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ABSTRACT An increasing number of mobile users (MUs) share common interests in general information,
such as traffic information, weather forecast, and domestic/international news. However, the centralized
infrastructure-based system has not been designed for efficiently disseminating the information of common
interest (IoCI) to numerous requesters. Thanks to the rapid development of mobile devices equipped with
large storage and multiple communication modes, opportunistic communication between a pair of MUs
can be readily realized. With the aid of opportunistic networks formed by MUs, we can improve the
connectivity of cellular networks in the rural areas, we can offload the tele-traffic from the overloaded cellular
networks, and we can efficiently disseminate the IoCI in the densely populated areas. We commence with a
detailed survey on the cross-disciplinary research area of social network analysis aided telecommunication
networking. We continue by focusing our attention on the family of integrated cellular and large-scale
opportunistic networks, whose performance is dominated by the inter-contact duration as well as the contact
duration between any pairs of MUs. A continuous-time-pure-birth Markov chain is invoked for analyzing
the relevant performance. We demonstrate that the delivery ratio of the IoCI before it expires becomes higher
than 90% with the aid of opportunistic networks consisting of 20 MUs. Moreover, our experiments based on
the InfoCom 2006 mobility trace show that the opportunistic networks are capable of offloading 58% of the
tele-traffic from the cellular networks. Thereafter, we propose a hybrid information dissemination scheme for
the integrated cellular and small-scale opportunistic networks, which is comprised of two main stages: 1) the
base station-aided single-hop multicast (BSSHM) stage and 2) the cooperative multicast aided spontaneous
dissemination stage. In contrast to their large-scale counterparts, in small-scale opportunistic networks, the
information dissemination is mainly affected by the mobility of theMUs, by the wireless channel attenuation
and by the resource scheduling, where a discrete-time-pure-birth Markov chain is utilized for characterizing
the relevant performance. We demonstrate that our hybrid information dissemination scheme outperforms
the traditional BSSHM in terms of various delay metrics, despite consuming less energy.

INDEX TERMS Cellular networks, large-scale/small-scale opportunistic networks, information
dissemination, pure-birth Markov chain, social network analysis.

NOMENCLATURE
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ana Analytical
BF BeamForming
BS Base Station
BSSHM Base Station aided Single-Hop Multicast

CCDF Complementary Cumulative Distribution
Function

CDF Cumulative Distribution Function
CI Centralised Infrastructure
CMM Community-based Mobility Model
Co-multicast Cooperative Multicast
CT-PBMC Continuous-Time-Pure-Birth Markov Chain
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DTN Delay-Tolerant Network
DT-PBMC Discrete-Time-Pure-Birth Markov Chain
HCMM Home-cell-Community-based Mobility Model
ICI Inter-Cell Interference
IM Information Multicaster
IO Information Owner
IoCI Information of Common Interest
LTE-A Long-Term-Evolution-Advanced
MAC Medium-Access-Control
MANET Mobile Ad Hoc Network
MU Mobile User
PDF Probability Density Function
PL Path Loss
PHY PHYsical
PSD Power Spectrum Density
QoS Quality of Service
RD Random Direction
RR Round-Robin
RU Road Unit
RW Random Walk
RWP Random Way-Point
sim Simulation
SNA Social Network Analysis
SNR Signal-to-Noise-Ratio
SPM Social Pressure Metric
TCN Telephone Call Network
TDMA Time-Division-Multiple-Access
TS Time Slot
uMU unserved Mobile User

I. INTRODUCTION
At the time of writing, we are witnessing a dramatic increase
of the number of mobile devices and connections. The white
paper published by Cisco in 2014 [1] predicted that by the
end of 2014, the number of mobile-connected devices would
exceed the number of people on earth and this number would
break through the 10 billion limit by 2018. Accommodating
the huge amount of tele-traffic generated by billions of
mobile devices is a ‘mission impossible’ for the conventional
centralised infrastructure (CI) based communication system.
However, most of the mobile devices are equipped with mul-
tiple communication modes, which makes device-to-device
communication [2] and the Internet of things [3] become
attractive solutions. Furthermore, since mobile devices are
held by people, communication between mobile devices is
featured by the social behaviours of people, which stimu-
lates the cross-disciplinary research area of mobile social
networks [4] based on the combination of social science and
wireless communication networking. The growing interest
can be observed in Fig.1. In Section I-A, the tools of social
network analysis will be introduced first.

A. SOCIAL NETWORK ANALYSIS (SNA)
To most people, the phrase ‘social network’ refers to online
social networking services such as Facebook and Twitter.
However, the research of social networks goes back farther

FIGURE 1. The number of publications including the searching term
‘mobile social network’ in both the IEEE digital library and the ACM
digital library from the calendar year 2005 to 2014.
(a) IEEE digital library. (b) ACM digital library.

than the emergence of the Internet. The true foundation of
this field is attributed to Moreno, who studied social inter-
actions within groups of people and published his research
entitled Who Shall Survive [21] in 1934. Unfortunately,
traditional data collection methods such as interviews and
questionnaires [22] as well as observations [23] are
extremely inefficient. Hence, research on Social Network
Analysis (SNA) progressed slowly in the early decades of the
20th century, until the invention of computer technology and
online social networking services. Since then, the research
community became more prosperous than ever before. In the
rest of section I-A, we will characterise the structure of social
networks and introduce the new research trends in terms of
nodes’ importance evaluation (centralities), communities and
topologies, as summarised in Fig.2.

1) STRUCTURE OF SOCIAL NETWORKS
A social network is comprised of social users (represented
by nodes) and social links (represented by edges). A pair
of social network users is said to be connected by a social
link, if they share friendship, as portrayed in Fig.3(a).
Mathematically, the structure of a generic social network
having N nodes can be characterised by an adjacency matrix
A = [aij]N×N , where aij = 1 if there is a social link spanning
from node i to node j and aij = 0, otherwise. The social
network of Fig.3(a) characterises the friendships amongst the
members of a karate club at an American university [24].
An edge represents that a pair of individuals consistently were
observed to interact also outside the normal activities of the
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FIGURE 2. The research in social network analysis.

club (karate classes and club meetings). The social network
of Fig.3(a) is an unweighted and undirected graph, which
indicates that all the social links have the same strength and
they are symmetrical. The social network of Fig.3(a) can be
characterised by the adjacency matrix Akara, as shown in (1),
as shown at the top of the next page. Furthermore, a social
link can be assigned a weight for the sake of characterising
the strength of the friendship between a pair of social network
users. Sometimes, a pair of social users share ‘unsymmet-
rical’ friendships, which can be characterised by directional
social links in social networks.

2) EVALUATING NODES IN SOCIAL NETWORKS
In order to fully exploit the characteristics of a social network,
the identification of the principal social users inside the social
network is quite important. Such an identification requires an
importance measure (also referred to as centrality) to weight
social users and social links.

The most straightforward approach is to directly count
the number of neighbours that a social user is directly con-
nected to in the social network studied, which is referred
to as the degree centrality. Fig.3(b) portrays the degrees for
all the nodes in the social network of the karate club [24].

A darker node that is also characterised by a larger size has
a higher value of degree centrality. We observe from Fig.3(b)
that ‘N01’ and ‘N34’ have the highest degrees, sequentially
followed by ‘N33’ and ‘N03’. The degree centrality is also
applied often for characterising the ‘impact factor’ of an
academic journal by quantifying how often a specific journal
is cited by others. Survey journals of the research commu-
nity usually have a higher impact factor than pure research
journals. However, the degree centrality only characterises
the local topological properties of a node in a social network,
since only the neighbourhood of a node is taken into account.
Unfortunately, this measurement is not capable of character-
ising the global role of a node in the entire social network.

A natural extension of the degree centrality is the
eigenvector centrality. In the definition of the degree cen-
trality, every neighbour is equally treated without any bias.
By contrast, a more important neighbour may provide
a higher weight for the calculation of the eigenvector
centrality [7]. As a result, a node having fewer higher-weight
neighbours may still outrank another node having more
lower-weight neighbours, i.e. if the neighbours of the former
node are more important than that of the latter. Fig.3(c) por-
trays the eigenvector centralities for all the nodes in the social
network of the karate club [24].We observe from Fig.3(c) that
‘N03’ outranks ‘N33’, although ‘N03’ has fewer neighbours
than ‘N33’. This is because the neighbours of ‘N03’ are more
important than those of ‘N33’. The eigenvector centrality is
also routinely applied in the citation network of journals for
characterising the ‘eigenfactor’ of an academic journal. As an
example, research journals in the communication community
often outrank survey journals in terms of their eigenfactor.
Furthermore, as a variant of the eigenvector centrality,
PageRank centrality has been proposed for ranking the
webpages provided by the Google search engine [8].

Another global measure is referred to as closeness
centrality [9]. This measure evaluates how ‘close’ a node
is to all the other nodes in a network. Fig.3(d) portrays the
closeness centralities for all the nodes in the social network
of the karate club. We observe from Fig.3(d) that ‘N17’ is
the closest node to all the other nodes in the social network,
although the number of its neighbours is quite low, as shown
in Fig.2(b).
Betweenness centrality [10] is also a globalmeasure, which

relies on the idea that in social networks information flows
along the shortest path in terms of the number of hops
between a pair of end-users. As a result, a node would have a
high betweenness centrality, if a large number of end-to-end
shortest paths cross it. As shown in Fig.3(e), ‘N01’ has the
highest betweenness centrality in the social network of the
karate club. The authors of [25] further relaxed the assump-
tion that information only flows along the shortest paths and
proposed a new betweenness centrality based on random
walks. However, the original computation of betweenness
centrality requires the global knowledge of the social network
studied. If the social network is quite large, havingmillions of
nodes in it, even the most efficient algorithm for computing
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Akara =



0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0
1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0



(1)

the betweenness centrality has the complexity ofO(MN ) [26],
whereM and N represent the number of edges and of nodes,
respectively. As a further advance, the authors of [5] proposed
κ-path centrality, where the computation only relies on the
information flows along the paths that are shorter than κ hops.
They found that the κ-path centrality metric matches the orig-
inal betweenness centrality well, while significantly reducing
the complexity of its computation toO(κ3N 2−2α logN ). The
egocentric network concept of [27] represents the network
surrounding the individual studied within a radius of 1 hops.
Moreover, the ego-betweenness [6] is a special case of κ-path
centrality for κ = 2.

The aforementioned betweenness centralities of nodes can
be readily extended in order to characterise the betweenness
centralities for edges, which plays a vital role in community
detection [12]. Similar to [5], a κ-path edge betweenness
was proposed in [11] and the corresponding computational
complexity was reduced to O(κM ), where M is the number
of edges in the social network studied.

TABLE 1 exemplifies the calculation process of the degree,
of the eigenvector, the closeness and the betweenness central-
ities for the node ‘N06’ in the social network of the karate
club, as shown in Fig.3.

