUV f(x1) = [f1(x1), . . . , fn(x1)]
dominates another route-solution x2 having the UV f(x2) =
[f1(x2), . . . , fn(x2)] if and only if f(x1) � f(x2), i.e. we have
fi(x1) < fi(x2) ∀ i ∈ {1, . . . , n}, where n corresponds to the
number of optimization objectives. The operator � is often
referred to as dominance operator.
Definition 2 (Pareto Optimality [20]): Aparticular route-

solution x1 associatedwith theUV f(x1) = [f1(x1), . . . , fn(x1)]
is said to be Pareto optimal if and only
if @ x : f(x) � f(x1), i.e. there exists no solution
that dominates x1. The Pareto Optimal route-solutions form
a front that is often referred to as the Optimal Pareto
Front (OPF).
Definition 3 (Pareto Distance [5]): Given the set S of all

the eligible route-solutions and a particular route-solution xi
belonging to the set xi ∈ S, its distance from the OPF is
defined in terms of the probability Pd of being dominated by
the other solutions of S. This is formally formulated as [5]:

Pd (xi) =
#{f(xj) � f(xi), ∀j, i ∈ {1, . . . , |S|}}

|S|
, (5)

where the operator #{·} quantifies the number of times that
the condition in the curly brackets is satisfied, while the

operator |·| represents the total number of elements of a set
and f(·) is the UF vector defined in (4).

III. FUNDAMENTALS OF QUANTUM COMPUTING
A. QUANTUM COMPUTING POSTULATES
Before proceeding with the portrayal of our proposed
algorithm, we will briefly present the main concepts of quan-
tum computing. The state |φ〉 of a quantum system is given
by [41]:

|φ〉 =

M−1∑
i=0

ϕi |φi〉 = (φ0, φ0, . . . , φM−1)
T , (6)

where the complex valued ϕi represents the amplitude of
the basis state |φi〉 and there is a total of 2M basis states.
The squared modulus |ϕi|2 of the amplitude ϕi corresponds
to the probability of observing the quantum system in the
basis state |φi〉, and hence it should satisfy the normalization
constraint of:

M−1∑
i=0

|ϕi|
2
= 1. (7)

Based on Eq. (6), it is possible to form a Quantum
Register (QR) based on individual quantum bits (qubits). For
example, assuming a QR consisting of Lqr = 2 qubits, the
quantum system state |ψ〉 could be expressed as the tensor
product of the states |ψi〉 of the individual qubits as [40]:

|ψ〉 = |ψ1〉1 |ψ2〉2 (8)

= (α |0〉1 + β |1〉1) (γ |0〉2 + δ |1〉2) (9)

= αγ︸︷︷︸
a00

|00〉 + αδ︸︷︷︸
a01

|01〉 + βγ︸︷︷︸
a10

|10〉 + βδ︸︷︷︸
a11

|11〉, (10)

where the amplitudes aij should satisfy the normalization
constraint of Eq. (7).

The main challenge of quantum computing is that the
amplitudes ϕi of Eq. (6) are not accessible for an exter-
nal observer of the quantum system. This challenge stems
from Heisenberg’s Uncertainty Principle [41]. Explicitly, an
observation of the quantum system would result in collapsing
the superimposed state into the observable one, which would
inherently be one of its basis states [45].

Furthermore, the evolution of the state |ψ〉 of a quantum
system versus time may be characterized by a set of unitary
transformations, which is formally expressed as:

|ψ〉 = U |φ〉, (11)

where U is a unitary matrix, i.e. we have U−1 = U† and U†

corresponds to the complex conjugate matrix of U . In fact,
there exists a vast range of these operators, which are often
referred to as quantum gates. One of the most common gates
is the Hadamard gate H , which has a single-qubit transfer
matrix of:

H =
1
√
2

[
1 1
1 −1

]
, (12)
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that is mainly used for mapping the ground state |0〉 to the
superposition of the states |0〉 and |1〉. Hence, its effect is
formally formulated as [40]:

|0〉
H
−→

1
√
2
(|0〉 + |1〉) ≡ |+〉, (13)

|1〉
H
−→

1
√
2
(|0〉 − |1〉) ≡ |−〉, (14)

where the states |+〉 and |−〉 are the so-called Bell states [41].
Apart from the above simple base-line operations,

it is possible to define gates that perform controlled
operations. A commonly used gate of this type is the
Controlled-NOT (CNOT) gate [40]. It performs the Exclusive
OR (XOR) operation of its two inputs storing the resultant
output on the second qubit or QR. Thus, it may be viewed
as the quantum counterpart of the classic XOR gate and its
function is formulated as:

|c〉 |t〉
CNOT
−→ |c〉 |c⊕ t〉, (15)

where the state |c〉 is often referred to as the control register,
while |t〉 is the target register. Explicitly, the CNOT gate
belongs to a broader family of quantum gates, which are com-
monly known as unitary operators Uf [41] and implement a
specific binary function f : {0, 1, . . . ,N −1} → {0, 1} in the
quantum domain. A generic quantum circuit of these gates
is shown in Fig. 5; due to the superposition of states of the
QR |x〉1 it is possible to carry out the function’s calculations
in parallel [61], which is the main advantage of quantum
computing. Their operation is formulated as:

|x〉1 |0〉2
Uf
−→|x〉1 |0⊕ f (x)〉2 ≡ |x〉1 |f (x)〉2 . (16)

We note that the subscripts of the ‘‘ket’’ operators are used
for distinguishing the two inputs of the QRs. These unitary
operators are the main constituent component of the so-called
Quantum Oracles2 [41]. Therefore, the QR |x〉1 is often
referred to as aQuantum Index Register (QIR), since it points
to the indices of the input states, while the second input is
commonly known as the Oracle Workspace (OW), since all
the Oracle operations are carried out in this QR.

FIGURE 5. Quantum circuit implementing a specific function f (x);
the subscripts of the ‘‘kets’’ are used in order to distinguish the
two input QRs and the hashed line denotes the entanglement
between the two output QRs.

2Quantum Oracles are quantum gates that implement a binary function
f (x) : {0, . . . ,N − 1} → {0, 1} and are employed in QSAs for identifying
the valid solutions, i.e. the solutions where we have f (x) = δ, with δ being
the value sought by the QSA. They then ‘‘mark’’ these valid solutions by
flipping the sign of the respective state [5]. Inherently, the unitary operator
Uf is invoked inside the oracle gate to implement the aforementioned binary
function f (x).

A notable property of the unitary operators is the quantum
entanglement [41] of the output states. To elaborate further,
if we assume that the QIR is in the superposition of all states,
i.e. we have |x〉1 =

∑
i |i〉/
√
N , where N is the total number

of input states considered, the output of the operator Uf , con-
sidering both the QIR and the OW,will be in the superposition
of composite states, i.e. we have:

|x〉1 |f (x)〉2 =
1
√
N

∑
i

|i〉1 |f (i)〉2. (17)

Eq. (17) suggests that if a partial measurement [45] is carried
out concerning the QIR, then the state of the OWwill also col-
lapse to the state | f (i)〉2, assuming the observable state |i〉1 in
the QIR. A direct consequence of the quantum entanglement
is the so-called no-cloning theorem [41], which dictates that it
is physically infeasible to clone the state of a quantum system.

B. QUANTUM SEARCH ALGORITHMS
Having defined the framework, in which quantum systems
function, let us now proceed by presenting three famous
QSAs, which form the basis of our NDQIO algorithm, along
with the NDQO algorithm, which we will use for benchmark-
ing the NDQIO algorithm.

1) GROVER’S QSA
Grover’s QSA [28] is based on the assumption of considering
a search problem, where both the number of solutions t and
the actual solution value of f (x) = δ are known to the
optimization process. Assuming N = 2n potential solutions
in total, its function relies on the so-called Grover operator
G = HP0HO, where H corresponds to a n-qubit Hadamard
Gate, P0 is a quantum gate that simply flips the phase of all
the states except for the phase of |0〉⊗n state, i.e. we have

|x〉
P0
→−|x〉 if |x〉 6= |0〉⊗n, while O is a quantum oracle gate,

which implements a function f (x) and ‘‘marks’’ the solutions
in the database, in other words the states |x〉 that satisfy the
condition f (x) = δ, by flipping their phase, i.e we have
|x〉

O
→−|x〉 if and only if f (x) = δ. The rest of the states are

left intact. The G operator attains the property of increasing
the modulus of the valid solutions amplitudes, while reducing
the modulus of the non-valid ones [28]. The input state |y〉 is
initialized to the equally initialized superimposition of all the
legitimate states, i.e. we have:

|y〉 =
1
√
N

N−1∑
x=0

|x〉, (18)

and the G operator is applied L consecutive times. Then, the
output state

∣∣y′〉 = GL |y〉 is measured and the observable
state |xs〉 corresponding to the search problem solution is
exported. The optimal number of G applications is set to

Lopt =
⌊
π
4

√
N
t

⌋
[29], yielding a probability Ps of success-

fully spotting a solution in the database, which is equal to
Ps = sin2

[
(2Lopt + 1)θ

]
, where θ = arcsin

√
(t/N ).
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Since theO operator invokes the function f (x) once, Grover’s
QSA imposes a complexity on the order of O(

√
(N/t)) [28].

Algorithm 1 Improved Boyer-Brassard-Høyer-TappQSA [5]
1: Import reference route index i.
2: Set m← 1, λ← 6/5 and LQDBBHT ← 0, LCDBBHT ← 0.
3: Choose L uniformly from the set {0, . . . , bmc}.
4: Apply theG operator L times starting from the initial state
|ψ〉 in (18), resulting in the final state

∣∣xf 〉 = GL |ψ〉.
5: Observe

∣∣xf 〉 in the QD and obtain |j〉.
6: Compute g(i, j) in the CD.
7: Update LCDBBHT ← LCDBBHT + 1 and LQDBBHT ← LQDBBHT + L.

8: if g(i, j) = δ = 1 or LQDBBHT ≥ L
QD, max
BBHT then

9: Set xs← j, output xs, LCDBBHT , L
QD
BBHT and exit.

10: else
11: Set m← min

{
λm,
√
N
}
.

12: if m =
√
N then

13: Choose L uniformly from the set {1, . . . , bmc} and
go to step 4.

14: else
15: Go to step 3.
16: end if
17: end if

2) BOYER-BRASSARD-HØYER-TAPP QSA
The Boyer-Brassard-Høyer-Tapp QSA (BBHT-QSA) [29] is
the extension of Grover’s QSA addressing search problems,
in which the actual number of solutions t is unknown to the
optimization process. Therefore, this QSA, which is formally
stated in Alg. 1, can be readily applied in our search problem,
where the number of route solutions is unknown. For this
reason, we will define the function g(x, i) implemented by
the unitary operator Ug as follows [5]:

g(x, i) ≡
3⋂

k=1

fk (x, i) =

{
1, f(x) � f(i)
0, f(x) � f(i),

(19)

where fk (x, i) corresponds to the lower-comparison-check
operator between the x-th and the i-th route-solutions in
terms of the k-th objective of optimization problem, which
is defined as:

fk (x, i) =

{
1, fk (x) < fk (i)
0, fk (x) ≥ fk (i).

(20)

It is clear from Eq. (19) that the function g(x, i) implements
the dominance operator. Consequently, we may invoke the
BBHT-QSA for identifying a route-solution that dominates
the reference route having the index i. Since the number
of valid route-solutions is unknown, a different method is
employed for the selection of the number L of G applica-
tions. To elaborate further, the number L of G applications
is selected randomly from a uniform distribution spanning
across a specific range, which is expanded, when the observed
state | j〉 is not a valid route-solution, i.e. if we have g(j, i) = 0.