3) COMMUNITY DETECTION
According to different node classification principles, we have
the following two types of community:
• A community of interest, which is ‘‘a set of
people assembled around a topic of common inter-
est. Its members take part in the community to
exchange information, to obtain answers to personal
questions or problems, to improve their understand-
ing of a subject, to share common passions or to
play’’ [13].

• A community of connectivity, which is a group of nodes
in social networks densely connected to each other
and weakly coupled with nodes residing outside the
community itself.
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FIGURE 3. Unweighted and undirected friendship network between members of a karate club. This social network shows the pattern of friendships
between the members of a karate club at an American university. The data were collected and published in [24]. The calculation process of degree,
eigenvector, closeness, and betweenness centralities for the node ‘N06’ is exemplified in TABLE 1. (a) Original social networks. (b) Degree centrality.
(c) Eigenvector centrality. (d) Closeness centrality. (e) Betweenness centrality. (f) Community detection.

These two types of community may convert into each other.
People sharing common interest are often tightly connected
to each other in social networks. Vice versa, people that
are strongly connected to each other may tend to cultivate
common interests due to frequent communication with each
other. It is the community of interest, which is the focus
of our research in the following sections. However, in this
section, we would like to briefly introduce the detection of
communities of connectivity.

As mentioned above, edge betweenness was invoked in
the community detection algorithm developed in [12]. After
calculating the betweenness centralities for all edges, the
specific edge having the highest betweenness is removed.
Then, the betweenness centralities of the edges affected by
the former removal edge is recalculated. This procedure is
repeated until the underlying community structure of the
network is completely discovered.
Modularity was designed to quantify the grade of division

across a network into modules [29]. The authors of [14]
develop a community detection algorithm based on
modularity maximisation, which iteratively optimises the

formulation of local communities until the achievable
global modularity can no longer be improved by tentatively
imposing perturbations on the current community state. This
algorithm is exploited for discovering the community struc-
ture of the social network, such as the karate club, as shown
in Fig.3(f). We observe from Fig.3(f) that the social network
is divided into four communities and different communities
are filled by different colours and patterns. The largest com-
munity has 14 members, while the smallest community has
only 4 members.

4) SMALL-WORLD PHENOMENON
The small-world phenomenon of social networks was firstly
revealed by Milgram’s famous experiment [15]:
In order to deliver a letter from a source person to a target

person, the source would initially be given basic information
about the target, including his address and occupation. Then
the source would be instructed to send the letter to someone
on a first-name basis in an effort to transmit the letter to
the target as efficaciously as possible. Anyone subsequently
receiving the letter would be given the same instructions,
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TABLE 1. Various centralities of node ‘N06’ in the social network of Fig.3.

and the chain of communication would continue until the
target was reached.

Over many trials, Milgram found that the average number
of hops in successful chains lie between five and six, which
is referred to as the ‘six degrees of separation’ principle.
Generally speaking, a small-world network is a type of
mathematical graph in which most nodes are not neighbours
of one another, but most nodes can be reached from every
other by a small number of hops or steps.

There are two models that may be used for
constructing a small-world network from a regular network,
namely the Watts-Strogatz (WS) [16] model and the
Newmann-Watts (NW) model [17]. In the WS model, a
small-world network is constructed via rewiring a few links
in an existing regular network [16]. By contrast, in the
NW model [17], a small-world network is constructed via
adding a few new links without changing any existing
links of the original regular networks. Moreover, the link
rewiring probability (or the link adding probability) in theWS
(or the NW) model can be expressed by p ∝ 1/(di, j)β [18],
where di, j represents the minimum number of hops spanning
from node i to node j and β is a basic structural parameter that
quantifies how clustered the network is. This model is known
as Kleinberg’s small-world network model. In a nutshell,
small-world networks typically have a high clustering coeffi-
cient, but a low average path length quantified in terms of the
number of hops. Furthermore, the authors of [19] and [20]
theoretically confirmed the result of Milgram’s experiment

in the context of the NW model, which is exploited for
evaluating the performance of the social search.

The major contributions in SNA research are summarised
in TABLE 2.

B. WHEN SOCIAL NETWORKS MEET
TELECOMMUNICATION NETWORKS
At the time of writing, there are remarkable advances
in the cross-disciplinary research area of SNA aided
telecommunication networking and signal processing, which
seamlessly bridge telecommunication networks and social
networks [30]. These advances are portrayed in Fig.4. The
central box of Fig.4 summarises the commonly-adopted SNA
tools, which have been detailed in Section I-A. The outer
shell of boxes in Fig.4 provides a glimpse of some of the
applications of the SNA in the research of the telecommu-
nication. We will briefly introduce these applications in the
rest of Section I-B.

1) COMMUNICATION NETWORK MODELLING
Firstly, SNA can be exploited for modelling generic
communication networks. The authors of [31] modelled
the telephone call network (TCN) by a scale-free social
network [32], where nodes represent telephone numbers and
two nodes are connected if calls are made between the corre-
sponding telephone numbers. Based on this social network
model, a preferential call blocking scheme was proposed
in order to mitigate the adverse effect of a sudden surge
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TABLE 2. Major contributions in the SNA research.

in the number of telephone calls potentially resulting in an
overloaded telephone network. The authors of [33] studied
the performance of generic communication networks and link
the degree as well as betweenness centrality to the node
activation probability. Following indepth experiments relying
on various mathematical network models as well as on the
Internet constructed at the autonomous system level [34],
their proposed resource allocation scheme based on the node
activation probability was shown to outperform both the
uniform and the degree-based schemes.

2) MOBILITY MODEL DESIGN
Secondly, SNA can be exploited for designing mobility
models, which are capable of reflecting the social relation-
ships amongst the Mobile Users (MUs). Based on the mobile
phone data collected by the Reality Mining project [35], the
self-reported social relationship between a pair of individuals
exhibits a distinctive behavioural signature as quantified in
terms of their physical proximity and calling patterns. The
landmark research disseminated in [35] confirms that the

social relationships amongst the MUs affect their mobility
patterns. Relying on this fact, the authors of [36] proposed
a Community-based Mobility Model (CMM). In CMM,
a MU is more likely to move towards a specific place, where
most of his/her friends are staying. The CMM captures the
behaviours of MUs moving in groups and between groups.
As an evolution of CMM, the Home-cell Community-based
Mobility Model (HCMM) is proposed in [37]. Apart from
the friendship cohesion inherited from CMM, HCMM also
accounts for the associated spatial attraction, where a MU
may be inclined to move towards a specific place defined as
‘home’.

3) CONTACT TRACE BASED RELATIONSHIP MODELLING
Thirdly, SNA can be exploited for modelling the social
relationship between a pair of MUs according to their contact
trace. In a Mobile Ad Hoc NETwork (MANET), when a pair
of MUs enters each other’s transmission range, their contact
can be readily established. During an observation period, if
a MU encounters another MU, we establish a social rela-
tionship between them. However, the qualities of the social
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FIGURE 4. The cross-disiplinary research in social network analysis aided telecommunications.

relationships vary amongst the different MU pairs. In [38],
the qualities of the social relationships are characterised by
the associated encounter frequency, the total or average con-
tact period and the average separation period. Furthermore,
the Social Pressure Metric (SPM) is proposed in [39] for
overcoming the deficiencies of the above-mentioned metrics
and for accurately characterising the qualities of the social
relationships.

4) OPPORTUNISTIC ROUTING DESIGN
Fourthly, SNA can be exploited for efficient routing design
in MANETs. Due to the intermittent nature of MANETs,
data forwarding is realised by opportunistic contacts amongst
MUs. When modelling the social relationship between any
pair of MUs with the aid of the contact trace, their contact
opportunities can be characterised by the associated social
graph. Hence various centralities can be invoked for eval-
uating the personal importance of the MUs in a MANET.
In [40], the degree of connectivity is exploited for formu-
lating a data forwarding strategy. The so-called BUBBLE
forwarding algorithm [41] is capable of accounting for the
global betweenness centralities of the MUs. Furthermore,
SimBet [42] routing policy is proposed by exploiting the local
ego-betweenness [6].

5) ALGORITHMIC COMPLEXITY REDUCTION
Fifthly, SNA can be exploited for reducing the algorithmic
complexity. A coalitional game approach is proposed in [43]
in order to cooperatively deliver packets in hybrid wireless
mobile networks. Since a pair of MUs separated by mul-
tiple hops have less influence on each other, the MUs are
divided into communities according to their contact traces.

Following the community detection phase, finding the
gaming-aided solution of the game model is carried out inde-
pendently for all the communities. As a result, compared
to finding the global gaming-aided solution, the complexity
of finding the solution of the game model is significantly
reduced with the aid of the community detection technique.

6) TOPOLOGY DESIGN FOR WIRELESS AD HOC NETWORKS
Furthermore, the small-world phenomenon can be utilised for
constructingwireless ad hoc networks. In [44], the probability
of creating a direct wireless link between a pair of com-
munication nodes is jointly determined by considering the
residual battery energy of nodes as well as by the multi-hop
transmission distance and the geographical distance between
the nodes, whilst also taking the constraints of the radio
transmission range between nodes into account. As a result,
an energy efficient wireless network topology may be created
by relying on the small-world principle. Directional beam-
forming (BF) is invoked in [45] for creating a direct link,
which is referred to as a ‘short cut’ in the SNA, between a
pair of ‘central’ nodes in a wireless ad hoc networks in order
to preserve the validity of the small-world phenomenon.

7) SOCIAL LEARNING BASED MULTI-AGENTS SENSING
Additionally, an agent, which could be either a ‘physical
sensor’1 or a ‘social sensor’,2 maymake a sensing decision by

1Examples of physical sensors include sound sensors, chemical sensors
and temperature sensors. A physical sensor aims to detect a state change of
a natural phenomenon.

2Examples of social sensors include Twitter posts, Facebook status
updates, and ratings on line reputation systems such as Yelp and Tripadvisor.
A social sensor aims to infer social relationships and human activities.
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FIGURE 5. People form communities of interest for disseminating the IoCI.

jointly exploiting both its own local observation as well as the
decisions made by the surrounding agents. This is regarded
as social learning based multi-agent aided sensing [46].
In this application, by exchanging information with their
peers, agents form a community in order to collaboratively
achieve a common goal with a better ‘utility’ than that
achieved by them individually. In [46], a social learning
protocol was discussed in detail and a strategy of making
a global sensing decision was proposed for the sake of
minimising both the detection delay and the false alarm
penalties. Furthermore, based on this original social learning
protocol, the authors of [47] resolved the associated privacy
concern as well as the biased sensing-inducedmisinformation
propagation.

8) INFORMATION DISSEMINATION IN
OPPORTUNISTIC NETWORKS
Finally, SNA can be exploited for realising information
dissemination in opportunistic networks. In this application,
MUs form a community of interest, as introduced in
Section I-A. Based on the multifunctional mobile devices
owned by numerous subscribers, the Information of Common
Interest (IoCI) can be spontaneously disseminated across the
community without the aid of any Centralised Infrastruc-
ture (CI). For instance, the crowds participating in the inau-
guration of the new Pope’s identity may form a community of
interest in order to share close-up video-clips of the Pope on
the podium. Similarly, supporters in a football stadium may

also form a community of interest so as to share video-clips of
a spectacular goal from different angles or the score updates
from another stadium, as exemplified by Fig.5. The tools
of SNA are capable of assisting us in designing an efficient
strategy for information dissemination. In the following parts
of this treatise, we mainly focus our attention on revealing
the details of information dissemination in integrated cellular
and opportunistic networks.

The major contributions in SNA aided telecommunication
research are summarised in TABLE 3.

II. MOTIVATIONS AND CONTRIBUTIONS
A. DESIGN DILEMMAS OF INFORMATION
DISSEMINATION IN CI BASED SYSTEM
As discussed, an increasing number of MUs share common
interests in the same information. For instances, drivers have
to receive the traffic information in rural areas; urban resi-
dents are interested in the weather forecast before they go
to work; Attendees are keen on reading the program before
their conference gets started; Football fans in the stadium
are curious about the score update from their championship
contender’s match... However, CI based techniques exhibit
the following limitations in disseminating the IoCI:

1) INTERMITTENT CONNECTIVITY IN RURAL AREAS
Suffering from coverage limitations of the CI in rural areas,
the wireless links between the MUs and Base Stations (BSs)
are prone to intermittent connections due to the high mobil-
ities of the MUs. The same limitations are encountered,
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TABLE 3. Major contributions in the SNA aided telecommunication research.

when most of the CI is destroyed by a natural disaster [48],
such as an earthquake, a tsunami etc. The traditional mea-
sures of improving and recovering the wireless connection
include building more BSs in the rural area, and increasing
the transmit power of the existing BSs so as to cover a larger
geographic area as well as deploying more relay stations.
However, due to the sparse user distribution in rural areas,
the aforementioned measures are believed to be of low-return
investment for the network operators.

2) OVERLOADED CENTRALISED INFRASTRUCTURE
As we witness an explosive growth of the tele-traffic demand,
most of the existing BSs are overloaded, which results in
significant degradation of the quality of service (QoS) for
the MUs. The traditional measures of increasing the net-
work capacity include the employment of small-cells [49]
in order to offload the potentially excessive data traffic
from the macro-cells. The increasing tele-traffic imposes
serious inter-cell interference (ICI) [50]. In order to further
increase the attainable network capacity and to mitigate the
adverse effects of ICI, WiFi hotspots are deployed by the
network operators for offloading tele-traffic from cellular
networks [51], because the 802.11 WiFi systems [52]
operate in a spectrum band different from that of
classic cellular communication. However, these traditional

measures are based on the centralised management of the
entire CI, which imposes a high cost on the network
operators in terms of both deployment and maintenance
expenses.

3) INEFFICIENT DATA SERVICE IN DENSELY
POPULATED AREA
In the densely populated scenarios, such as a football stadium,
an open air festival and a conference venue, there are likely
to be hundreds of MUs crowding in a very small area having
a radius of 50 meters. Since people temporarily get together
for a specific event and rarely visit this place again after the
event, it is unwise to invest into costly CI for these scenarios.
The traditional measure of efficiently delivering the IoCI is to
allow the BS to multicast the IoCI by exploiting the broadcast
nature of wireless channels rather than to consume excessive
resources for establishing dedicated channels [53]. However,
when the number of requesters is huge, the CI will impose
both a long delay and a low throughput during the multicast-
ing of the IoCI to all the requesters [54].

Fortunately the smart multifunctional mobile devices that
are equipped both with large storage capacity and with mul-
tiple communication modes are popular amongst the MUs.
These devices are capable of receiving, carrying and forward-
ing the IoCI to their peers, hence they can be ‘employed’
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by BSs in order to more efficiently deliver the information
to the targets. As a result, it is possible for us to solve
the aforementioned design dilemma of CI based information
dissemination by exploiting the opportunistic communication
amongst theMUs based on either opportunistic contacts3 [55]
within the large-scale opportunistic networks or with the
aid of opportunistic multicast scheduling4 [56] in the small-
scale opportunistic networks. Here, the adjective ‘large-scale’
indicates a large area covered by the opportunistic networks,
which has a size of several kilometres and it is far larger
than the transmission range of the MUs. Moreover, having
a ‘large-scale’ opportunistic network also indicates imposing
a longer latency on delivering the IoCI, which may even
be on the order of hours. By contrast, the terminology of
‘small-scale’ indicates a small area quantified in terms
of metres, which is comparable to the transmission range
of MUs. Moreover, having a ‘small-scale’ opportunistic net-
work also indicates a lower latency in delivering the IoCI,
which is on the order of a transmission frame duration, say
milliseconds.

B. CONTRIBUTIONS
In the rest of this treatise, we will demonstrate how integrated
cellular and opportunistic networks solve the aforementioned
three design dilemmas of the information dissemination. The
contributions of this paper are listed below:
• We first deliver a detailed tutorial on the information
dissemination process of integrated cellular and large-
scale opportunistic networks, and discuss its typical
applications both in the scenario of improving connec-
tivity of classic cellular networks and in the scenario of
off-loading tele-traffic from cellular networks to
opportunistic networks.

• In the above tutorial, we characterised the impact of
both the mobility-related factors and that of a range
of other factors on the information dissemination pro-
cess. Specifically, we demonstrated that the contact
duration between a pair of MUs obeying a random
directionmobility model is approximately exponentially
distributed. However, the contact duration between a
BS (static node) and a MU can be closely approximated
by the Gamma distribution.

• By jointly considering both the contact duration as
well as the well-known exponentially distributed inter-
contact duration, we model the information dissemina-
tion process as a Continuous-Time-Pure-Birth Markov
Chain (CT-PBMC) when a homogeneous mobility
model is assumed for all the MUs. Furthermore, we
additionally demonstrate that heterogeneous mobility
can also be handled by an equivalent mathematical
transformation.

3The information delivery is completed by the opportunistic contacts of
the source and the target, when they enter each other’s transmission range.
No pre-decided deterministic routing is required.

4All the MUs holding the IoCI are potential relays for the next stage of
multicast. No pre-decided deterministic relay selection is required.

• Furthermore, the tools of SNA are invoked for carefully
selecting the initial receiver set in the scenario of
off-loading tele-traffic from cellular networks to
opportunistic networks.

• Following this tutorial, we propose a hybrid
information dissemination scheme for integrated
cellular and small-scale opportunistic networks. This
scheme consists of two main stages, namely the
BS-aided single-hop multicast and the cooperative mul-
ticast aided spontaneous dissemination. In order to
avoid any interference amongst Information Multicas-
ters (IMs), a Time-Division-Multiple-Access (TDMA)
scheme is implemented.

• The varying distances between the transmitters and
receivers, which are incurred by the MUs’ mobility,
result in varying Path Loss (PL). By jointly
considering the PL and the multipath fading in the
PHYsical (PHY) layer as well as the classic round-
robin resource scheduling in the Medium-Access-
Control (MAC) layer, we firstly analyse the average
throughput of both the cellular links and of the oppor-
tunistic links. Then, we model the hybrid information
dissemination scheme by a Discrete-Time-Pure-Birth
Markov Chain (DT-PBMC).

• With the aid of this DT-PBMC, we obtain the
closed-form results for the group delay characterising a
specific group of MUs successfully receiving the IoCI.
The group delay is a generic form subsuming various
delaymetrics.When the group size is one, it is equivalent
to the end-to-end delay. When the group size is equal
to the total number of MUs in the area studied, it is
equivalent to the total dissemination delay, which is the
time required to serve all of the MUs. Furthermore, the
average energy dissipation of disseminating the IoCI is
also derived.

• We observe from the simulation results that a more
vigorous social interaction of the MUs is capable of
significantly reducing both the dissemination delay and
the energy dissipation. The tools of SNA can also
be exploited for further improving the information
dissemination performance of integrated cellular and
small-scale opportunistic networks, as we detailed
in [57].

The rest of this treatise is organised as follows.
In Section III, we provide a tutorial on the information
dissemination process of integrated cellular and large-scale
opportunistic networks, where two specific application
scenarios are introduced, namely that of improving the con-
nectivity of cellular networks and offloading tele-traffic from
cellular networks. In Section IV, we propose a hybrid infor-
mation dissemination scheme for our integrated cellular and
small-scale opportunistic networks in order to reduce both
the delay and energy dissipation required for disseminating
the IoCI. Finally, we conclude and compare the main features
of the family of integrated large-scale/small-scale opportunis-
tic networks in Section IV.
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FIGURE 6. Two application scenarios for the integrated cellular and large-scale opportunistic networks. (a) Extending the coverage of the cellular
networks. (b) Off-loading tele-traffic from cellular networks.

III. INFORMATION DISSEMINATION IN INTEGRATED
CELLULAR AND LARGE-SCALE OPPORTUNISTIC
NETWORKS
In order to disseminate the IoCI to all the MUs, the store-
carry-forward mode of [58] is exploited. Once a MU receives
the IoCI, it first saves the IoCI in its own storage, then
carries the IoCI as it moves and forwards it to other hitherto
unserved MUs (uMUs). However, in large-scale opportunis-
tic networks, MUs are sparsely distributed across a large
area, and their transmission range is much smaller than
the size of the area studied. Any information exchange can
only be completed, when the MUs are within each other’s
transmission range. Moreover, since it rarely occurs that an
uMU simultaneously enters the transmission range of mul-
tiple Information Owners (IOs) or vice versa, sophisticated
MAC protocols, such as interference/contention avoidance
and resource scheduling [59], become dispensable. As a
consequence, the information dissemination is dominated by
the mobility pattern of MUs, and the corresponding delay
metrics exhibit similar to the inter-contact duration5 between
a pair of MUs, which is the main feature of Delay-Tolerant
Networks (DTNs) [60].

A. TWO APPLICATION SCENARIOS
As portrayed in Fig.6, integrated cellular and large-scale
opportunistic networks can be applied in the following
two scenarios, for example.