This range is initialized to the set {0, bmc}, where we
have m = 1, and its specific range expansion relies on
increasing the upper bound m by a factor of λ = 6/5 [29]
up to a maximum of m =

√
N [29], corresponding to the

case where we only have t = 1 valid route-solution [28].
Therefore, given the reference route-solution i, the
BBHT-QSA selects the number L of G applications from
the initial range and employs the GL operator to the initial
state |y〉, as defined in Eq. (18). If a route-solution, dom-
inating the reference solution, is found, the BBHT-QSA is
terminated and exports the route-solution found. Otherwise,
the range is consistently expanded by the factor of λ = 6/5
and the process is repeated until a valid route-solution is
identified. A further limitation is imposed on the maximum
total number LQD,max

BBHT of G applications as a second termina-
tion condition, which is set to LQD,max

BBHT = 4.5
√
N , providing

∼100% probability of successfully identifying a valid route-
solution [29], as long as there exists one. This yields a
complexity on the order ofO(

√
N ) in terms ofUg activations.

Finally, in the special case, where no valid route-solutions
exist, i.e. the reference route-solution is itself the optimal one,
the BBHT-QSA complexity, considering the evaluation of the
function g(x, i) both in theQuantum Domain (QD) and in the
Classic Domain (CD), is bounded by [5]:

L tot,min
BBHT = 4.5

√
N + logλ

(
4.5

λ− 1
m

√
N+1

)
+1, (21)

L tot,max
BBHT = 10

√
N + logλ

√
N − 1, (22)

where again we have λ = 6/5 [29].

3) DURR-HØYER ALGORITHM
The Durr-Høyer Algorithm (DHA) [30] constitutes a
further extension to the BBHT-QSA [29] and it is applicable
to either the minimization or the maximization of
single-objective problems. In this case, neither the number t
of valid solutions nor the valid solution value δ itself is known
to the optimization process. This algorithm is directly appli-
cable to our scenario, since it can be employed for identifying
the specific route-solutions that are globally optimal in terms
of a single-objective UF and, thus, they are Pareto optimal.
We note that the DHA is formally stated in Alg. 2.

Initially, the DHA randomly selects a reference
route-solution from the entire set of all the legitimate ones
and activates a BBHT-QSA process for the sake of finding
a route-solution that exhibits a lower UF value than that
of the reference route. If the route-solution exported by the
BBHT-QSA process is a valid route-solution, the refer-
ence route is confirmed to the output of the BBHT-QSA
process and a new BBHT-QSA process is activated. This
procedure is repeated until the BBHT-QSA process fails to
export a valid route-solution or the maximum affordable
number LQDDHA of QD queries in the QD queries is exhausted,
which is set to LQDDHA = 22.5

√
N [30], yielding a ∼100%

probability of successfully identifying the globally optimal
route-solution.
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Algorithm 2 Improved Durr-Høyer Algorithm [47]
1: Choose a reference index 0 ≤ y′ ≤ N −1 randomly from

the uniform distribution.
2: Set LQDDHA← 0.
3: repeat
4: Set y← y′.
5: Define the quantum oracle implementing the binary

function fk (x, i) of Eq. (20) and set i←y.
6: Invoke the BBHT-QSAprocess of Alg. 1with input the

function fk (x, y) and output the index y′, using LQDBBHT
CFEs.

7: Set LQDDHA← LQDDHA + L
QD
BBHT .

8: until fk (y′, y) 6= 1 or LQDDHA ≥
⌈
22.5
√
N
⌉

9: Output y and exit.

Algorithm 3 Non-Dominated Quantum Optimization
Algorithm [5]
1: Initialize solution flag vector, F , to zero.
2: Initialize OPF = ∅.
3: for i = 0 to N − 1 do
4: if Fi = 0 then
5: if |OPF | > Lmax

BBHT or @j ∈ OPF : f(j) � f(i) then
6: Set l ← i.
7: repeat
8: Set k ← l.
9: Define the oracle function g(k, x) from (19).
10: Invoke the BBHT-QSA with input g(k, x) and

output xs.
11: Set l ← xs and Fk ← 1.
12: until f(l) � f(k).
13: Append xk into the OPF .
14: end if
15: end if
16: end for
17: Output the OPF and exit.

4) NON-DOMINATED QUANTUM OPTIMIZATION
The Non-Dominated Quantum Optimization (NDQO)
algorithm [5] is formally stated in Alg. 3 and it con-
stitutes an extension to the DHA algorithm conceived
for multi-objective problems. The NDQO algorithm is
based on the reference route-solution update process of
the DHA. However, the unitary operator Ug [5], which is
defined in Eq. (19), implementing the dominance operator
is employed instead of the single lower-comparison oper-
ator Ufk , which is defined in Eq. (20). Moreover, a vec-
tor F of binary flags is used for distinguishing whether a
specific route has or has not been already processed. Ini-
tially, the NDQO algorithm opts for using the first route-
solution of the route index as the reference route, which
is the direct route. This is carried out by modifying its
respective flag value to 1, i.e. by assigning F1 ← 1,
and it then activates a BBHT-QSA process for searching

for a route-solution that dominates the reference route.
Should the BBHT-QSA successfully output a valid
route-solution, the reference route is forwarded to the
BBHT-QSA output, while simultaneously the output route-
solution flag value is set to 1, and then a new BBHT-QSA
process is activated. This process is repeated until an invalid
route-solution is output by the BBHT-QSA, indicating that
the reference route is itself a Pareto optimal and, hence, it
is appended to the OPF set. We note that this process is
referred to as the BBHT-QSA chain. Subsequently, the next
route of the route-solutions list is checked as to whether it
has already either been processed or been dominated by the
hitherto generated OPF. If outcome of this check is false, a
new BBHT-QSA chain is activated with this route being the
reference route. Otherwise, the route is disregarded and the
next route is checked. This procedure is repeated until all the
legitimate routes have been checked, imposing a complexity
quantified in terms ofUg activations, which is on the order of
O(N ) and of O(N

√
N ) in the best- and worst-case scenario,

respectively [5]. More specifically, the lower and the upper
bounds of the complexity imposed are equal to [5]:

Lmin
NDQO = 4.5

√
N + logλ

(
4.5
λ− 1
m

√
N + 1

)
+ N , (23)

Lmax
NDQO = 9.5N

√
N + N logλ

(√
N
)
+ 9.125N + 22.5

√
N ,

(24)

where Lmin
NDQO and Lmax

NDQO correspond to the complexity
imposed in the best- and worst-case scenario, respectively.

IV. DESIGN METHODOLOGY
A. PARALLEL ORACLE GATE DESIGN
To the best of our knowledge, no parallel activation scheme
has been proposed for quantum unitary operators. Therefore,
the quantum circuit of the Ug operator in [5] should activate
serially theUfk operators and then calculate the intersection of
their outcomes according to Eq. (19). Explicitly, an intersec-
tion operation of multiple inputs, such as that of Eq. (19), can
be implemented in the QD using a quantum Toffoli Gate [41].
Bearing this observation in mind, a possible implementa-
tion of the Ug operator is shown in Fig. 6, where both the
Quantum Control Register (QCR) and the Quantum Index
Register (QIR) outputs of each Ufk operators are fed forward
to the next Ufk+1 operator. Moreover, each Ufk operator is
provided with a single-qubit Local Oracle Workspace (LOW)
register, where the outcome of each comparison is stored.
Then, the states of all the LOW registers along with a Global
Oracle Workspace (GOW) register – which is initialized
to the |t〉 state – are fed into the Toffoli gate, which then
performs the intersection operation. Explicitly, the n-qubit
Toffoli gate T [62] has a transfer matrix of [41]:

Tn =

 I2n−2 02n−2,1 02n−2,1
01,2n−2 0 1
01,2n−2 1 0

, (25)
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FIGURE 6. Serial implementation of the domincance operator used in
NDQO for three optimization objectives.

where the I2n−1 sub-matrix denotes the a [(2n − 2) ×
(2n − 2)]-element identity matrix and the vector
01,2n−1 = 0T2n−2,1 contains (2n − 2) zero elements. Since
in our scenario, each operator Ufk has a single-qubit LOW
output and the GOW is also comprised of a single qubit, we
will use a 4-qubit Toffoli gate, i.e. we have n = 4 qubits
in Eq. (25).

FIGURE 7. Parallel implementation of the domincance operator used in
NDQIO for three optimization objectives.

Moving on to the parallel implementation of the dominance
operator, we propose the employment of the unitary oper-
ator Ug′ , which relies on the quantum circuit implemented
in Fig. 7. The main difference lies in the use of CNOT gates
right before the input of the unitary operators Ufk that imple-
ment the low-comparison-check, compared to that of Fig. 6,
where the QIR and QCR outputs of the unitary operator Ufk
are fed forward to the Ufk+1 unitary operator. These CNOT
gates are invoked for entangling the states of both the Global
Quantum Control Register (GQCR) and theGlobal Quantum
Index Register (GQIR) with the states of respective local QRs
for creating composite states. Their employment is essential
for forming the composite state of:

|ψ〉outLOW =

N−1∑
x=0

|f1(x, i)〉1,3 |f2(x, i)〉2,3 |f3(x, i)〉3,3 (26)

at the LOW outputs. In the absence of entanglement, the
respective LOW output state will be:

∣∣ψ ′〉outLOW =

N−1∑
x1=0

N−1∑
x2=0

N−1∑
x3=0

|f1(x1, i)〉1,3

|f2(x2, i)〉2,3 |f3(x3, i)〉3,3, (27)

making the implementation of the dominance operator
infeasible.

With the entanglement achieved by employing a series of
CNOT gates, the Ug′ operator has an identical effect to that
of the Ug operator, hence we have:

N−1∑
x=0

|i〉1 |x〉2 |t〉3
Ug,Ug′
−→

N−1∑
x=0

|i〉1 |x〉2 |t ⊕ g(x, i)〉3 . (28)

Consequently, if we set the GOW register to the state |0〉3,
the Ug′ operator would return the outcome of the dominance
operator and store it in the GOW output. Otherwise, if the
GOW register is set to the state |−〉3, then the Ug′ opera-
tor operates identically to the Quantum Oracle Gate O of
Grover’s QSA, i.e. by flipping the phase of those specific
route-solutions, which are associated with g(x, i) = 1. Fur-
thermore, the main improvement of the new design relies
on the fact that we have achieved the parallel activation of
the unitary operators Ufk . Therefore, should we assume that
a single Ug activation corresponds to a single CFE both in
terms of its execution time and of its power consumption,
a single Ug′ operator activation would then correspond to
a single CFE in terms of its power consumption and
1/33 CFEs in terms of its execution time. We note that for the
sake of simplicity, we have assumed that both the series of
CNOT gates and the Toffoli gate consume negligible power
compared to the Ufk operators and that their response time
is also negligible. Having presented our new parallel oracle
design, let us now proceed with our detailed discussions of
the NDQIO algorithm in the next section.

B. NON-DOMINATED QUANTUM
ITERATIVE OPTIMIZATION
Our ultimate target is to reduce the lower bound of the
complexity below the linear complexity dependence on the
search-space size, yielding a further reduction of the aver-
age complexity. Therefore, we have revisited the framework
of [5] with the objective of conceiving a hybrid design relying
both on hardware parallelism and on quantum parallelism.
More specifically, we will introduce a low-complexity ini-
tialization process for identifying the globally optimal routes,
along with a sophisticated quantum-assisted process for find-
ing new and potentially optimal routes. Furthermore, we have
introduced an OPF Self-Repair (SR) process, which discards
the suboptimal routes that have been erroneously included
in the OPF, hence providing the NDQIO with an improved
accuracy compared to the near-optimal NDQO algorithm’s
accuracy [5].