1) IMPROVING CONNECTIVITY OF CELLULAR NETWORKS
If the BSs are sparsely distributed in a large area [61],
the MUs may lose their connections to the BSs since they

5The statistical properties of the inter-contact duration will be introduced
in Section III-C.

are likely to be out of the BSs’ coverage. In this case,
opportunistic communication between a pair of MUs can be
invoked for the sake of disseminating important messages.
As shown in Fig.6(a), when MU1 and MU4 move into the
coverage of the BS, they successfully receive the IoCI from
the BS. Thereafter, they carry the IoCI and roam within
the area studied. Once they meet other uMUs, the IoCI is
delivered via the opportunistic links between them. As a
result, opportunistic communication increases the chance of
the IoCI’s successful reception for those MUs that are not
within the coverage of the BS. This integrated network can be
exploited for supporting emergency communication as well
when most of the BSs are destroyed by a natural disaster [48].
Furthermore, if we consider the BS to be a roadside unit (RU),
the scenario of Fig.6(a) can be naturally extended to a hybrid
vehicular network [62], where RU-to-vehicle and vehicle-to-
vehicle communications cooperate in order to disseminate the
important traffic information, for example. In Section III-E,
we will introduce a mathematical tool for analysing the delay
metrics of this scenario.

2) OFF-LOADING TELE-TRAFFIC FROM
CELLULAR NETWORKS
Due to the intrinsic unicast nature of cellular communica-
tions, multiple dedicated cellular links have to be established
for the sake of disseminating the IoCI to all the requesters,
which absorbs a large fraction of the BSs’s resources.
Apart from improving connectivity of cellular networks,
large-scale opportunistic networks are also capable of
off-loading some tele-traffic from cellular networks so as to
save BSs’ precious resources [63]. As shown in Fig.6(b),
the BSs firstly inject some copies of the IoCI into the
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opportunistic network. Thereafter, the IoCI is disseminated
via opportunistic contacts of MUs as well as via direct injec-
tions from the BSs. Since all the MUs are covered by the
cellular network, the information delivery of a cellular link
is prompt and the delay is substantially shorter than the inter-
contact duration of MUs. In Section III-G, we will highlight
the specific characteristics of this scenario.

B. FACTORS INDEPENDENT OF THE MOBILITY OF MUs
Let us first introduce the factors affecting the performance of
the integrated cellular and large-scale opportunistic networks,
which are unrelated to the mobility of MUs.

1) TRANSMISSION RANGE
In practice, the transmission range r is determined by
a specific short-range communication technique employed
for information transmission. For instance, the transmission
range is up to 60 meters for Bluetooth [64], whilst it could be
upto 250 meters for WiFi according to the family of 802.11
protocols [52]. Theoretically, the transmission range is jointly
determined by transmit power, wireless channel’s attenuation,
as well as by the interference. For instance, effective trans-
mission range [65] is defined as the maximum value of the
transmission range satisfying the condition that the received
power remains higher than a pre-defined thresholdwith a high
probability.

2) FILE SIZE AND TRANSMISSION RATE
Since the wireless link can only be established when the
source and the target are within each other’s transmission
range, as to whether the file can be successfully delivered or
not depends on the file size L, on the transmission rate B and
on their contact duration.6 The file size varies from Kilobytes
(for text messages) to Megabytes (for multimedia contents),
while the transmission rate depends on bandwidth and trans-
mit power, on the channel attenuation, on the interference, as
well as on the specific choice of the modulation and coding
schemes. Since adaptive power control [66] is widely adopted
in practical communication, a minimum transmission rate B
can usually be achieved at the receiver end. If this is the case,
the transmission duration becomes L/B time units.

3) LIFE TIME OF THE IoCI
IoCI considered in this treatise may belong to the category of
time-sensitive information, such as weather forecast, traffic
information etc. This type of information would only attract
the interest of MUs for a short period, which is defined by the
life time TL [67]. Once the IoCI is firstly generated, it would
be disseminated in the integrated cellular and large-scale
opportunistic networks for a period of TL . After this period,
the uMUs might lose their interest in it and the IoCI might
be discarded since it is no longer up-to-date. The value of TL
depends on the mobile application’s specific requirements.

6This will be introduced in Section III-C.

C. MOBILITY-RELATED-FACTORS
Apart from the factors which are unrelated to the mobility of
the MUs, the mobility-related factors also crucially affect the
performance of the integrated networks.

1) INTER-CONTACT DURATION
Let MUi and MUj move according to a specific mobility
model. These two MUs are within each other’s transmission
range at time 0, and then they move out of range at time
instant t1. If these twoMUs next comewithin the transmission
range of each other again at time t2, then the time duration
TIC = (t2 − t1) is defined as the inter-contact duration
of MUi and MUj.

Let us consider the following random direction mobility
model [68] as an example.
Definition 1 [Random Direction (RD) Mobility Model]:

In this model, a MU uniformly assumes a specific speed from
the region [Vmin,Vmax] and uniformly chooses a particular
direction from the region [0, 2π ). Then this MUmoves along
the chosen direction with the chosen speed for an expo-
nentially distributed travelling time. After this movement,
the MU again randomly chooses a speed, a direction and a
travelling time for its next movement.

According to [69], the expected inter-contact duration
between twoMUs obeying the RDmobility model is given by

T IC =
S

2rV ∗
, (2)

where S is the area of the square-shaped mobility region, r is
the transmission range and V ∗ is the average relative speed7

between a pair of MUs, whose value is given by [70]

V ∗ = 1.27V =
1.27(Vmin + Vmax)

2
. (3)

Furthermore, the contact rate is defined as λs = 1/T IC , and
the number of contacts can be modelled as a Poisson process
with an arrival rate of λs [69]. In our following discourse, we
denote the rate of contact occurrences between the BS and
a MU as λb.

As demonstrated in [69], the inter-contact duration of
the RD model and that of the Random Way-Point (RWP)
model [68] strictly obey the exponential distribution, while
the inter-contact duration of the Random Walk (RW)
model [68] also has an exponentially distributed tail. The
inter-contact duration may be approximated by a certain
inverse power-law [71], but this approximation is believed
to be over-pessimistic. Furthermore, the authors of [72]
found that most of the realistic mobility traces, such as
those of the InfoCom [71] and UCSD [73] datasets, can
be well approximated by a mixed power-law and exponen-
tial distribution. After a characteristic time, which may be
on the order of half a day, the complementary cumulative
distribution function (CCDF) of the inter-contact duration

7The average relative speed between a moving node and a static node is
V ∗ = V , which can be substituted in (2) for the sake of calculating the
average inter-contact duration between the BS and a MU.
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decays exponentially. Since the delay metrics of the
information dissemination are usually on the same order,
it is reasonable for researchers to assume the exponentially
distributed inter-contact duration in the delay analysis of
large-scale opportunistic networks [74], [75].

2) CONTACT DURATION
Let MUi and MUj move according to a specific mobility
model. We assume that these two MUs come within the
transmission range of each other at time instant 0. The contact
duration TC is defined as the time duration during which they
initially remain in contact with each other before they move
out of each other’s transmission range.

Let us again consider the RD mobility model as an
example. According to [76], the average contact duration
between a pair of MUs is given by

TC =
πr
2V ∗

, (4)

where r is the transmission range and V ∗ is the average
relative speed given by (3).

However, the CCDF of the contact duration has not been
characterised in the open literature for the popular synthetic
mobility models, such as the RD, RWP and RW mobility
models. The authors of [77] found that the contact duration
obeys the Pareto distribution for the encounter trace based
on Bluetooth devices. By contrast, the authors of [78] found
that for vehicular mobility traces, the contact duration is
well approximated by a mixed power-law and exponential
distribution. In contrast to the inter-contact duration reported
in [72], the CCDF of the contact duration exponentially
decays before reaching a specific characteristic time, which
is on the order of 100 seconds.

The authors of [79] proposed a contact-duration-aware data
replication scheme by assuming Pareto-distributed contact
duration. However, the impact of contact duration on the
information dissemination of large-scale opportunistic net-
works has been to a degree neglected in the existing literature.
Researchers often assume that the bandwidth provided for
the transmission between a pair of MUs is extremely high
and the file size is relatively small [40]–[42]. Even if the
file size is large, the file is assumed to be divided into small
data chunks. Consequently, the existing studies do not focus
on transmitting the entire file but on transmitting a single
data chunk [80], [81]. According to these assumptions, if a
pair of MUs is in contact, the file (or the data chunk) may
be delivered promptly. Hence, it has been deemed unneces-
sary to account for the contact duration when characterising
the information dissemination performance. However, these
assumptions are somewhat impractical.

In this treatise, we assume that the success of file delivery
depends on the following two events:
• The target MU enters the transmission range of the
source MU with a rate of λs;

• The contact duration between the source and the target
MUs must be longer than the required transmission time

that is defined as L/B, where L is the file size and B is
the transmission rate.

As a result, the probability of successfully delivering a
file during a single contact is given by FTC (L/B) =
P(TC > L/B), which is the CCDF of the contact duration TC .
For this reason, we propose a thinned Poisson process for
the effective contact model between a pair of MUs with a
rate of λ̃s = FTC (L/B)λs. Since both the original contact
processes and the contact durations between any pairs of
MUs are independent of each other [69], the effective contact
processes are independent as well.

3) SOME RESULTS
Let us now consider some simulation results obtained from
the following RD mobility model:
• The simulation area is a 2000× 2000 (m2) square area;
• The BS is located at the centre of the square area.
• The duration of a single movement obeys an exponential
distribution with a mean of 10 minutes;

• The speed of a single movement is uniformly chosen
from the region of [2, 4] (m/s);

• The direction of a single movement is also uniformly
chosen from the region of [0, 2π );

• AMUwould bounce back if he/she hits the boundary of
the square area during a single movement.

The most important parameters of the RDmobility model are
also summarised in TABLE 4 for the readers’ convenience.

TABLE 4. Simulation parameters for the RD mobility model.

The CCDFs of both the inter-contact duration and the
contact duration are plotted in Fig.7, where r denotes the
transmission range of MUs, and R denotes the transmission
range of the BS. As shown in Fig.7(a)(b), the CCDFs of
the inter-contact duration between a pair of MUs and that
between the BS and a MU are both closely approximated
by the exponential distributions, while the contact rates are
calculated as the reciprocal of (2).

As shown in Fig.7(c), the CCDFs of the contact dura-
tion between a pair of MUs are closely approximated by
the exponential distributions, which have means calculated
by (4). In Fig.7(d), we observe that the CCDFs of the contact
duration between the BS and a MU are accurately approx-
imated by the Gamma distribution [82]. In order to obtain
the accurate value of the shape parameter m and that of
the scale parameter θ , we have to derive the closed-form
results for the mean and the variance of the contact duration.
Although the mean is given by (4), we have not derived the
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FIGURE 7. Opportunistic contact properties of the RD mobility model. (a) CCDF inter-contact duration between a pair of MUs.
(b) CCDF inter-contact duration between the BS and a MU. (c) CCDF contact duration between a pair of MUs. (d) CCDF contact
duration between the BS and a MU.

accurate variance, which we expect to derive in our future
work. At this stage, we embark on numerically deriving the
variance of the contact duration.

D. PROTOCOLS FOR INFORMATION DISSEMINATION
In the open literature, there are three commonly-adopted
protocols for information dissemination.

1) DIRECT TRANSMISSION
In this protocol, information is disseminated only by the BSs
without any assistance from the opportunistic communication
between the MUs [83]. All the MUs receive the IoCI only
when they move into the transmission range of the BSs.

2) TWO-HOP RELAYING
In this protocol, only the specific MUs that receive the IoCI
from the BSs are relied upon for disseminating the IoCI to the
other hitherto uMUs [80].

3) EPIDEMIC RELAYING
In this protocol, the MUs carrying the IoCI may deliver
it to any hitherto uMUs that are within their transmis-
sion range [84]. The epidemic relaying protocol is often
criticised for its low efficiency in supporting end-to-end

communication because multiple copies of information are
generated, which consumes a large fraction of the resources.
However, this low-efficiency problem does not exist in the
scenario of information dissemination, because all the MUs
in the community are innately interested in the information
distributed.

E. CONTINUOUS-TIME-PURE-BIRTH MARKOV CHAIN
AIDED DELAY ANALYSIS
Let us now introduce the mathematical tool of analysing the
delay metrics of integrated cellular and large-scale oppor-
tunistic networks. We first consider its application in the
scenario of improving connectivity of cellular networks, as
shown in Fig.6(a). A slight adjustment of this methodology
makes it fit also for the scenario of off-loading tele-traffic
from the cellular networks, as shown in Fig.6(b).

We assume that all theN MUs roam in a bounded area, and
the IoCI is disseminated according to the epidemic relaying
protocol. The number of contacts between any pair of MUs
obeys an independent homogeneous Poisson process with a
rate of λs. Correspondingly, the contact duration between
any pair of MUs also obeys an independent homogeneous
distribution, whose CCDF is FTC ,s(tC ). If the size of the
IoCI is L, and the transmission rate provided for opportunistic
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FIGURE 8. Continuous-Time-Pure-Birth Markov Chain.

links is Bs, the successful IoCI delivery during a single
contact is achieved with a probability of FTC ,s(L/Bs). As a
result, the number of effective contacts between any pair of
MUs can be modelled by a thinned Poisson process [82] with
a rate of λ̃s = λsFTC ,s(L/Bs).
We assume having only a single BS in the area studied,

as shown in Fig.6(a), and the number of contacts between
any MU and the BS also obeys an independent homoge-
neous Poisson process with a rate of λb. Correspondingly,
the contact duration between any MU and the BS also obeys
an independent homogeneous distribution, whose CCDF
is FTC ,b(tC ). Similarly, the number of effective contacts
between any MU and the BS can be modelled by another
homogeneous thinned Poisson process having a rate of
λ̃b = λbFTC ,b(L/Bb).
As a result, we may model the information dissemination

process by a CT-PBMC, as shown in Fig.8. State n of the
CT-PBMC represents that currently there are n MUs having
the information, which are referred to as IOs. Observe from
Fig.8 that there are two special states. The first one is the
initial state 0, which represents that only the BS owns the
IoCI at the beginning of the information dissemination pro-
cess. The other one is the final state N , namely the absorbing
state, which represents that all the MUs successfully receive
the IoCI. The rest of the states are defined as the transient
states.
Furthermore, {̃λn, n = 0, 1, · · · , (N − 1)} represent the

rates of the state transitions from state n to state (n + 1).
Specifically, for state n, we have n IOs and (N − n) uMUs.
Consequently, the transition rate is given by

λ̃n = (N − n)̃λb + n(N − n)̃λs, (5)

where λ̃s and λ̃b have already been defined in the second
and third paragraphs of Section II-E, respectively. The
(N × N )-element transition rate matrix [85] is given by

2 =



−̃λ0 λ̃0 0 · · · 0
0 −̃λ1 λ̃1 · · · 0
...

. . .
. . .

. . .
...

0 0
. . . −̃λN−2 λ̃N−2

0 0 0 · · · −̃λN−1

. (6)

Given this transition rate matrix, we are able to derive some
delay metrics with the aid of the CT-PBMC.

1) THE DISSEMINATION DELAY
The dissemination delay TD is defined as the time that is
spent for disseminating the IoCI to all the N MUs in the

area studied. According to the properties of the CT-PBMC, a
specific transition delay Tn from state n to state (n+1) obeys
an exponential distribution with a rate of λ̃n. Therefore, the
dissemination delay is obtained as TD =

∑N−1
n=0 Tn, which

obeys a hypo-exponential distribution [82]. Since the state
transition delays {Tn, n = 0, 1, · · · , (N−1)} are independent
of each other, the expectation of the dissemination delay is
derived as

E[TD] =
N−1∑
n=0

1

λ̃n
=

N−1∑
n=0

1

(N − n)̃λb + n(N − n)̃λs
. (7)

The dissemination delay TDmay be expressed as a phase-type
distribution [85], whose CCDF is give by

P(TD > tD) = αT × exp(tD2)× 1, (8)

where α is a (N × 1)-elements column vector, whose first
element is one and all the other elements are zero, 1 is a
(N×1)-elements column vector, whose elements are all ones.
Thanks to the existence of the term (N − n)̃λb in (5), the
transition rate obeys λ̃n 6= λ̃m for all n 6= m. Hence, we
may directly formulate the CCDF of the hypo-exponential
distributed dissemination delay TD [82] as

P(TD > tD) =
N−1∑
n=0

 N−1∏
m=0,m 6=n

λ̃m

λ̃m − λ̃n

 exp(−̃λntD), (9)

which is based on an equivalent transformation of (8).

2) THE INDIVIDUAL DELAY
The individual delay TI of a specific MU is defined as the
time of this MU successfully receiving the IoCI. This is also
the end-to-end delay between the BS and a specificMUwhen
the epidemic relaying protocol is invoked for the information
dissemination. The target MU may receive the IoCI during
any of the states spanning from 1 to N in the sequence of
the state transitions of the CT-PBMC. When considering the
transition from state n to (n+ 1) (0 ≤ n ≤ N − 1), the target
MU may successfully receive the IoCI with a probability of
1/(N − n), and it may fail to receive it with a probability of
(N −n−1)/(N −n). Specifically, the probability P(I )n+1 of the
target MU receiving the IoCI at state (n+ 1), which naturally
implies that it has not received the IoCI at any of the previous
states, may be expressed as

P(I )n+1 =
1

N − n

n−1∏
m=0

N − m− 1
N − m

=
1
N
, 0 ≤ n ≤ (N − 1).

(10)
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FIGURE 9. Two-dimensional CT-PBMC for capturing the heterogeneous MUs’ mobility.

Given that the target MU receives the IoCI at state (n+1), the
CT-PBMC can be considered as being absorbed at this state.
Similarly to (8), the conditional expectation and the CCDF
of TI is expressed as

E[TI |n+ 1] =
n∑

m=0

1

λ̃m
, 0 ≤ n ≤ (N − 1), (11)

P(TI > tI |n+ 1) = αT × exp(tI2)× 1n+1, (12)

where 1n+1 is a (N × 1)-element column vector, whose first
(n + 1) elements are one and all the other elements are
zero. After further manipulations relying on the Bayesian
principle [82], the CCDF of TI may be expressed as

P(TI > tI ) =
N−1∑
n=0

P(TI > tI |n+ 1)P(I )n+1

=

N−1∑
n=0

αT × exp(tI2)× 1n+1
N

=
αT × exp(tI2)

N
×

N−1∑
n=0

1n+1

=
αT × exp(tI2)× η

N
, (13)

where η = (N ,N − 1, · · · , 1)T. Similarly, the expectation
of TI may be expressed as

E[TI ] =
N−1∑
n=0

E[TI |n+ 1]P(I )n+1

=

N−1∑
n=0

1
N

n∑
m=0

1

λ̃m
=

N−1∑
n=0

N − n
N

1

λ̃n
, (14)

where λ̃n in (14) is given by (5).

3) THE NUMBER OF THE IOs AT AN ARBITRARY
TIME INSTANT
As introduced in Section II-B, if the IoCI has a useful
life time TL , it is important for us to determine how many
MUs can successfully receive the IoCI before it expires. The
following theorem provides the closed-form expression for
calculating the probability of the CT-PBMC remaining in an
arbitrary state at an arbitrary time instant.

Theorem 1: Let us denote the probability of the CT-PBMC
remaining in state n at time instant t as pn(t) for 0 ≤ n ≤ N .
The closed-form expression of pn(t) is formulated as:

pn(t) =



exp(−̃λ0t), n = 0,(
n−1∏
m=0

λ̃m

)
n∑
i=0

exp(−̃λit)∏n
j=0,j 6=i (̃λj − λ̃i)

, 0 < n < N ,

1−
∑N−1

n=0 pn(t), n = N .
(15)

Proof: Please refer to Appendix A for the proof.
Let t = TL in Theorem 1, we may derive the average

number of MUs successfully receiving the IoCI before the
IoCI expires, which is expressed as n =

∑N
n=0 npn(TL).

F. HETEROGENEOUS MOBILE USERS
Assuming a homogeneous mobility pattern in the above
analysis is somewhat idealised for adequately reflecting
the real characteristics of the MUs. In the existing litera-
ture [86], [87], often the multi-dimensional Markov chain
is invoked for capturing the heterogeneous MU’s mobility
pattern. In this section, we will show that after some equiva-
lent mathematical transformations, the analytical framework
introduced in Section III-E can be further exploited for
deriving various performance metrics, when the MUs’
heterogeneous mobility patterns are taken into account.

The authors of [86] modelled the epidemic relaying
protocol based end-to-end communication by a two-
dimensional CT-PBMC, as shown in Fig.9. Let us first
consider how to map their model onto the analytical frame-
work of Section II-E. In their model, two types of MUs are
assumed, namely M number of super MUs and N number
of ordinary MUs. Jointly considering the impact of both
the inter-contact duration and contact duration, the effective
contact rate between a pair of super MUs is λ̃SS , and that
between a pair of ordinary MUs is λ̃NN , while that between

a super MU and a ordinary one is λ̃SN . Additionally, the

effective contact rate between a superMU and the BS is λ̃BS ,
while that between an ordinary MU and the BS is λ̃BN .
As portrayed in Fig.9, state (m, n) represents that we cur-

rently have m super MUs and n ordinary MUs that have
successfully received the IoCI. When the epidemic relaying
protocol is implemented, the transition rates from this state to
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FIGURE 10. The CT-PBMC for completely heterogeneous mobility of MUs.

its neighbouring states may be expressed asλ
(m+1,n)
(m,n) = (M − m)(̃λBS + m̃λSS + ñλNS ),

λ
(m,n+1)
(m,n) = (N − n)(̃λBN + m̃λNS + ñλNN ).