The NDQIO algorithm is formally stated in Alg. 4, where
each distinct block is annotated using a comment starting
with the character ‘‘#’’. In a nutshell, the NDQIO algorithm
initializes the OPF to an empty set during Step 4.1 and then
invokes the initialization process of Steps 4.3-6, where the
DHA is activated as many times as the number of opti-
mization objectives for the sake of identifying the globally
optimal routes in terms of each objective. Subsequently, the

3Should K optimization objectives be considered, the execution time of
the Ug′ operator will be equal to 1/K CFEs.
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Algorithm 4 Non-Dominated Quantum Iterative
Optimization Algorithm
1: Set OPF ← ∅.
2: # Initialization Process:
3: for k = 1 to K do
4: Invoke the DHA of Alg. 2 with input function fk (x, i),

where i is the index of a random legitimate route, and
output xs.

5: Append xs to the OPF .
6: end for
7: # Iterative Step:
8: repeat
9: # Backward BBHT-QSA Step:
10: Set F ← 0 and T ← 0.
11: repeat
12: Invoke the BBHT of Alg. 1 with input G(x,OPF)

and output xs.
13: if G(xs,OPF) = 1 then
14: Set F ← 2 and T ← 1.
15: else
16: Set F ← F + 1.
17: end if
18: until F = 2
19: if T = 1 then
20: # BBHT-QSA Chain:
21: repeat
22: Set i← xs.
23: Define the oracle function g(x, i) from (19).
24: Invoke the BBHT-QSA of of Alg. 1 with input

g′(x, i) and output xs.
25: until f(xs) � f(i).
26: # Self-Repair Mechanism:
27: Discard the routes from the OPF that are dominated

by the i-th one.
28: Append i to the OPF.
29: end if
30: until T = 0.
31: Export the OPF and exit.

iterative part of the algorithm is activated. At each iteration
of Steps 4.8-30, the algorithm initially searches for a route,
which is not dominated by the hitherto generated OPF using
the BBHT-QSA process of Step 4.12. Should it succeed in
identifying an appropriate route, it activates the BBHT-QSA
chain of Steps 4.20-25, in the same fashion as the one in the
NDQO algorithm. After the completion of the chain, the OPF
Self-Repair (OPF-SR) process is invoked in Steps 4.27-28,
where the routes of the OPF generated so far are checked to
ascertain, whether they are dominated by the optimal route
identified by the current iteration of the BBHT-QSA chain
of Steps 4.20-25. The algorithm terminates and outputs the
OPF, when the BBHT-QSA fails to identify a new potentially
optimal route as formally defined by the condition of
Step 4.30, concluding that there exists no other Pareto

optimal route. Last but not least, we note that all the single-
objective comparisons as well as the dominance operator
activation have been carried out using the same quantum
unitary operators as those used for forming the QSAs quan-
tum oracles; the only difference relies upon the fact that
in the OW register the input is initialized to the |0〉 state.
Therefore, in constrast to the NDQO algorithm [5], in the
NDQIO algorithm there is no distinction between the
CD- and the QD-CFEs, since they are exclusively undertaken
in the QD. Let us now proceed with our detailed discussions
on each distinct sub-process of the NDQIO algorithm.

1) INITIALIZATION PROCESS
In the NDQO algorithm, which is formally stated in Alg. 3,
no initialization process has been used; instead, the algo-
rithm considers by default the first index of the legitimate
route list as the first reference route and then initiates a
BBHT-QSA chain. Despite the reduction offered by the hard-
ware parallelization, the power consumption remains the
same as that of the NDQO algorithm, as we demonstrated
in Subsection IV-A. In fact, it is possible to achieve the same
reduction in the power consumption aswell by using theDHA
for identifying the globally optimal routes in terms of each
objective. To elaborate further, a single unitary operator Ufk ,
which is defined in Eq. (20), is used for implementing a
comparison in terms of the k-th objective, yielding a reduc-
tion in the power consumption per DHA activation, which is
proportional to the number of optimization objectives. In fact,
assuming K optimization objectives, this power consumption
reduction results in identifying K OPF routes, while consum-
ing the same amount of power and time as in a single NDQO
BBHT-QSA chain, which would only identify a single OPF
route. More explicitly, a single DHA activation imposes the
same amount execution time compared as a single NDQO
BBHT-QSA chain, while it simultaneously is also offering
a power consumption reduction by a factor of 1/K . We note
that in our case study we have consideredK = 3 optimization
objectives according to Eq. (4). However, the application of
the DHA is limited to identifying only globally optimal routes
in terms of a single objective and not the Pareto optimal
routes in general. Hence, the number of DHA activations
is strictly limited to a maximum K routes. Additionally, we
note that we have used an improved version of the DHA,
which has been initially proposed in [47], and terminates the
algorithm as soon as the BBHT-QSA fails to spot a legitimate
solution, while exhausting its maximum affordable number of
G applications.

2) SEEKING THE NEXT OPTIMAL ROUTE
After the completion of the initialization process we will
acquire an OPF consisting of k OPF routes, where we have
k ∈ {1, 2, . . . ,K }. The maximum value of k = K cor-
responds to the case, where each objective is optimized by
finding different routes, while the minimum value of k = 1
corresponds to the case, where only a single optimal route-
solution exists, which is globally optimal for all the objectives
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considered. In the latter case, based on Def. 2, the true OPF
will solely be comprised of this route. Nevertheless, since
the BBHT-QSA and, inherently, the DHA exhibit a small
but non-negligible probability of failing to identify a valid
solution [29], the algorithm has to ensure that there are no
unidentified Pareto optimal routes.

In the NDQIO algorithm, we have avoided the serial pro-
cessing of the routes by employing a BBHT-QSA for finding
the next potentially Pareto optimal route, hence achieving
some complexity reduction. To elaborate further, our algo-
rithm searches for route-solutions, which are not dominated
by the OPF generated so far. For this reason, we can use our
novel operator Ug′ for checking as to whether a route is or
is not dominated by a reference route. This is realized by
performing a swap between the states stored in the GQCR
and the GQIR resulting in the state |t ⊕ g(i, x)〉3 at the GOW
output of the Ug′ operator. In this case, we initialize the
GOW input to the state |t〉3 ← |1〉3, while the respective
GOW output becomes |1⊕ g(i, x)〉, resulting in invoking
the non-dominance operator. Explicitly, based on Eq. (19)
the binary function g(i, x) returns whether the i-th route
does or does not dominate the x-th route and the operation
[1⊕ g(i, x)] corresponds to the binary complement4 of this
function, implementing the non-dominance operator. Addi-
tionally, since the OPF is comprised of multiple routes, we
have to use multiple Ug′ operators, each having a different
OPF route as the reference route. Subsequently, using the
novel framework presented in the Subsection IV-A, we can
still achieve the parallel activation of the Ug′ operators by
employing the series of CNOT gates for entangling the LQIRs
state with the state of the GQIR at the input of the Ug′
operators along with a (k + 1)-qubit Toffoli Gate, assuming
having k reference routes, as portrayed in Fig. 8. As for the
complexity imposed by a single activation of theUG operator,
it may be deemed to impose 1/k CFEs5 in the execution
time domain due to the parallel activation of the Ug′ unitary
operators, which in turn activates the Ufk unitary operators
in parallel. In the power consumption domain, a single acti-
vation of the UG operator imposes as many CFEs as the
number of reference routes considered, which corresponds to
the number of OPF routes that have been generated so far.

Moving on to the BBHT-QSA for identifying a specific
route, which potentially belongs to the OPF, the UG operator
of Fig. 8 is used with its GOW register initialized to the state
|−〉k+2 and a BBHT-QSA is invoked with the OPF routes
generated so far as reference ones, as stated in Step 4.4.
By contrast, should the GOW register be initialized to the
state |0〉k+2, the operator UG returns the non-dominance
outcome at the output of the GOW register. Hence, we will
utilize this initialization for performing the CD checks of
the BBHT-QSA. Again, the BBHT-QSA exhibits a small
but non-negligible probability of failing to identify a valid

4It returns whether the x-th route is dominated by the i-th one.
5We note that we have assumed that a single CFE corresponds to the

activation of the serial unitary operator Ug of the NDQO algorithm.

FIGURE 8. Quantum circuit of the BBHT-QSA unitary operator UG used in
the BBHT-QSA Oracle of Step 4.12 . Each activation of the UG operator
would impose 1/3 CFEs in execution time domain due to the parallel
activation of the unitary operators Ug′ as well as the parallel activation of
the Ufk

operators within each Ug′ . In the power consumption domain,
a single activation of the UG imposes as many CFEs as the number of
reference routes considered, i.e. the number OPF routes that have been
so far generated.

solution [29], while exhausting the maximum number of
G applications. We have mitigated this effect by repeating
the BBHT-QSA process for one more additional iteration
(Steps 4.16 and 4.18), for the sake of avoiding the premature
termination of the NDQIO algorithm. Explicitly, an erro-
neous timeout would terminate unexpectedly the NDQIO
algorithm, leading to its inability to identify the entire OPF.
After identifying a potential OPF route, we may employ a
BBHT-QSA chain (Steps 4.20-26) as in the NDQIO algo-
rithm. The only difference lies in the employment of the Ug′
operator in the respective quantum Oracle gate, which pro-
vides the sub-process with a complexity reduction by a factor
of 1/K in the execution time domain, albeit no reduction in
the power consumption domain. Let us now proceed with the
detailed description of the OPF-SR process.

3) SELF-REPAIR PROCESS
Searching for the next potential route guarantees that
the exported route xs,2 will not be dominated by the
OPF generated so far, as ensured by the check performed
in Step 4.13. Consequently, the route xs,1 identified by the
BBHT-QSA chain in conjunction with the initial reference
route xs,2 being as optimal, will not be dominated either based
on Def. 1. However, the event when xs,1 may dominate one or
more routes of the OPF is not mutually excluded due to the
dominance operator being non-commutative. Consequently,
there may exist suboptimal routes that have been erroneously
included into the OPF, owing to a BBHT-QSA failure. Hence,
wemay readily checkwhether there is anyOPF route from the
previous iterations, which is dominated by the identified OPF
route of the current iteration, and discard it from the OPF.
This check may be implemented using the Ug∗ operator. The
global registers ought to be initialized to:

|i〉1←
∣∣xs,2〉1 , |x〉2← ∣∣OPFj〉2 , |t〉3← |0〉3 . (29)

Then, we only have to observe the state of the GOW register
output. This process is repeated for all the routes belonging
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FIGURE 9. (a) Exemplified architecture for a 5-node WMHN, and (b) its optimization process using the NDQIO algorithm. In this example only two UFs are
used per route-solution, for the sake of simplicity. The routes that belong to the OPF are marked by a square marker (�), the routes that initiate either a
BBHT-QSA chain or a DHA activation are marked with a triangle (4), while the route-solutions output by each DHA or BBHT-QSA chain iteration, which
are used as the new reference routes in the next iteration, are marked with a circle (◦). Moreover, the indices of the routes as shown in Table 2 are
marked in (b). Finally, the circural arrows in (b) denote that a BBHT-QSA has been activated with the respective route as its input, yet in the absence of
potential route-solutions a random route is output by the BBHT-QSA, classifying the input route-solution as being Pareto Optimal (Step 4.25). The
portrayed solution is not a unique one; different solutions could be derived depending on the DHA or BBHT-QSA chain’s intermediate outcomes.