(16)

However, before analysing any of the performance metrics
of this two-dimensional CT-PBMC, we have to equivalently
transform it into a one-dimensional CT-PBMC, as shown
in Fig.9. State (m, n) for 0 ≤ m ≤ M and 0 ≤ n ≤ N
in the two-dimensional CT-PBMC can be transformed into
state (m + nM ) in its transformed one-dimensional version.
Furthermore, the corresponding transition rates λ(m+1,n)(m,n) and

λ
(m,n+1)
(m,n) are also equivalently transformed into λ(m+1+nM )

(m+nM )

and λ(m+(n+1)M )
(m+nM ) , respectively. After this transformation, our

analytical framework introduced in Section II-E can be
invoked for analysing the various performance metrics. How-
ever, we have to employ a phase-type-distribution similar to
that of (8), for the sake of characterising the performance of
this two-dimensional CT-PBMC. This methodology can then
be naturally extended to the multi-dimensional CT-PBMC.

Similarly, the authors of [87] relied on a pair of com-
munities for their model. The MUs in the same com-
munity share the same mobility pattern, while the MUs
belonging to the different communities have different mobil-
ity patterns. Hence, we classify the solutions provided in
both [86] and [87] into the same category.

The authors of [81] assumed a completely heterogeneous
mobility model for the MUs. We extend this model to our
integrated cellular and large-scale opportunistic network.
We denote the set of the MUs in the networks as N .
When jointly considering the impact of both the inter-
contact duration and the contact duration, any pairs of MUs
have different effective contact rates, which are denoted

as {̃λXY |X ,Y ∈N }. Furthermore, the effective contact rates
between the BS and any MUs are different as well, which are
denoted as {̃λBX |X ∈N }.

Fig.10 portrays an example of CT-PBMC for the
completely heterogeneous mobility pattern of MUs in an
integrated network, which consists of three MUs, say
N = {X ,Y,Z}. According to the number of MUs suc-
cessfully receiving the IoCI, the CT-PBMC is divided into
three levels. In Level 0, only the BS owns the IoCI. Level 1
is comprised of three states, say states X , Y and Z , repre-
senting the corresponding MUs that own the IoCI. Level 2
is comprised of three states as well, say states XY , XZ
and YZ . Finally, level 3 only has a single state, which is
state XYZ , representing that all the MUs have received the
IoCI. Let us consider a single state transition example, say
from stateX to stateXY , in order to explain how to derive the
corresponding transition rate. MU Y can only successfully
receive the IoCI if Y ‘meets’ either X or the BS. Hence, the
corresponding state transition delay is equal to the minimum
of two exponential variables associated with the rates of λ̃XY
and λ̃BY . Therefore, this minimum is also an exponential
random variable with a rate of λ̃BY + λ̃XY .

If we extend the CT-PBMC of Fig.10 to a more generic
model having |N | = N MUs, level n, which represents
that n MUs have successfully received the IoCI, consists
of
(N
n

)
different states. We further establish a simplified one-

dimensional CT-PBMC, whose states represent the different
levels of the original CT-PBMC, as shown at the bottom of
Fig.10. As demonstrated in [81], if the specific values of the
transition rates {̃λXY |X ,Y ∈ N } obey a distribution with a
mean of λ̂s and those of the transition rates {̃λBX |X ∈ N }
obey another distribution with a mean of λ̂b, then the
transition rate between state n and state (n + 1) in the
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FIGURE 11. Examples of the contact trace between a pair of MUs in the time interval [0, T ]. For the Infocom2006 contact trace,
the observation period is T = 3600 second(s). Shaded boxes represent the contact duration between MUs. Both the SPMs and
the ‘friendship’ weights of the contact traces as presented in (b) and (c) are provided in TABLE 5. (a) A generic form of the
contact trace between a pair of MUs in the time interval [0, T ]. (b) Contact trace between MU16 and MU07 in Infocom2006
from 8:01am to 9:00am. (c) Contact trace between MU19 and MU26 in Infocom2006 from 8:01am to 9:00am.

simplified one-dimensional CT-PBMC should be
λ̃n = (N −n)(̂λb+ n̂λs). As a result, the model characterising
completely heterogeneous mobility patterns of the MUs can
also be found using the analytical framework of Section III-E.

G. TELE-TRAFFIC OFF-LOADING
As shown in Fig.6(b), in the application of off-loading tele-
traffic from the cellular system, all the MUs roam within the
coverage of a cellular network. As a result, the contact rates
between the BSs and the MUs are infinite, which indicates
that the inter-contact duration is zero and that the MUs are
always capable of connecting to the BSs. Moreover, the
transmission delay from the BSs to the MUs only depends
on the transmission rate of the wireless channels connecting
them, which is far shorter than the inter-contact duration
between the MUs. Hence, it is reasonable to assume that the
information transmission between the BSs and the MUs can
be promptly completed [81].

However, transmitting the IoCI to multiple requesters via
multiple dedicated cellular links imposes a heavy traffic
load on the BSs. Consequently, opportunistic communication
amongst MUs is adopted for off-loading tele-traffic from
the overloaded BSs. To this end, the BSs initially dissem-
inate some copies of the IoCI to a group D of MUs via
dedicated cellular links, whose size is |D| = D. Then, the
IoCI is disseminated to the rest of the MUs by their peers
via opportunistic communication. During this information
dissemination process, the BSs might further inject the IoCI
into the large-scale opportunistic network at any time instant.
However, in order to reduce the IoCI copies to be injected
by the BS, the optimal strategy to be adopted by the BSs is
demonstrated in [81] to be that of initially sending the IoCI

to someMUs before embarking on information dissemination
across the opportunistic network and finally transmitting the
IoCI to the uMUs, when the IoCI expires.

According to aforementioned optimal strategy in [81], after
the initial IoCI injection, we have |D| = D MUs that have
successfully received the IoCI and the BSs are no longer
invoked for disseminating the IoCI before it expires. Hence,
the initial state of the CT-PBMC as shown in Fig.8 is state D,
rather than state 0. Furthermore, the state transition rate is
re-derived after deleting all the BS-related terms. After this
slight adjustment, our analytical framework of Section III-E
can also be exploited for analysing the performance metrics
in the specific application of off-loading tele-traffic from
cellular networks.

Another issue in this application scenario is how to select
the initial receiver set D for receiving the IoCI from the
BSs before information dissemination via the opportunistic
network so that more MUs can receive the IoCI before it
expires. In order to achieve this goal, the concept of
‘centrality’ borrowed from the tools of SNA [88] is exploited
for evaluating the specific significance of an individual MU
on the opportunistic network.

Before evaluating the centrality8 of an individual MU,
we have to extract a social contact graph from the contact
traces and quantify the grade of ‘friendship’ between a pair
ofMUs according to their contact-history, as shown in Fig.11.
We account for the encounter-related properties with the
aid of the so-called social pressure metric (SPM) [39].
Explicitly, the SPM between MUi and MUj is defined

8Centrality describes how ‘central’ a node is in a network [88]. There
are various types of centrality, such as degree, betweenness, closeness, as
introduced in Section I-A.
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FIGURE 12. The social contact graph extracted from the InfoCom 2006 mobility trace [71]. (a) Out-degree. (b) Betweenness. (c) Component.

TABLE 5. Calculating the SPMs and the ‘friendship’ weights between two pairs of MUs in Infocom2006 from 8:01am to 9:00am.
The contact traces in this observation period are provided in Fig.11.

as SPMi, j = (
∑n

x=1 t
2
inter,x)/(2T ), whose reciprocal

ωi, j = (2T )/(
∑n

x=1 t
2
inter,x)) represents the weight of the

‘friendship’ between MUs. The larger the value of ωi, j, the
closer the friendship and hence the higher the forwarding
probability between MUi and MUj.

Let us consider the realistic mobility trace of
Infocom 2006 [71] as an example. We study the contact
traces of the N = 78 MUs (exclude all the static nodes and
external nodes) for 1 hours, between 8:01am and 9:00am
on April 24th, 2006, namely on the opening day of the
conference. The SPMs between any pair of MUs are cal-
culated for this time period, whose reciprocals are invoked
for defining the weight of their friendships. The length of
the observing period is T = 3600 s. The weight threshold
is set to be 1/5 min−1 (0.0033 s−1). All the friendships,
whose weights are lower than this threshold, are discarded.
In TABLE 5, we exemplify the calculation of the SPMs and
the ‘friendship’ weights for the pair of MU16 and MU07 as
well as for the pair ofMU19 andMU26. As a result, we obtain
a directed social contact graph for the 78 MUs, as shown
in Fig.12. With the aid of the tools of SNA, the following
strategies may be designed for the selection of the initial
receiver set.

• Random Selection: Without considering any social net-
work features, the initial receiver set D is randomly
selected. Although we cannot guarantee a better delivery
ratio before the IoCI expires, improved fairness amongst
MUs can be achieved, as claimed in [81].

• Out-Degree-Based Selection: Out-degree of a MU is
defined as the number of the social links that emerge
from this MU and terminate at its neighbours in
the directed social contact graph [88]. As shown
in Fig.12(a), the nodes filled by darker colours exhibit
higher out-degree values. Before the information dis-
semination commences, the MUs having the |D| = D
highest out-degrees are selected as the initial receivers.

• Betweenness-Based Selection:The betweenness [88] for
MU k is calculated as

CB(k) =
N∑

j=1, j 6=k

N∑
i=1,i 6=k

gi, j(k)
gi, j

,

where gi, j is the total number of shortest paths, in terms
of the number of hops, linking MU i and MU j in the
social contact graph, and gi, j(k) is the number of those
shortest paths that include MU k . The betweenness
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identifies ‘bridge MUs’ that act as links between
different node clusters. As shown in Fig.12(b), the
nodes filled by darker colours have higher values
of betweenness. Before the information dissemina-
tion process, the MUs having the |D| = D high-
est betweenness values are selected as the initial
receivers.

• Component-Based Selection: As shown in Fig.12(c),
the social contact graph is naturally divided into dif-
ferent components. The MUs in the same component
are connected to its peers via direct links or multi-hop
links, while the MUs in different components are dis-
connected. In Fig.12(c), the nodes belonging to the same
component are filled by the same colour. The social con-
tact graph of Fig.12(c) is comprised of 28 components,
amongst which the largest one has 40 MUs. In order to
allow more MUs receive the IoCI via the opportunistic
network, the initial receivers should cover as many dif-
ferent components as possible. We sort the components
according to their sizes and select a MU belonging to
a component having the highest betweenness as the
component ‘head’. All these component ‘heads’ have
higher priorities to be included into the initial receiver
set than other MUs, and by the same rationale, the
‘head’ of a larger component has a higher priority to be
selected than the head of a smaller component. Accord-
ing to this principle, we may obtain the initial receiver
set D.