TABLE 2. Routes along with their UFs and indices for the exemplified 5-node WMHN of Fig. 9 [5].

to the OPF, as it was formally stated in the loop of Step 4.28.
This repair process ensures that the NDQIO algorithm per-
forms at its best attainable accuracy in terms the average
Pareto distance E[Pd ], as long as the entire true OPF has been
identified. Moving on to the consideration of the computa-
tional complexity imposed by the OPF-SR process, assuming
that the multiple DHA activations provide us with k OPF
routes and that the total number iterations carried out by the
algorithm is equal to NOPF , then in the first iteration we will
have to invoke the Ug′ operator k times, while in the second
iteration it will be activated (k + 1) times and so on, yielding
a total number of CFEs that is equal to:

LTSR =
1
K

NOPF−1∑
i=k

i =
1
2K

(N 2
OPF − k

2
− NOPF + k), (30)

LPSR =
NOPF−1∑
i=k

i =
1
2
(N 2

OPF − k
2
− NOPF + k), (31)

where LTSR and LPSR correspond to the complexity imposed
in the execution time and the power consumption,
respectively.

V. A DETAILED 5-NODE EXAMPLE
Having provided all the necessary discussions about the
NDQIO algorithm’s sub-processes, let us now provide an
illustrative example for portraying the main concepts of our
proposed algorithm. The exemplified WMHN structure is
shown in Fig. 9(a), where the same 5-node WMHN structure
is utilized as the one in [5]. Following a similar approach to
that of [5], we will solely utilize two UFs for each route-
solution, namely the BER and the CL, for facilitating the
graphical representation of the route-solutions. Furthermore,
the solution vectors and their respective indices, which cor-
respond to all the legitimate routes, are presented in Table 2,
while their graphical representation is shown in Fig. 9(b).

Additionally, we present all the necessary steps undertaken
by the NDQIO algorithm in Fig. 9(b), where the route-
solution transitions realized by the DHA or the BBHT-QSA
chain activations are represented with the aid of arrows.
Distinct colors have been used for representing the different
sub-processes. In particular, as noted in the top legend of 9(b),
the first and the second DHA activation transitions are
annotated with red and blue arrows, respectively, while the
BW-BBHT-QSA process and the BBHT-QSA chain
transitions are indicated by green dashed and straight arrows,
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respectively. Moreover, the routes that belong to the OPF
are marked by a square marker (�), the routes that initiate
either a BBHT-QSA chain or a DHA activation are marked
by a triangle (4), while the route-solutions output by each
DHA or BBHT-QSA chain iteration, which are used as the
new reference routes in the next iteration, are marked by a
circle (◦). Still referring to Fig. 9(b), the boundaries of the
space, where valid route-solutions lie, are annotated by the
long- and short-dashed lines. Let us now proceed with a more
detailed description of the NDQIO algorithm’s operation.
We note that in terms of this tutorial example, the reader is
assumed to be familiar with the concepts of the BBHT-QSA
process.

Initially, the NDQIO algorithm sets theOPF set containing
the optimal route-solution indices to an empty set, as formally
stated in Step 4.1. Then, the algorithm’s initialization process
takes place (Steps 4.3–6), where the global minima are deter-
mined in terms of each optimization objective. To elaborate
further, in this tutorial example we try to minimize both the
BER and the CL, for the sake of simplicity, and, thus, we
have K = 2 in Step 4.3. Therefore, we will activate the
DHA process (Step 4.4) of Alg. 2 twice, i.e. once for each
objective. Firstly, a DHA process is activated for minimizing
the route’s BER. More particularly, according to Step 2.1,
a random route is chosen as the initial reference one and, then,
a BBHT-QSA process is activated seeking a potential route-
solution, which exhibits a lower BER. Let us assume that the
initial reference route chosen is the one with index i = 3,
i.e. the first DHA has chosen the route {1 3 5} according to
Table 2, which is annotated with the red triangle (4) marker
in Fig. 9(b). The arguments of the valid route-solutions of
the BBHT-QSA process lie below the red horizontal long-
and short-dashed line that crosses the argument of the route
with index i = 3 in Fig. 9(b). Let us assume that the
BBHT-QSA process outputs the route with index i = 6, i.e.
the route {1 2 4 5} according to Table 2, which is marked
with a red circle in Fig. 9(b).

Observe in Table 2 that the BER exhibited by the route
with index i = 6 is lower than that exhibited by the reference
route with index i = 3, i.e. we have Pe,6 < Pe,3 and, thus,
after the completion of the BBHT-QSA process invoked by
the DHA in Step 2.5, the reference route will be updated to
the BBHT-QSA output (Steps 2.7-8). Then, a new
BBHT-QSA process is activated searching for a route with a
lower BER that that of the reference one. Observe in Fig. 9(b)
that the valid route-solutions lie below the red horizontal
long- and short-dashed line that crosses the argument of the
route with index i = 6. Therefore, the valid route-solution
indices belong to the set {2, 4, 7, 8, 9} and the BBHT-QSA
process is capable of identifying any of them with equal
probability. Let us assume that the output of the BBHT-QSA
process is the route with index i = 9, i.e. we have y′ = 6
in Step 2.5, and the reference route is updated, since we
have Pe,9 < Pe,6 according to Table 2. Still referring to
Fig. 9(b), observe that the new reference route is indeed a
Pareto optimal one. Nevertheless, the DHA process is unable

to identify the route’s property, since it is solely seeking a
route with the minimum BER. Therefore, a new BBHT-QSA
process is activated with the aid of the updated reference
route, in which the only eligible output is the route with
index i = 7, i.e. the route {1 3 2 5}. Hence, assuming that
the BBHT-QSA process of Step 2.6 successfully identifies
the latter route, the reference route is once again updated
(Steps 27-8) and a new BBHT-QSA process is activated.
Observe in Fig. 9(b) that the new reference route is indeed an
optimal one in terms of its BER, hence, the BBHT-QSA will
exhaust the maximum number of affordable G applications
in the absence of valid solutions. Since in the design of the
improved DHA of Alg. 2 we have set a single BBHT-QSA
time-out as the termination condition (Steps 2.8, 12), the
DHA exits and identifies the route associated with i = 7 as
the optimal one in terms of its BER performance. Then, the
NDQIO algorithm appends the DHA output to the OPF set
in Step 4.5.

Then, a new DHA process is activated in search of the
route, which is optimal in terms of CL. A new reference
route is selected randomly among all the legitimate ones
according to Step 2.1. At this stage, let us assume that the
route associated with the index i = 16 is eventually selected,
i.e. the route {1 4 3 2 5}, which is marked in Fig. 9(b) with
the blue triangular marker. Then, a BBHT-QSA process is
activated seeking a route exhibiting a lower CL than that of
the reference route (Step 2.5). Observe in Fig. 9(b) that the
valid route-solutions lie at the left-hand side of the vetrical
blue long- and short-dashed line crossing the reference route
and, in particular, the valid route-solutions have indices that
belong to the set {7, 9, 14}. Assuming that the BBHT-QSA
process outputs the route associated with the index i = 14,
i.e. the route {1 3 4 2 5}, a new BBHT-QSA process is
activated by updating the reference route, since the output
route exhibits a lowerCL than the reference one (Steps 2.7-8).
The new reference route is the optimal one in terms of its
CL performance, as portrayed in Fig. 9(b). Consequently,
the BBHT-QSA process activated with this route being its
input will exhaust the maximum number of affordable
G applications, resulting in the input route’s identification as
the optimal one through Steps 2.7-12. After this operation, the
DHA exits and outputs the identified optimal route, which
is then incorporated into the OPF by the NDQIO algorithm
(Step 4.5).

After the completion of the second6 DHA, the initializa-
tion process ends and the iterative process (Steps 4.8-30)
is activated. In the first part (Steps 4.10-18) of the NDQIO
algorithm’s iterative process, which is referred to as the
Backward BBHT-QSA Step (BW-BBHT) in Alg. 4,
a BBHT-QSA process is activated, which seeks a specific
route-solution that is not dominated by the hitherto generated
OPF and thus may potentially be a Pareto-optimal one.
Explicitly, the arguments of the valid route-solutions lie in

6Assuming K optimization objectives, the initialization process ends right
after the completion of the K -th DHA.
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the area containing the center of the axes and bounded by the
green long- and short-dashed lines, as portrayed in Fig. 9(b),
where it is visible that the only eligible route-solution is the
route associated with the index i = 9. We note that the
BBHT-QSA process exhibits a slight probability of fail-
ing in terms of identifying a valid solution.7 For this rea-
son, this sub-process of the NDQIO algorithm has been
designed to repeat the BBHT-QSA process in case of an
unsuccessful search (Steps 4.15-18), which would prema-
turely terminate the NDQIO algorithm, hence substantially
reducing the probability of an unsuccessful search. At this
stage, let us assume that the BBHT-QSA process is able
to identify the legitimate route-solution, which is no other
than the route having the index i = 9, i.e. the route
{1 4 2 5}.
Sequentially, the BBHT-QSA chain process of

Steps 4.20-25 is activated in the same fashion as in the NDQO
algorithm [5], with the reference route being the output of
the BW-BBHT-QSA sub-process, which is the route with
index i = 9. The BBHT-QSA chain process seeks a route-
solution, which dominates the reference one. Nevertheless,
observe in Fig. 9(b) that the initial reference route of the
BBHT-QSA chain process is indeed a Pareto optimal route,
i.e. there exists no route that dominates it. Therefore, the
BBHT-QSA chain will activate only a single BBHT-QSA
process, which will exhaust the maximum number of afford-
able G applications in the absence of valid route-solutions
and hence will terminate the chain, according to condition
of Step 4.25. Subsequently, the OPF self-repair sub-process
of Step 4.27 is invoked, where the hitherto generated OPF
routes are checked as to whether they are dominated by the
Pareto optimal route-solution spotted by the BBHT-QSA
chain. Should any of the route-solutions be dominated by
the BBHT-QSA chain’s output route-solution, they would be
disregarded, since they would be suboptimal. In our example,
the route-solution with index i = 9 does not dominate any of
the already generated OPF routes according to Fig. 9(b) and
thus the OPF remains intact.

After the completion of the OPF self-repair sub-process,
the BBHT-QSA output route-solution is incorporated into the
OPF and the iterative process of Steps 4.8-30 is repeated.
Moreover, it is visible from Fig. 9(b) that the OPF, which
is comprised of the routes-solutions associated with
indices {7, 9, 14} is identical to the TOPF. Hence, we con-
clude that the NDQIO algorithm has identified the entire
TOPF. However, the NDQIO algorithm has no knowledge of
this fact at this stage. By contrast, the BW-BBHT-QSA sub-
process of Steps 4.10-18 is once again activated, where both
the BBHT-QSA processes invoked by the NDQIO algorithm
will exhaust the maximum number of G applications in the
absence of valid route-solutions. This double time-out pro-
cess would signal to theNDQIO algorithm that the entire OPF
has been identified. Finally, the NDQIO algorithm exports the
OPF identified and then exits. We note that we have made no

7This occurs when this solution is present in the examined database.

mentioning of the NDQIO algorithm complexity, which is the
subject of our discussions in the next section.

VI. COMPUTATIONAL ACCURACY VERSUS
COMPLEXITY DISCUSSIONS
In this section, we will characterize our novel algorithm both
in terms of its computational complexity and its accuracy.
As benchmarking algorithms, we will employ the quantum-
assisted NDQO algorithm of [5], and the Brute-Force (BF)
method, since it was demonstrated in [5] that the NDQO
outperforms both the NSGA-II and the ACO algorithm in
terms of its accuracy at the complexity [5]. We note that the
formal declaration of the BF method is shown in Alg. 5 [5].
Let us now proceed with quantifying the complexity imposed
by the NDQIO algorithm.

Algorithm 5 Brute-Force Method [5]
1: Initialize OPF = ∅.
2: for i = 0 to N − 1 do
3: Set f ← 0
4: if @j ∈ OPF : f(j) � f(i) then
5: for k = 0 to N − 1 do
6: if f(k) � f(i) then
7: Set f ← 1 and terminate inner loop.
8: end if
9: end for
10: if f = 0 then
11: Append i into the OPF .
12: end if
13: end if
14: end for
15: Output the OPF and exit.

A. NDQIO COMPLEXITY
In contrast to the NDQO algorithm [5], which is presented
in Alg. 3, we will characterize the complexity imposed by
the NDQIO algorithm, which is presented in Alg. 4, both
in terms of its execution time and its power consumption.
Since these parameters depend on the hardware used, we
will normalize them to the specific execution time and the
power consumption required for a single Ug operator, which
is defined in Eq. (19), respectively. We note that due to this
normalization process, the normalized execution time and
power consumption of the NDQO will be identical. Hence,
relying on the assumption that the operators {Ufk }

K
k=1, defined

in Eq. (20), impose the same execution time and power
consumption irrespective of k , we may derive upper and the
lower bounds of the NDQIO algorithm by examining both
the worst- and the best-case scenarios considered in [5] for
the NDQO algorithm, respectively. As far as the BF method
is concerned, the execution time and the power consumption
are identical in terms of CFEs, since hardware parallelism is
not used. Hence, for these two extreme cases, the respective
upper and lower bounds of the BF method are quantified in
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terms of CFEs as follows [5]:

Lmax
BF = N 2

+

N−1∑
i=0

i =
3
2
N 2
−

1
2
N = O(N 2), (32)

Lmin
BF = 2N − 1 = O(N ). (33)

Let us now proceed with characterizing the NDQIO algo-
rithm. For its lower bound, we will assume a scenario, where
a single Pareto-Optimal route exists, namely the direct route
and all the activated BBHT-QSA processes impose the min-
imum possible number of CFEs. Explicitly, they impose
Lmin
BBHT CFEs as defined in Eq. (21). Let us assume that

during the initialization all the DHA processes, which are
activated in Step 4.4, have their reference route initialized to
the direct one in Step 2.1. Then, their first invoked BBHT-
QSA process formulated in Alg. 1 will exhaust the maximum
affordable number of G applications in the absence of valid
route-solutions. This results in terminating the respective
DHA process of Alg. 2, hence imposing a complexity of:

Lmin
NDQIO,init = Lmin

BBHT + 1

= 4.5
√
N + logλ

(
4.5
λ− 1
m

√
N + 1

)
+ 2

= O(
√
N ) (34)

in terms of the number of Ufk activations, where the unitary
operators Ufk are defined in Eq. (20). We note that the
first DHA process of Step 4.4, appends the direct route to
the OPF. Therefore, if we take into consideration that the
each Ufk activation imposes 1/K CFEs in both domains and
that K DHA processes are activated during the initialization
process of Alg. 4, the complexity imposed by the NDQIO
initialization process in both domains is equal to:

LT ,min
NDQIO,init = Lmin

NDQIO,init , (35)

LP,min
NDQIO,init = Lmin

NDQIO,init . (36)

Subsequently, the iterative process of Alg. 4 is activated.
Nevertheless, since there exist no routes that are not domi-
nated by the direct one, the BBHT-QSA process of Alg. 1 that
seeks a new potentially optimal route will reach its time-out
twice and exit, hence imposing a complexity of:

Lmin
NDQIO,iter = 2(Lmin

BBHT + 1)

= 9
√
N + 2 logλ

(
4.5
λ− 1
m

√
N + 1

)
+ 4

= O(
√
N ) (37)

in terms of Ug′ activations. Thus, the respective execution
time and power consumption imposed by the NDQIO iter-
ative process becomes:

LT ,min
NDQIO,iter =

1
K
Lmin
NDQIO,iter , (38)

LP,min
NDQIO,iter = Lmin

NDQIO,iter . (39)

The SR process of Steps 4.27-28 will not be activated,
since no OPF route has been identified by the the BBHT-QSA

process, which is invoked at Step 4.12. Therefore, the total
execution time imposed by the NDQIO algorithm is derived
by adding up Eqs. (35) as well as (38) and the result is shown
in (50), as shown at the top of the next page. Equivalently, the
total power consumption imposed by the NDQIO algorithm is
derived by adding up Eqs. (36) as well as (39) and the result is
shown in (51), as shown at the top of the next page. Observe
in Eqs. (50) and (51) that the minimum execution time and
power consumption imposed by the NDQIO algorithm in
both domains is on the order of O(

√
N ).

As for the upper bound, wewill consider the case, where all
the routes are Pareto-Optimal and the BBHT-QSA processes
impose the maximum possible complexity of Lmax

BBHT , as quan-
tified in Eq. (22). Under this assumption, each DHA process
imposes the maximum possible number of Ufk activations,
when it activates precisely five BBHT-QSA chains, since we
have:

4LQD,max
BBHT <22.5

√
N<5LQD,max

BBHT , (40)

where LQD,max
BBHT = 5.5

√
N − 1 [5] corresponds to the max-

imum QD complexity in terms of Ufk activations imposed
by a single BBHT-QSA activation. Therefore, the maximum
complexity Lmax

DHA imposed by the DHA is equal to:

Lmax
DHA = 5(LBBHT + 1) = 50

√
N + 5 logλ

(√
N
)
. (41)

Consequently, the maximum execution time and power con-
sumption imposed by the initialization process is equal to:

LT ,max
NDQIO,init = K

1
K
Lmax
DHA = 50

√
N + 5 logλ

(√
N
)
, (42)

LP,max
NDQIO,init = K

1
K
Lmax
DHA = 50

√
N + 5 logλ

(√
N
)
, (43)

which was quantified as a function of the number of
CFEs, resulting in an OPF constituted by exactly K routes.
Moving on to the NDQIO iterative process (Steps 4.8-30),
we will assume that the BBHT-QSA searching for a new
potentially optimal route, fails during the initial activation
but succeeds during the second one in identifying a valid
route-solution. Furthermore, since all the routes are optimal,
the BBHT-QSA chain will activate a single BBHT-QSA,
which in turn exhausts the maximum affordable number of
QD-CFEs, in the absence of valid solutions. Therefore,
during each iteration precisely 3 BBHT-QSA processes will
be activated. Explicitly, the complexity-dependent power
consumption imposed by the BBHT-QSA that seeks a new
potential route increases as the number of iterations increases,
which is a consequence of increasing in the number of OPF
routes used as reference routes. Hence, the maximum total
time execution and power consumption imposed by this pro-
cess of Steps 4.10-19 is equal to:

LT ,max
NDQIO,BW =

1
K

N∑
k=K

[2(Lmax
BBHT + 1)]

=
N − K
K

[
10
√
N + log λ(

√
N )
]
, (44)
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LT ,min
NDQIO,tot =

K + 2
K

[
4.5
√
N + logλ

(
4.5

λ− 1
m

√
N + 1

)
+ 2

]
= O(
√
N ), (50)

LP,min
NDQIO,tot = 3

[
4.5
√
N + logλ

(
4.5

λ− 1
m

√
N + 1

)
+ 2

]
= O(
√
N ), (51)

LT ,max
NDQIO,tot =

2N + 3K − 1
K

[
10
√
N + logλ

(√
N
)]
+
N 2
− K 2

− N + K
2K

= O(N 2), (52)

LP,max
NDQIO,tot =

(
N 2
− K 2

+ N − K + 4
) [

10
√
N + logλ

(√
N
)]
+
N 2
− K 2

− N + K
2

= O(N 2
√
N ). (53)

LP,max
NDQIO,BW =

N∑
k=K

[2k(Lmax
BBHT + 1)]

=

(
N 2
− K 2

)[
10
√
N + log λ(

√
N )
]
, (45)

as a function of the number of CFEs, respectively, while
that imposed by the BBHT-QSA chains of Steps 421-25 is
equal to:

LT ,max
NDQIO,chain =

1
K

N−1∑
k=K

(Lmax
BBHT + 1)

=
N − K − 1

K

[
10
√
N + log λ(

√
N )
]
, (46)

LP,max
NDQIO,chain =

N−1∑
k=K

(Lmax
BBHT + 1)

= (N − K − 1)
[
10
√
N + log λ(

√
N )
]
, (47)

respectively. Subsequently, the OPF-SR process of
Steps 4.25-39 will be activated precisely (N − K ) times,
imposing the execution time and the power consumption
quantified in Eqs. (30) and (31), respectively, upon substi-
tuting NOPF = N and k = K , hence we have:

LT ,max
NDQIO,SR =

1
K

N−1∑
i=K

i =
1
2K

(N 2
− K 2

− N + K ), (48)

LP,max
NDQIO,SR =

N−1∑
i=K

i =
1
2
(N 2
− K 2

− N + K ), (49)

respectively. Following a similar approach to the lower
bound derivation, the execution time upper bound imposed
by the NDQIO algorithm is derived by adding together
Eqs. (42), (44), (46) and (48) and the result of their addition
is shown in Eq. (52), as shown at the top of this page.
Equivalently, the power consumption upper bound is given
by Eq. (53), as shown at the top of this page, stemming
from the addition of Eqs (43), (45), (47) and (49). Observe
in Eqs. (52) and (53) that the resultant execution time and
power consumption upper bounds are on the order of O(N 2)
and O(N 2

√
N ), respectively, which are higher than O(N

√
N )

imposed by the NDQO algorithm [5].
Explicitly, this additional cost is justified by the increased

elitism introduced by the NDQIO algorithm compared to the
NDQO algorithm. To elaborate further, the NDQIO algorithm

is capable of curtailing its operation upon detecting that there
are no unidentified OPF routes. In the worst-case scenario,
this imposes complexities on the orders of O(N

√
N ) and

O(N 2
√
N ) in the execution time and the power consumption

domains, respectively. By contrast, in the best case-scenario,
the lower bound is on the order of O(

√
N ) in both domains.

Additionally, the OPF-SR process imposes a complexity on
the order of O(N 2) in both domains in the worst-case sce-
nario, while no complexity is imposed in the best-case sit-
uation. Therefore, the complexity reduction achieved by the
NDQIO algorithm is inherently related to the ratio of the total
number NOPF of the OPF routes over the total number N of
the legitimate routes considered.

The average complexities of the NDQIO, of the
NDQO algorithms and of the BF method along with
their respective upper and lower bounds in the execution
time and in the power consumption domains are shown
in Figs. 10(a) and 10(b), respectively, for WMHNs consisting
of Nnodes = 2 to Nnodes = 9. We note that the respective
complexities of the NDQO algorithm and of the BF method
will be identical in both domains, since they do not rely on any
hardware parallelism techniques. As far as the upper bounds
of the execution time are concerned, observe in Fig. 10(a) that
the NDQIO algorithm involves the same order of complexity
as the NDQO algorithm, when considering Nnodes = 2 to
Nnodes = 7 nodes. This is justified by the fact that for
WMHNs having more than Nnodes = 7 nodes the term
predominantly governing the respective complexity is the
N 2 term, while for less densely populated WMHNs the
upper bound is governed by the term 20

K N
√
N based on

Eq. (52). Hence, the order of the execution time upper bound
of the NDQIO algorithm for Nnodes < 7 nodes is reduced
to O(N

√
N ), matching the order of the NDQO algorithm’s

upper bound. We note that in our case study we have assumed
three optimization objectives, i.e. we have K = 3. Moreover,
for WMHNs consisting of more than Nnodes = 7 nodes, we
observe in Fig. 10(a) that the NDQIO upper bound is lower
than those of both the naive-BF and of the BF methods due
to the complexity reduction by a factor of 1/K offered by
the hardware parallelism due to the employment of the Ug′
operator. On the other hand, the NDQIO upper bound of
the power consumption is definitely governed by the term
10N 2

√
N . Consequently, observe in Fig. 10(b) that it involves

a several orders of magnitude higher power consumption
than that of the benchmarking algorithms used for WMHNs
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FIGURE 10. Evolution of (a) execution time and (b) power consumption of the NDQIO algorithm compared to the respective values imposed by the
BF method of Alg. 5 and the NDQO algorithm. The mean complexity results have been averaged over 108 runs.

having more than Nnodes = 3 nodes. We note that for
WMHNs having either Nnodes = 3 or Nnodes = 2 nodes, the
NDQIO upper bound matches its lower bound, since in these
cases the total number of routes is less than that of the number
of objectives, which makes the iterative process unnecessary.