Apart from the aforementioned ones, there are other types
of centralities conceived for different purposes. Google’s
well-known ranking algorithm, namely page rank, measures
the likelihood of nodes having important friends in a social
graph [89]. Ego-betweenness [6] is exploited for designing
the opportunistic routing protocol in [42] without any global
knowledge of the network. In contrast to traditional central-
ities that are based on unweighted networks, the cumulative
contact probability concept of [90] is used for reflecting the
properties of weighted networks. Interested readers may refer
to the related references for further information.

H. NUMERICAL RESULTS
Let us now consider some performance results for the afore-
mentioned two application scenarios.

1) IMPROVING CONNECTIVITY OF CELLULAR NETWORKS
In this scenario, we adopt a homogeneous RDmobility model
for all the MUs. The parameters of this RD model are the
same as those used for obtaining Fig.7 in Section III-C-3,
which have been summarised in TABLE 4. Furthermore, as
shown in TABLE 6, we assume that the transmission range
of the BS is 100 m, while that of the MUs is 50 m. The
transmission rate of the cellular link is Bb = 1 Mbps and
that of the opportunistic link is Bs = 2 Mbps. The file size
of the IoCI is set to 40 Mb (5 MB). Once the uMUs enter
the transmission range of the IOs (including the BS and the
servedMUs), their cellular/opportunistic links are established

TABLE 6. Simulation parameters for improving the cellular networks’
connectivity.

for delivering the IoCI. However, if the IoCI cannot be per-
fectly delivered during this contact, the data received by the
uMUs are discarded.

FIGURE 13. The average successful delivery ratio before the expiry of the
IoCI. RD mobility model defined in Section III-C-3 is invoked for
modelling the movement of the MUs. The mobility-related parameters are
provided by TABLE 4, while the other parameters are given by TABLE 6.

The average successful delivery ratio before the
IoCI expires is plotted in Fig.13. The analytical results (ana)
in Fig.13 are obtained by the following steps:
• Both the contact process between the BS and the MUs
and that between a pair of MUs are modelled by a
Poisson process. The contact rate λb between the BS
and the MUs is approximated to be λb = 0.54 per hour
according to (2), while the contact rate λs between a
pair of MUs is approximately λs = 0.3429 per hour
according to (2).

• The contact duration between the BS and the MUs
is modelled by a Gamma distribution having a shape
parameter ofm = 6.98 and a scale parameter of θ = 7.5,
as shown in Fig.7(d). The contact duration between a
pair of MUs is modelled by an exponential distribution
having a mean of TC = 20.62 seconds, which is derived
from (4).

• With the aid of CT-PBMC, as introduced in Section II-E,
the state probabilities {pn(TL)} are calculated by (15)
when the life time TL = {1.0, 1.5, 2.0} hours are
achieved. Furthermore, the average successful delivery

ratio is obtained as n/N =
∑N

n=0 npn(TL)/N , where
N is the total number of MUs in the area studied.
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TABLE 7. Centralities of the initial receiver set according to different selection schemes. (a) Out-degree based selection. (b) Betweenness based
selection. (c) Component based selection.

As shown in Fig.13, we observe that having more MUs
may significantly increase the delivery ratio, since the proba-
bility of successfully delivering the IoCI is greatly enhanced,
when more MUs participate in the information dissemination
process. The delivery ratio increases from 45% to 100%,
when the life time of the IoCI is one hour, as the number
of MUs increases from 10 to 80. Naturally, if the MUs can
tolerate a longer latency of receiving the IoCI, which indicates
a longer life time, the delivery ratio is also improved.

2) TELE-TRAFFIC OFF-LOADING
On the opening day of an academic conference, the organisers
are keen on finding an efficient way of disseminating the
conference program to the attendees. Again, as an exam-
ple, the contact traces of InfoCom 2006 [71] is employed.
We study the period spanning from 8:00 am to 9:00 am on
the opening day of the conference, April 24th, 2006, in order
to study how much the opportunistic network would assist
us in disseminating the IoCI. Since the traces were collected
via Bluetooth devices, we assume that the opportunistic link
between a pair of MUs is realised by Bluetooth and the
transmission rate is 1 Mbps. Bluetooth is a half-duplex peer-
to-peer communication technique. Hence, while a source is
transmitting data to a target, extra links cannot be estab-
lished even if another uMU enters the transmission range of
the source. Furthermore, corresponding to [63], we assume
that an uMU will acquire the IoCI from his/her geographic
neighbours with a probability of ppull = 0.001 during every
contact. The file size of the IoCI is 40 Mb (5 MB).

Moreover, random selection, out-degree based selection
and betweenness based selection as well as component based
selection are invoked for appointing the initial receiver set
directly acquiring the IoCI from the CI. Based on the social
contact graph of the MUs, as shown in Fig.12, the initial

receiver set is determined as follows, if the number of initial
receivers is 10:
• For the random selection, by definition, the initial
receiver set is randomly selected for every round of the
simulation.

• For the out-degree based selection, the initial receiver set
is determined from Fig.12(a) as {MU33, MU9, MU16,
MU58, MU62, MU13, MU14, MU24, MU10, MU15}.
The out-degrees and other centralities of this receiver set
are listed in TABLE 7(a).

• For the betweenness based selection, the initial receiver
set is determined from Fig.12(b) as {MU10, MU17,
MU56, MU13, MU32, MU54, MU14, MU62, MU4,
MU33}. The betweenness and other centralities of this
receiver set are listed in TABLE 7(b).

• For the component based selection, the initial receiver
set is determined from Fig.12(c) as {MU10, MU65,
MU19, MU25, MU48, MU51, MU52, MU61, MU70,
MU76}. The component IDs and the component sizes
as well as other centralities of this receiver set are listed
in TABLE 7(c).

The computation process of the above-mentioned metrics,
including the out-degree, the betweenness and the component
ID as well as the component size, is omitted for reasons
of space-economy, since it obeys the same methodology as
shown in TABLE 1.

As shown in Fig.14, we study the impact of the number
of the initial receivers on the number of MUs served by the
opportunistic network. The number of MUs served by the
opportunistic network also indicates the amount of tele-traffic
off-loaded from the CI. Observe from Fig.14 that the number
of MUs served by the opportunistic network firstly increases
as we increase the number of initial receivers. But after reach-
ing the peak, it then slowly reduces as we further increase the
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FIGURE 14. The average number of MUs receiving the IoCI via the
opportunistic network. The period spanning from 8:01am to 9:00am
on April 24th during InfoCom 2006 is studied.

number of the initial receivers. For different initial receiver
selection approaches, the peaks appear at different positions.
Specifically, for both the out-degree and betweenness based
selection approaches, the peaks appear when the number of
the initial receivers is 3; for component-based selection, the
peak appears when the number of the initial receivers is 9; for
random selection, the peak appears when the number of the
initial receivers is 8.

Furthermore, as shown in Fig.14, the pair of
centrality based selection methods have nearly the same
performance because all the initial receivers selected by these
two methods belong to the largest component, as shown
in Fig.12(c). Therefore, the MUs belonging to the other
27 components cannot receive the IoCI via the opportunistic
network. Observe from Fig.14 that the component selection
performs the best, because more isolated components are
covered by the initial receivers. Moreover, when the number
of initial receivers is low, the random selection performworst,
because the MUs belonging to an isolated component are
likely to be selected, which seriously degrades the perfor-
mance. However, when the number of initial receivers is high,
the random selection outperforms the two centrality-based
methods, because they are more likely to cover more MUs in
the opportunistic network.

IV. INFORMATION DISSEMINATION IN INTEGRATED
CELLULAR AND SMALL-SCALE OPPORTUNISTIC
NETWORKS
In densely populated areas, such as a football stadium and
open air festivals, MUs always experience limitations, when
they rely on the data services supported by the CI, such
as WiFi access points and cellular BSs. For instance, in a
circular area having a radius of 50 meters in one of the above-
mentioned scenarios, there may be hundreds of MUs, which
may impose a heavy tele-traffic load on the CI. Moreover, the
range of WiFi [52] in outdoor scenarios can be up to 250 m.
If the diameter of the circular area studied is lower than this
transmission range, it is reasonable for us to assume that

the MUs are always in the transmission range of each other.
As a result, in contrast to integrated cellular and large-scale
opportunistic networks, as introduced in Section III, the infor-
mation dissemination in this densely populated area is no
longer dominated by the encounter-properties of the MUs’
mobility. However, the varying distance between a pair of
MUs incurred by their movement would impose a fluctuating
signal strength at the receiver end. Such fluctuations can
be treated as another type of fading further aggravating the
multi-path effects [91]. Apart from the fading incurred by
the varying distance and the multi-path effects, sophisticated
MAC layer protocols are needed for efficiently scheduling
the resources so as to minimise the adverse effects of inter-
ference and to optimise the information dissemination perfor-
mance. All these features differentiate integrated cellular and
small-scale opportunistic networks from their large-scale
counterparts.

As a remedy, cooperative multicast (co-multicast) tech-
niques may be introduced for improving the attainable perfor-
mance by relying on multiple information multicasters (IMs)
during the information dissemination process. In [92], the
concept of multi-hop wireless multicast was proposed for the
sake of enhancing the achievable multicast coverage, where a
node having received the IoCI in a previous hop is randomly
selected for further multicast. In order to exploit the diversity
gain provided by multiple IMs, a multi-stage co-multicast
scheme was proposed in [93]. Moreover, it was argued in [94]
that the employment of two-stage co-multicast is more prac-
tical than that of its multi-stage counterpart. Therefore, the
attainable performance of two-stage co-multicast was
analysed in [95], while the associated optimum power alloca-
tion was characterised in [96]. Furthermore, in [97] and [98],
the authors studied the benefits of relay selection techniques
in the context of two-stage co-multicast. Specifically, in [97],
the best relay was selected for maximizing the end-to-end
co-multicast capacity. By contrast, in order to avoid unnec-
essary power wastage, in [98], the relays were activated
only if there were unserved nodes within their transmission
range.

In this section, we will introduce a mathematical
framework for analysing the performance of the information
dissemination in integrated cellular and small-scale oppor-
tunistic networks.

A. HYBRID INFORMATION DISSEMINATION SCHEME
As shown in Fig.15, our hybrid information dissemination
scheme is comprised of two main stages, which are the
BS-aided multicast and the co-multicast aided spontaneous
dissemination, respectively. For integrated cellular and small-
scale networks, communications work in a discrete-time
manner, where the basic time unit is the duration of a trans-
mission frame. We assume that all the MUs and the BS are
synchronously operated at the frame level, which can be
readily realised since the MUs normally exchange control
signalling with the BS.
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FIGURE 15. Hybrid information dissemination scheme.