As for the NDQIO algorithm’s execution time lower
bound, observe in Fig. 10(a) that the NDQIO algorithm
provides some complexity reduction compared to the bench-
marking algorithms for WMHNs having Nnodes = 6. Explic-
itly, based on Eqs. (23) and (50), theNDQIO algorithm begins
to outperform the NDQO, when the total number of routes
is higher than Nroutes = 22 routes, yielding that the this
reduction becomes visible for WMHNs having Nnodes = 6,
where the total number of legitimate route is equal toN = 65.
In the power consumption domain, some complexity reduc-
tion is achieved for Nroutes > 134 routes, corresponding
to 7-node WMHNs, as shown in Fig. 10(b). Additionally,
the NDQIO lower bound indicates a complexity reduction
of several orders of magnitude, as demonstrated
in Figs. 10(a, b).

Moving on to the average complexity in terms of the
execution time, observe in Fig. 10(a) that the NDQIO algo-
rithm outperforms the NDQO for the WMHN sizes con-
sidered. In particular, for WMHNs having Nnodes = 4 and
Nnodes = 5 the execution time imposed by the NDQO
algorithm is almost twice as high as that of the NDQIO,
since the latter benefits from the hardware parallelism design.
However, specifically for 4-nodeWMHNs it imposes a higher
complexity than that of the BF method, since the NDQIO
does not benefit from the complexity reduction offered by
the QP for small search-spaces [5], solely relying on the
complexity reduction offered by the parallel oracle design. As
soon as the complexity reduction of the QP becomes signif-
icant, which occurs for WMHNs associated with Nnodes ≥ 6
nodes, the average complexity imposed by the NDQIO algo-
rithm becomes several orders of magnitude lower than that of
the NDQO algorithm and that of the BF method, as portrayed

in Fig. 10(a). We note that this complexity reduction becomes
more significant as the number of nodes increases, since the
complexity reduction offered by the quantum algorithms is
improved as the search-space is increased [5], [29], [45].
As for the NDQIO algorithm’s average power consumption,
observe in Fig. 10(b) that it outperforms the BF method for
WMHNs having Nnodes = 8 or more, while in the special
case, where we have Nnodes = 7 the two algorithms impose
a complexity on the same order. Compared to the
NDQO algorithm, the NDQIO imposes about 2.5 times the
respective complexity of the NDQO algorithm for WMHNs
having four to seven nodes, while for more nodes the
complexity imposed decays to about twice that of the
NDQO algorithm.

Therefore, we conclude that both the NDQO and the
NDQIO exhibit about the same order of power consump-
tion, while at the same time the NDQIO algorithm offers
a substantial execution time reduction of several orders of
magnitude. This observation unveils a trade-off. Explicitly,
based on Figs. 10(a, b) the NDQIO algorithm offers about ten
times lower complexity at the expense of consuming twice
the power compared to the NDQO, for WMHNs having eight
or more nodes. Explicitly, this additional 100% power con-
sumption overhead stems from the escalating number of OPF
routes included in the BW-BBHT-QSA process of Step 4.12.
Hence, every BW-BBHT-QSA iteration requires more power,
due to the inclusion of more reference routes, albeit this
is achieved without increasing the execution time required,
owing to the parallel activation of theU ′g operators. However,
we expect this 100% in power consumption overhead to
gradually diminish as the ratio of the number of OPF routes
over the total number of routes decreases due to the WMHN
becoming more densely populated by nodes. This trend can
be inferred from Figs. 10(a, b), by observing that both the
average execution time and the average power consumption
exhibit a larger distance from their respective upper bounds,
as the number of nodes in the WMHN increases.
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LTNDQIO =
1
2K

N 2
OPF +

1
K

(
LDHA + 2LBBHT −

1
2

)
NOPF + (1− K )

[
2
K
LBBHT +

1
2

]
, (54)

LPNDQIO =
(
1
2
+ LBBHT

)
N 2
OPF +

(
LDHA + LBBHT −

1
2

)
NOPF + (1− K )

(
LDHA + LBBHT +

1
2
K
)
. (55)

Furthermore, we may observe in Fig. 10(b) that the
average power consumptions of the NDQIO and
NDQO algorithms become similar, as the number of nodes
associated with the WMHN increases. Therefore, a critical
question arises, whether the NDQIO algorithmwould asymp-
totically approach the average power consumption of the
NDQO algorithm or whether it would outperform it. For this
reason, let us codunct a further case study, where we will
determine both the normalized execution time and the power
consumption of the algorithms in terms of the number NOPF
of the optimal routes belonging to the OPF.

As far as the NDQO algorithm is concerned, its
BBHT-QSA chains impose a complexity identical to that
of the DHA, since the BBHT-QSA chain constitutes an
extension of the DHA for multi-objective problems. Since
precisely NOPF BBHT-QSA chain processes will take place,
the resultant complexity imposed by this process is equal to:

LNDQO,chain = NOPFLDHA. (56)

For the serial parsing step, let us stipulate the further
assumtion that the routes initiating a BBHT-QSA chain are
distributed uniformly within the route-database and that - on
average - the routes require a dominance comparison with
half the routes of the hitherto generated OPF. Consequently,
a BBHT-QSA chain is invoked for every N/NOPF routes and
the resultant complexity becomes:

LNDQO,sp =
N

NOPF

NOPF∑
i=1

i
2
=
N (NOPF + 1)

4
. (57)

Hence, the overall complexity imposed by the
NDQO algorithm is derived by adding up Eqs. (56) and (57)
yielding:

LNDQO = NOPF

(
LDHA +

N
4

)
+
N
4
. (58)

Since the DHA and inherently the BBHT-QSA chain impose
a complexity on the order of O(

√
N ), the NDQO complexity

will be on the order of O(NOPFN ), based on Eq. (58). As for
the algorithm’s normalized execution time and power con-
sumption, they will be identical to the complexity imposed,
since the NDQO algorithm does not involve hardware
paralellism.

Let us now proceed by characterizing the average nor-
malized time execution and power consumption imposed by
the NDQIO algorithm. The NDQIO algorithm invokes the
DHA K times, once per objective, plus (NOPF − K ) times a
BBHT-QSA chain for the rest of the optimal routes, yielding

a normalized execution time and a power consuption of:

LTNDQIO,chain =
NOPF
K

LDHA, (59)

LPNDQIO,chain = (NOPF + 1− K )LDHA, (60)

respectively. We note that the terms LTNDQIO,chain and
LPNDQIO,chain consider the execution time and the power
consumption, respectively, which are imposed by both the
BBHT-QSA chain and the initialization process. Addition-
ally, the execution time and the power consumption imposed
by these processes is on the order of O(NOPF

√
N ).

Subsequently, let us consider the worst-case scenario for
the backward-oriented BBHT-QSA process, where two
BBHT-QSA search processes are activated, yielding an
unsuccessful output from the first, whilst the second succeeds
in identifying a potentially optimal route. This process is
activated (NOPF − K + 1) times, resulting in an execution
time and a power consumption equal to:

LTNDQIO,BW =
1
K

NOPF∑
i=K

(2LBBHT ),

=
2 (NOPF − K + 1)

K
LBBHT , (61)

LPNDQIO,BW =
NOPF∑
i=K

(2iLBBHT ),

=

(
N 2
OPF − K

2
+ K + NOPF

)
LBBHT , (62)

respectively. Therefore, since the BBHT-QSA complexity
is on the order of O(

√
N ), the normalized execution time

and the power consumption of the backward BBHT-QSA
process is on the order of O(NOPF

√
N ) and O(N 2

OPF

√
N ),

respectively. As for the SR process, the execution time
and power consumption imposed have been derived in
Eqs. (30) and (31), respectively. Hence, the overall execu-
tion time imposed by the NDQIO algorithm is derived in
Eq. (54), as shown at the top of this page, by adding together
Eqs. (30), (59) and (61). Similarly, the overall power con-
sumption is shown in Eq. (55), as shown at the top of this
page, as a result of the addition of Eqs. (31), (60) and (62).

Observe in Eqs. (54) that the amount of the overall nor-
malized execution time and that of the normalized power
consumption imposed by the NDQIO algorithm are on the
order of O(NOPF

√
N ) and of O(N 2

OPF

√
N ), respectively, as

opposed to those imposed by the NDQO, which are both on
the order of O(NOPFN ). Hence, a further investigation on the
order of the number NOPF of optimal routes in terms of the
total number N of legitimate should be carried out. For this
reason, let us assume that all the QD processes impose the
maximum possible complexity, i.e. we set LDHA = Lmax

DHA
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FIGURE 11. Normalized execution time and power consumption
boundaries, where the NDQIO algorithm outperforms the NDQO one. The
average number NOPF of optimal routes based on our simulation setup is
portrayed with the black squares WMHNs consisting of 5 until 12 nodes.
The results have been averaged over 108 runs.

and LBBHT = Lmax
BBHT , as defined in Eqs. (41) as well as (22)

and investigate the number of optimal routes for which the
NDQIO algorithm succeds in outperforming the NDQO one,
where we have:

LNDQO > LTNDQIO, (63)

LNDQO > LPNDQIO, (64)

for the normalized execution time and for the power
consumption, respectively. The solution of Eq. (63) for the
normalized time execution time is portrayed in Fig. 11 using
a blue line. Observe that the boundary is constant and equal to
unity, demonstrating that the condition of Eq. (63) is satisfied
for every NOPF in the range of 1 ≤ NOPF ≤ N . Hence,
the NDQIO algorithm outperforms the NDQO in terms of
their normalized power consumtpion regardless of the num-
ber N of the WMHN nodes and of the number NOPF of
Pareto-optimal routes, which is verified in Fig. 10(a). On the
other hand, the corresponding normalized power consump-
tion boundary is shown in Fig. 11 by the red line. Hence,
the latter is then compared to the average number E [NOPF ]
of Pareto-optimal routes, which were exported from our
WMHN routing problem for WMHNs having between
five and twelve nodes, in order to ascertain whether they are
lower than the respective bound. In fact, observe in Fig. 11
that the average number of optimal routes lies above that
corresponding to the power consumption bound for WMHNs
having up to 11 nodes. However, there is a crossover in Fig. 11
between the normalized power consumption and the average
number of OPF routes for the 12 nodes, indicating that the
NDQIO algorithm will eventually outperform the NDQO in
terms of the normalized power consumption.

B. NDQIO COMPUTATIONAL ACCURACY PERFORMANCE
Having characterized the NDQIO algorithm in terms of its
complexity imposed and its power consumption, let us now
examine the algorithm’s performance in terms of its Average
Pareto Distance E[Pd ] and the Average Pareto Completion

Ratio E[C]. Assuming that the optimal route indices form the
set OPF , the aforementioned accuracy metrics are defined
as [5]:

E[Pd ] =
∑

x∈OPF

Pd (x)
|OPF |

, (65)

E[C] = E
[
|OPF | − |OPFe|
|TOPF |

]
, (66)

where the set OPFe contains the suboptimal routes contained
in the OPF set, the set TOPF contains the truly optimal
routes and Pd (x) corresponds to the Pareto distance of the
x-th route as defined in Eq. (5). The latter metric corresponds
to the specific portion of the TOPF identified by the respec-
tive optimization method.

Let us now describe the evaluation process used for the
NDQIO algorithm. When using a similar approach to that
involved for the NDQO algorithm, the iterative process does
not necessarily impose the same number of CFEs, due to the
stochastic nature of the BBHT-QSA [29]. Hence the evalua-
tion process will be invoked each time a route is appended
to the OPF. This event occurs right after the initialization
process and after the completion of the iterative process, i.e.
right after Steps 4.6 and 4.33, respectively. However, since
the total number of CFEs required by both of the DHAs of
the initialization process, the BBHT-QSAs of the iterative
process are rather random processes, the evaluation process
will be activated at different complexity values. We will
assume that between these evaluation processes the metrics
remain constant, which results in a sum of step functions for
each simulation.We can then extract a continuous distribution
for these metrics versus the number of CFEs by performing
an averaging operation in each respective domain.

Thesemetrics are shown in Fig. 12 for 7-nodeWMHNs. As
far as the average Pareto distanceE[Pd ] is concerned, observe
in Figs. 12(a, b) that the NDQO algorithm performs optimally
for 502 CFEs in both complexity and power consumption
terms. It also exhibits an almost constant average Pareto
distanceE[Pd ], which is on the order of 10−8. By contrast, the
NDQIO algorithm exhibits an initial average Pareto distance
E[Pd ], which is on the order of 10−4 and is then reduced as
the number of the iterative NDQIO steps increases. To elab-
orate further, as the NDQIO algorithm invests in more CFEs,
i.e. more iterative steps, the number of identified OPF routes
increases and as the self-repair process is invoked at the end
of each iterative step, the probability of identifying an optimal
route that dominates a suboptimal one erroneously included
in the OPF increases. Consequently, the average Pareto dis-
tance E[Pd ] drops as the number of CFEs increases, as por-
trayed in Fig. 12(a, b). Additionally, observe in Fig. 12(a)
that the NDQIO algorithm outperforms the NDQO one after
about 1672 CFEs in the execution time domain and then
after a total of 2008 CFEs the E[Pd ] becomes equal to zero,
providing our algorithm with optimal performance in terms
of this metric. The same holds for the power consumption,
where the NDQIO algorithm outperforms the NDQO one
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FIGURE 12. Perfomance comparison between the NDQIO and the NDQO algorithms and for 7-node WMHNs in terms of the Average Pareto
Distance E [Pd ] (a, b) and Optimal Pareto Front Completion Ratio E [C ] (c, d) in vesus the execution time (a, c) and the
power consumption (b, d). The results have been averaged over 108 runs.

after about 8753 CFEs and then after a total of 13394 CFEs
the E[Pd ] becomes equal to zero, as portrayed in Fig 12(b).
Moving on to the NDQIO algorithm’s performance

appraised in terms of the average Pareto Completion
Ratio E[C], this is portrayed in Figs. 12(c, d). As far as the
execution time is concerned, observe in Fig. 12(c) theNDQIO
algorithm’s completion probability converges to unity after
2025 CFEs, as opposed the 6491 CFEs imposed by the
NDQO algorithm, yielding a further complexity reduction
of about 68.80%. By contrast, in the power consumption
domain, the NDQIO algorithm achieves a completion proba-
bility of unity after 14651 CFEs, which imposes an additional
power consumption of 125.71%, compared to the NDQO
algorithm. Moreover, observe in Fig. 12(d) that the NDQIO
requires fewer CFEs to produce the first OPF routes in terms
of theminimum consumption than theNDQOalgorithm. This
is a benefit of using the DHAs in the initialization process,
which are capable of identifying as many OPF routes as the
number of the optimization objectives, hence imposing an
overall complexity equal to a single BBHT-QSA chain in
the NDQO, which is capable of identifying a single OPF
route. However, as the number of OPF routes identified
increases, the power consumption of the BBHT-QSA seeking
new potential OPF routes increases. Explicitly, the NDQO
algorithm becomes more efficient after about 1434 CFEs, as
shown in Fig. 12(d).

VII. CONCLUSIONS
We have proposed a novel hardware parallelization
framework for quantum processes, which offers a further
complexity reduction in addition to that provided by QP.

Based on this framework, we have developed a novel
algorithm as an improvement of the existing NDQO algo-
rithm. As a benefit of the hardware parallelization, we have
distinguished the complexity imposed by the new algorithm
in two distinct domains, namely in terms of the execution
time and the power consumption. Furthermore, we have
analytically derived the upper and lower bounds of it com-
plexity in both domains, which is on the order of O(

√
N ) in

both domains for the best-case scenario and on the order of
O(N
√
N ) and O(N 2

√
N ) for the worst-case scenario in the

execution time and power consumption, respectively. Explic-
itly, our new algorithm exhibits an optimal performance,
despite its substantial execution time reduction compared to
that of the NDQO algorithm, whilst imposing a similar power
consumption.

REFERENCES
[1] B. Alawieh, Y. Zhang, C. Assi, and H. Mouftah, ‘‘Improving spatial reuse

in multihop wireless networks—A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 11, no. 3, pp. 71–91, Aug. 2009.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘‘A survey
on sensor networks,’’ IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[3] X. Hong, K. Xu, and M. Gerla, ‘‘Scalable routing protocols for mobile
ad hoc networks,’’ IEEE Netw., vol. 16, no. 4, pp. 11–21, Jul. 2002.

[4] S. Galli, A. Scaglione, and Z. Wang, ‘‘For the grid and through the grid:
The role of power line communications in the smart grid,’’ Proc. IEEE,
vol. 99, no. 6, pp. 998–1027, Jun. 2011.

[5] D. Alanis, P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Quantum-assisted
routing optimization for self-organizing networks,’’ IEEE Access, vol. 2,
pp. 614–632, 2014.

[6] X. Zhu, L. Shen, and T.-S. P. Yum, ‘‘Hausdorff clustering and minimum
energy routing for wireless sensor networks,’’ IEEE Trans. Veh. Technol.,
vol. 58, no. 2, pp. 990–997, Feb. 2009.

[7] M. Chen, V. C. M. Leung, S. Mao, Y. Xiao, and I. Chlamtac, ‘‘Hybrid
geographic routing for flexible energy—Delay tradeoff,’’ IEEE Trans. Veh.
Technol., vol. 58, no. 9, pp. 4976–4988, Nov. 2009.

1726 VOLUME 3, 2015



D. Alanis et al.: Non-Dominated Quantum Iterative Routing

[8] A. E. A. A. Abdulla, H. Nishiyama, J. Yang, N. Ansari, and N. Kato,
‘‘HYMN: A novel hybrid multi-hop routing algorithm to improve the
longevity of WSNs,’’ IEEE Trans. Wireless Commun., vol. 11, no. 7,
pp. 2531–2541, Jul. 2012.

[9] M. Al-Rabayah and R. Malaney, ‘‘A new scalable hybrid routing protocol
for VANETs,’’ IEEE Trans. Veh. Technol., vol. 61, no. 6, pp. 2625–2635,
Jul. 2012.

[10] F. Hoffmann, D. Medina, and A. Wolisz, ‘‘Joint routing and scheduling in
mobile aeronautical ad hoc networks,’’ IEEE Trans. Veh. Technol., vol. 62,
no. 6, pp. 2700–2712, Jul. 2013.

[11] H. Li, L. Lai, and H. V. Poor, ‘‘Multicast routing for decentralized control
of cyber physical systems with an application in smart grid,’’ IEEE J. Sel.
Areas Commun., vol. 30, no. 6, pp. 1097–1107, Jul. 2012.

[12] G. A. Shah, V. C. Gungor, and O. B. Akan, ‘‘A cross-layer
QoS-aware communication framework in cognitive radio sensor networks
for smart grid applications,’’ IEEE Trans. Ind. Informat., vol. 9, no. 3,
pp. 1477–1485, Aug. 2013.

[13] S. Canale, A. Di Giorgio, A. Lanna, A. Mercurio, M. Panfili, and
A. Pietrabissa, ‘‘Optimal planning and routing in medium voltage
PowerLine communications networks,’’ IEEE Trans. Smart Grid, vol. 4,
no. 2, pp. 711–719, Jun. 2013.

[14] H. Yetgin, K. T. K. Cheung, M. El-Hajjar, and L. Hanzo, ‘‘Cross-layer
network lifetime optimisation considering transmit and signal processing
power inwireless sensor networks,’’ IETWireless Sensor Syst., vol. 4, no. 4,
pp. 176–182, Dec. 2014.

[15] H. Yetgin, K. T. K. Cheung, M. El-Hajjar, and L. Hanzo, ‘‘Cross-layer net-
work lifetime maximization in interference-limited WSNs,’’ IEEE Trans.
Veh. Technol., vol. 64, no. 8, pp. 3795–3803, Aug. 2015.

[16] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, ‘‘Comparing
images using the Hausdorff distance,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 15, no. 9, pp. 850–863, Sep. 1993.

[17] E. Sakhaee and A. Jamalipour, ‘‘The global in-flight Internet,’’ IEEE J. Sel.
Areas Commun., vol. 24, no. 9, pp. 1748–1757, Sep. 2006.

[18] L. Davis, Handbook of Genetic Algorithms. New York, NY, USA:
Van Nostrand Reinhold, 1991.

[19] K. Deb, ‘‘Multi-objective optimization,’’ in Search Methodologies,
E. K. Burke and G. Kendall, Eds. New York, NY, USA: Springer-Verlag,
2005, pp. 273–316. [Online]. Available: http://dx.doi.org/10.1007/
0-387-28356-0_10

[20] H. Yetgin, K. T. K. Cheung, and L. Hanzo, ‘‘Multi-objective routing opti-
mization using evolutionary algorithms,’’ inProc. IEEEWireless Commun.
Netw. Conf. (WCNC), Apr. 2012, pp. 3030–3034.

[21] M. Camelo, C. Omaña, and H. Castro, ‘‘QoS routing algorithm based on
multi-objective optimization for wireless mesh networks,’’ in Proc. IEEE
Latin-Amer. Conf. Commun. (LATINCOM), Sep. 2010, pp. 1–6.

[22] F. V. C. Martins, E. G. Carrano, E. F. Wanner, R. H. C. Takahashi,
and G. R. Mateus, ‘‘A hybrid multiobjective evolutionary approach for
improving the performance of wireless sensor networks,’’ IEEE Sensors J.,
vol. 11, no. 3, pp. 545–554, Mar. 2011.

[23] E. Masazade, R. Rajagopalan, P. K. Varshney, C. K. Mohan, G. K. Sendur,
and M. Keskinoz, ‘‘A multiobjective optimization approach to obtain
decision thresholds for distributed detection in wireless sensor networks,’’
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 2, pp. 444–457,
Apr. 2010.

[24] R. P. Feynman, ‘‘Simulating physics with computers,’’ Int. J. Theoretical
Phys., vol. 21, no. 6, pp. 467–488, Jun. 1982.

[25] P. Benioff, ‘‘Quantum mechanical hamiltonian models of Turing
machines,’’ J. Statist. Phys., vol. 29, no. 3, pp. 515–546, Nov. 1982.
[Online]. Available: http://dx.doi.org/10.1007/BF01342185

[26] D. Deutsch, ‘‘Quantum theory, the Church–Turing principle and the univer-
sal quantum computer,’’ Proc. R. Soc. Lond. A, Math. Phys. Sci., vol. 400,
no. 1818, pp. 97–117, Jul. 1985.

[27] D. Deutsch and R. Jozsa, ‘‘Rapid solution of problems by quantum com-
putation,’’ Proc. R. Soc. Lond. A, Math. Phys. Sci., vol. 439, no. 1907,
pp. 553–558, Dec. 1992.

[28] L. K. Grover, ‘‘A fast quantum mechanical algorithm for database search,’’
in Proc. 28th Annu. ACM Symp. Theory Comput., 1996, pp. 212–219.

[29] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. (1996). ‘‘Tight bounds
on quantum searching.’’ [Online]. Available: http://arxiv.org/abs/
quant-ph/9605034

[30] C. Durr and P. Høyer. (1996). ‘‘A quantum algorithm for finding the
minimum,’’ [Online]. Available: http://arxiv.org/abs/quant-ph/9607014

[31] P. W. Shor, ‘‘Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,’’ SIAM J. Comput., vol. 26, no. 5,
pp. 1484–1509, 1997.

[32] R. Cleve, A. Ekert, C. Macchiavello, andM.Mosca, ‘‘Quantum algorithms
revisited,’’ Proc. R. Soc. Lond. A, Math. Phys. Sci., vol. 454, no. 1969,
pp. 339–354, Jan. 1998.

[33] G. Brassard, P. Høyer, and A. Tapp, ‘‘Quantum counting,’’ in Automata,
Languages and Programming. New York, NY, USA: Springer-Verlag,
1998, pp. 820–831.

[34] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. (2000). ‘‘Quan-
tum amplitude amplification and estimation.’’ [Online]. Available:
http://arxiv.org/abs/quant-ph/0005055

[35] A. Malossini, E. Blanzieri, and T. Calarco, ‘‘Quantum genetic optimiza-
tion,’’ IEEE Trans. Evol. Comput., vol. 12, no. 2, pp. 231–241, Apr. 2008.

[36] G. Brassard, F. Dupuis, S. Gambs, and A. Tapp. (2011). ‘‘An optimal
quantum algorithm to approximate the mean and its application for approx-
imating the median of a set of points over an arbitrary distance.’’ [Online].
Available: http://arxiv.org/abs/1106.4267

[37] Z. Babar, S. X. Ng, and L. Hanzo, ‘‘Near-capacity code design for
entanglement-assisted classical communication over quantum depolariz-
ing channels,’’ IEEE Trans. Commun., vol. 61, no. 12, pp. 4801–4807,
Dec. 2013.

[38] Z. Babar, S. X. Ng, and L. Hanzo, ‘‘EXIT-chart-aided near-capacity
quantum turbo code design,’’ IEEE Trans. Veh. Technol., vol. 64, no. 3,
pp. 866–875, Mar. 2014.

[39] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, ‘‘The road
from classical to quantum codes: A hashing bound approaching design
procedure,’’ IEEE Access, vol. 3, pp. 146–176, 2015.

[40] S. Imre and F. Balazs, Quantum Computing and Communications:
An Engineering Approach. New York, NY, USA: Wiley, 2005.

[41] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[42] C. Zalka, ‘‘Grover’s quantum searching algorithm is optimal,’’ Phys.
Rev. A, vol. 60, no. 4, pp. 2746–2751, Oct. 1999.

[43] G. Syswerda, ‘‘A study of reproduction in generational and steady state
genetic algorithms,’’ Found. Genet. Algorithms, vol. 2, pp. 94–101, 1991.

[44] J. Chiaverini et al., ‘‘Implementation of the semiclassical quantum Fourier
transform in a scalable system,’’ Science, vol. 308, no. 5724, pp. 997–1000,
May 2005.

[45] P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Quantum search algorithms,
quantum wireless, and a low-complexity maximum likelihood iterative
quantum multi-user detector design,’’ IEEE Access, vol. 1, pp. 94–122,
2013.

[46] P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Fixed-complexity quantum-assisted
multi-user detection for CDMA and SDMA,’’ IEEE Trans. Commun.,
vol. 62, no. 3, pp. 990–1000, Mar. 2014.

[47] P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, ‘‘Low-complexity soft-
output quantum-assisted multiuser detection for direct-sequence spreading
and slow subcarrier-hopping aided SDMA-OFDM systems,’’ IEEEAccess,
vol. 2, pp. 451–472, 2014.

[48] P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo,
‘‘Iterative quantum-assisted multi-user detection for multi-carrier
interleave division multiple access systems,’’ IEEE Trans. Commun.,
to be published.

[49] P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo, ‘‘Noncoherent
quantum multiple symbol differential detection for wireless systems,’’
IEEE Access, vol. 3, pp. 569–598, 2015.

[50] Y. Han, D. M. Ancajas, K. Chakraborty, and S. Roy, ‘‘Exploring
high-throughput computing paradigm for global routing,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 1, pp. 155–167,
Jan. 2014.

[51] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and S. Zhang, ‘‘IP routing
processing with graphic processors,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhibit. (DATE), Mar. 2010, pp. 93–98.

[52] J. Zhao, X. Zhang, X. Wang, Y. Deng, and X. Fu, ‘‘Exploiting graphics
processors for high-performance IP lookup in software routers,’’ in Proc.
IEEE INFOCOM, Apr. 2011, pp. 301–305.

[53] R. Mangharam and A. A. Saba, ‘‘Anytime algorithms for GPU architec-
tures,’’ in Proc. IEEE 32nd Real-Time Syst. Symp. (RTSS), Nov. 2011,
pp. 47–56.

[54] A. Uchida, Y. Ito, and K. Nakano, ‘‘An efficient GPU implementation of
ant colony optimization for the traveling salesman problem,’’ in Proc. 3rd
Int. Conf. Netw. Comput. (ICNC), Dec. 2012, pp. 94–102.

VOLUME 3, 2015 1727



D. Alanis et al.: Non-Dominated Quantum Iterative Routing

[55] U. Cekmez, M. Ozsiginan, and O. K. Sahingoz, ‘‘Adapting the GA
approach to solve traveling salesman problems on CUDA architecture,’’ in
Proc. IEEE 14th Int. Symp. Comput. Intell. Informat. (CINTI), Nov. 2013,
pp. 423–428.

[56] T. Mohsenin, D. N. Truong, and B. M. Baas, ‘‘A low-complexity message-
passing algorithm for reduced routing congestion in LDPC decoders,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 5, pp. 1048–1061,
May 2010.

[57] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, ‘‘GPU computing,’’ Proc. IEEE, vol. 96, no. 5, pp. 879–899,
May 2008.

[58] J. D. Owens et al., ‘‘A survey of general-purpose computation on graphics
hardware,’’ Comput. Graph. Forum, vol. 26, no. 1, pp. 80–113, Mar. 2007.

[59] L. L. Hanzo, S. X. Ng, W. Webb, and T. Keller, Quadrature Amplitude
Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and
Space-Time Coded OFDM, CDMA and MC-CDMA Systems. New York,
NY, USA: Wiley, 2004.

[60] M. Salem et al., ‘‘An overview of radio resource management in
relay-enhanced OFDMA-based networks,’’ IEEE Commun. Surveys Tuts.,
vol. 12, no. 3, pp. 422–438, Aug. 2010.

[61] S. Imre and L. Gyongyosi, Advanced Quantum Communications:
An Engineering Approach. New York, NY, USA: Wiley, 2013.

[62] M. Saeedi and M. Pedram, ‘‘Linear-depth quantum circuits for n-qubit
Toffoli gates with no ancilla,’’ Phys. Rev. A, vol. 87, no. 6, p. 062318,
Jun. 2013.

DIMITRIOS ALANIS (S’13) received the
M.Eng. degree in electrical and computer
engineering from the Aristotle University of
Thessaloniki, in 2011, and the M.Sc. degree in
wireless communications from the University of
Southampton, in 2012, where he is currently pur-
suing the Ph.D. degree with the Southampton
Wireless Group, School of Electronics and
Computer Science.

His research interests include quantum
computation and quantum information theory, quantum search algorithms,
cooperative communications, resource allocation for self-organizing net-
works, bioinspired optimization algorithms, and classical and quantum game
theory.

PANAGIOTIS BOTSINIS (S’12) received the
M.Eng. degree from the School of Electrical
and Computer Engineering, National Technical
University of Athens, Greece, in 2010, and the
M.Sc. (Hons.) and Ph.D. degrees in wireless com-
munications from the University of Southampton,
U.K., in 2011 and 2015, respectively. Since 2010,
he has been a member of the Technical Chamber
of Greece. He is currently a Research Fellow
with the Southampton Wireless Group, School of

Electronics and Computer Science, University of Southampton.
His research interests include quantum-assisted communications,

quantum computation, iterative detection, OFDM, multiple-input multiple-
output, multiple access systems, coded modulation, channel coding, cooper-
ative communications, and combinatorial optimization.

ZUNAIRA BABAR received the B.Eng. degree
in electrical engineering from the National
University of Science and Technology, Islamabad,
Pakistan, in 2008, and the M.Sc. (Hons.) and
Ph.D. degrees in wireless communications from
the University of Southampton, U.K., in 2011 and
2015, respectively.

Her research interests include quantum error
correction codes, channel coding, coded mod-
ulation, iterative detection, and cooperative

communications.

SOON XIN NG (S’99–M’03–SM’08) received
the B.Eng. (Hons.) degree in electronics
engineering and the Ph.D. degree in wireless com-
munications from the University of Southampton,
Southampton, U.K., in 1999 and 2002, respec-
tively. From 2003 to 2006, he was a Post-Doctoral
Research Fellow working on collaborative
European research projects known as SCOUT,
NEWCOM, and PHOENIX. Since 2006, he has
been a member of the Academic Staff with the

School of Electronics and Computer Science, University of Southampton.
He is currently an Associate Professor of Telecommunications with the Uni-
versity of Southampton. He is involved in the OPTIMIX and CONCERTO
European projects and the IUATC and UC4G projects. He has authored over
180 papers and co-authored two JohnWiley/IEEE Press books in his research
field.

His research interests include adaptive coded modulation, coded modu-
lation, channel coding, space-time coding, joint source and channel coding,
iterative detection, OFDM,multiple-input multiple-output, cooperative com-
munications, distributed coding, quantum error correction codes, and joint
wireless-and-optical-fiber communications. He is a Chartered Engineer and
fellow of the Higher Education Academy, U.K.

LAJOS HANZO (M’91–SM’92–F’04) received
the degree in electronics in 1976, the Ph.D. degree
in 1983, and the Doctor Honoris Causa degree
from the Technical University of Budapest,
in 2009. During his 38-year career in telecom-
munications, he has held various research and
academic positions in Hungary, Germany, and
U.K. Since 1986, he has been with the School
of Electronics and Computer Science, University
of Southampton, U.K., as the Chair in Telecom-

munications. He has successfully supervised about 100 Ph.D. students,
co-authored 20 John Wiley/IEEE Press books in mobile radio communi-
cations totaling in excess of 10 000 pages, authored over 1500 research
entries at the IEEE Xplore, acted as the TPC Chair and General Chair of
the IEEE conferences, presented keynote lectures, and received a number
of distinctions. He is currently directing 100 strong academic research
teams, working on a range of research projects in the field of wireless
multimedia communications sponsored by the industry, the Engineering and
Physical Sciences Research Council, U.K., the European Research Council’s
Advanced Fellow Grant, and the Royal Society’s Wolfson Research Merit
Award. He is an enthusiastic supporter of industrial and academic liaison
and offers a range of industrial courses.

He is a fellow of the Royal Academy of Engineering, the Institution
of Engineering and Technology, and the European Association for Signal
Processing. He is also a Governor of the IEEE VTS. From 2008 to 2012,
he was the Editor-in-Chief of the IEEE Press and a Chaired Professor with
Tsinghua University, Beijing. He has over 22 000 citations.

1728 VOLUME 3, 2015