1) BS-AIDED MULTICAST
At the first main stage, the cellular BS initially tries to mul-
ticast the IoCI to all the MUs in the studied area. The frame
structure employed at this stage is portrayed in Fig.15. At the
beginning of the frame, several Time Slots (TSs) are reserved
for control signalling exchange between the MUs and BS.
Next, a single TS is invoked by the BS for multicasting the
IoCI. Afterwards, several TSs are allocated to the MUs for
reporting their feedback. If a MU successfully receives the
IoCI, an acknowledgement (ACK) message is reported to
the BS. The BS repeats multicasting the IoCI in the next
frame, until it receives a single ACK at least. In this case, the
BS-aided multicast completes.

2) CO-MULTICAST AIDED SPONTANEOUS DISSEMINATION
During the second main stage, the IoCI is spontaneously dis-
seminated by the IMs to the hitherto uMUs via co-multicast
techniques, until all the MUs in the studied area successfully
receive the information. As shown in Fig.15, we have an
increasing number of IMs during this stage, and this may
substantially speed up the information dissemination process.
Furthermore, in order to avoid any collisions incurred by
multiple IMs, a TDMA scheme is introduced.9

During this stage, the BS may play the role of a controller.
The frame structure of this stage is also portrayed in Fig.15,
which consists of several TSs for relevant control signalling
exchange between the MUs and the controller as well as n0
TSs for IMs’ multicast. During the TSs for control signalling
exchange, the following tasks are completed.
• The IMs report their willingness of sharing the IoCI to
the controller;

9TDMA is one of the possible solutions that are capable of providing
orthogonal channel access. The TDMA scheme in distributed WiFi system
has already been thoroughly studied in [99] in terms of synchonisation,
contro overhead, which makes it an available solution for our model. Other
solutions, e.g. OFDMA, CDMA, and CSMA can be invoked as well.

• The uMUs send requests to the controller for
the IoCI;

• The controller schedules the available resources of
n0 TSs to the IMs, and then broadcasts the resource
scheduling scheme to all the IMs and uMUs. The detail
of the resource scheduling scheme invoked in our model
is introduced in Section IV-B.

Following the control signalling exchange, the IMs multi-
cast the IoCI to the uMUs during the allocated TSs. Finally,
if the controller does not receive any requests from the uMUs
at the beginning of a frame, it will inform all the IMs that the
information dissemination process is completed.

B. ROUND-ROBIN (RR) RESOURCE SCHEDULING
FOR THE SPONTANEOUS DISSEMINATION
In order to fully exploit the n0 TSs provided by the TDMA
system for the co-multicast aided spontaneous dissemination,
the classic round-robin (RR) scheme is invoked for schedul-
ing the n0 TSs of the current transmission frame to the IMs.
After collecting the IMs’ willingness of sharing the IoCI at
the beginning of the frame, the controller randomly sorts
the IMs into a set of IM, whose size is |IM| = n. Each
TS in the available TS set T S = {TSi|1 ≤ i ≤ n0} is
allocated to a IM belonging to the IM set. If the size of IM
is larger than n0, only the first n0 IMs of IM are assigned
with a single TS for their own multicast. If the size of IM
is smaller than n0, the controller continues to allocate the
remaining TSs to the IMs belonging to IM in the same order
for another round after every IM in IM set has already been
assigned with a single TS in the first round of scheduling.
This process continues until all the TSs in the T S set are allo-
cated. The details of the RR scheduling algorithm are shown
in ALGORITHM 1.

ALGORITHM 1 RR Resource Scheduling Algorithm
1: Initialise the set IM ← randomly sort the IMs during the

current frame;
2: Set n← |IM|, the size of IM;
3: Set n0 ← the size of the available TSs for multicast;
4: Initialise the available TSs set T S ← {TSi|1 ≤ i ≤ n0};
5: Set indexTS = 1; indexIM = 1;
6: for indexTS = 1 to n0 do
7: T S[indexTS] is allocated to IM[indexIM ];
8: indexIM ← indexIM + 1;
9: if indexIM > n then
10: indexIM ← 1;
11: end if
12: end for

According to this algorithm, there are mod(n0, n) IMs
receiving dn0/ne TSs for each of them, while there are
[n−mod(n0, n)] IMs receiving bn0/nc TSs for each of them.
Here, mod(n0, n) represents the remainder after the division
of n0 by n, dn0/ne represents the first integer that is higher
than the real value n0/n, while bn0/nc represents the first
integer that is lower than the real value n0/n. These results
will be exploited in the derivation of the state transition
probabilities in Section IV-F.
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FIGURE 16. Random mobile networks.

C. RANDOM MOBILE NETWORKS
We assume that N MUs roam in a cell, which is a circular
area having a radius of R, as shown in Fig.16. Naturally, the
BS is assumed to be located at the center of the circular area.
In line with the mobility model introduced in [100] and [101],
the position of the ith MU during frame t is denoted by Pi(t),
which represents a stationary and ergodic process having a
stationary uniform distribution in the circular area. In other
words, Pi(t) is unchanged during a transmission frame but
varies from one frame to another. Moreover, the positions
of the different MUs are independent and identically dis-
tributed (i.i.d.). As a result, the CDF and the PDF of the
distance Yb between the BS and a MU can be formulated as

FYb (yb)=
y2b
R2
, fYb (yb)=

dFYb (yb)
dyb

=
2yb
R2
, 0 ≤ yb ≤ R.

(17)

By contrast, the CDF of the distance Ys between a pair
of MUs [102] can be expressed as

FYs (ys) =
2
π

{
4
( ys
2R

)2
arccos

( ys
2R

)
+ arcsin

( ys
2R

)
−

[
ys
2R
+ 2

( ys
2R

)3]√
1−

( ys
2R

)2}
, (18)

while the corresponding PDF can be derived as

fYs (ys)=
8
πR

ys
2R

[
arccos

( ys
2R

)
−

ys
2R

√
1−

( ys
2R

)2]
, (19)

for 0 ≤ ys ≤ 2R. However, in order to make our following
analysis tractable, we use the approximated PDF derived
in [103] for (19), which is expressed as

f̃Ys (ys) = CYs ·
8
πR

(
π

2
ys
2R
+

nmax∑
n=0

Cn
( ys
2R

)2n+2)
, (20)

where we have

CYs =
π

4

(
π +

nmax∑
n=0

4Cn
2n+ 3

)−1
,

Cn =
2 · (2n)!

4n(n!)2(2n+ 1)(2n− 1)
.

D. PHYsical (PHY) LAYER MODEL
1) PATH LOSS (PL)
Given the distance y between a transmitter-receiver pair,
which is assumed to be longer than the reference distance d0
determining the edge of the near-field, the PL model is
defined by the following equation

�(y) =
P0
Pr
=

(
y
d0

)κ
, y ≥ d0, (21)

where Pr is the power received at the receiver, P0 is the
power received at the reference point that is d0 m away from
the transmitter and κ is the PL exponent. The free-space
PL model [104] is exploited for calculating the PL from the
transmitter to the reference point, which is expressed as

�0 =
Pt
P0
=

(4π )2d20
λ2

=

(
4πd0
c/fc

)2

, (22)

where λ = c/fc is the wave-length, c is the speed of light,
fc is the carrier frequency, and Pt is the transmit power.
We note that the subscript ‘t’ represents either ‘b’ for the
BS, or ‘s’ for MUs. Thus, the received reference power P0
is obtained as P0 = Pt/�0. Unfortunately, (22) is invalid for
calculating the PL in the near-field of the transmit antenna.
As a result, we assume that, when the distance y between the
transmitter and receiver is shorter than d0, the received power
Pr is equal to the transmit power Pt . In a nutshell, given an
arbitrary distance y, the PL model in our system is defined as

�(y) =
P0
Pr
=

{
1/�0, 0 ≤ y < d0,
(y/d0)κ , y ≥ d0.

(23)

2) SMALL-SCALE FADING
The small-scale fading is modelled by uncorrelated stationary
Rayleigh flat-fading. The channel’s amplitude |h(t)| during
the t-th TS, which varies from one TS to another, is a Rayleigh
distributed random variable. Consequently, the square of the
channel amplitude |h(t)|2 obeys an exponential distribution
associated with E[|h(t)|2] = 1. The PDF and CDF of X =
|h(t)|2 are fX (x) = exp(−x), FX (x) = 1 − exp(−x), x > 0,
respectively.

E. THROUGHPUT ANALYSIS OF WIRELESS LINKS
We assume that a packet can only be successfully received
during a TS, if the instantaneously received Signal-to-Noise-
Ratio (SNR) exceeds a pre-defined SNR threshold γ . Given
the distance yi between a transmitter-receiver pair, the suc-
cessful packet delivery probability µi during a single TS is
derived as

µi(yi)=P
[
P0,i|h(t)|2

N0Wi ·�(yi)
≥γ

]
=

{
exp(−Bi), 0≤yi<d0,
exp(−Aiyi κ ), yi ≥ d0,

(24)

where Ai = (γN0Wi)/(P0,idκ0 ), Bi = (γN0Wi)/Pi, N0 is
the noise power spectrum density (PSD), Wi is the avail-
able bandwidth, Pi is the transmit power and P0,i is the
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associated received reference power. According to [105],
µi(yi) is also equivalent to the normalized throughput of the
link connecting the transmitter and receiver, whose unit is
‘packets/frame’. We should note that the subscript ‘i’ of (24)
represents ‘b’ for the transmission between the BS and MUs,
and represents ‘s’ for the transmission between a pair ofMUs.

1) l-TH MOMENT OF THROUGHPUT BETWEEN THE
BS AND MUs DURING A TS
Integrating the l-th power of µb(yb), provided by (24), over
the PDF of (17), we can derive the l-th moment of the link
throughput between the BS and a MU as

E[µlb]

=

∫ R

0
µlb(yb)fYb (yb)dyb

=

∫ d0

0
exp(−lBb)

2yb
R2

dyb +
∫ R

d0
exp(−lAbyκb )

2yb
R2

dyb

= exp(−lBb)
d20
R2
+

2
R2

[
0(lAbdκ0 , 2/κ)

κ(lAb)2/κ
−
0(lAbRκ , 2/κ)
κ(lAb)2/κ

]
,

(25)

where 0(·, ·) is the upper incomplete Gamma function.
By setting l = 1, we obtain the average link throughput µb
between the BS and a MU, which is also the upper bound of
the social unicast throughput derived in [106].

2) l-TH MOMENT OF THROUGHPUT BETWEEN MUs
DURING A TS
Integrating the l-th power of µs(ys), provided by (24), over
the PDF of (19) as well as its approximate version of (20), we
can derive the l-th moment of the link throughput between a
pair of MUs as

E[µls] =
∫ 2R

0
µls(ys)fYs (ys)dys =

∫ d0

0
exp(−lBs)fYs (ys)dyb︸ ︷︷ ︸

I1

+

∫ 2R

d0
exp(−lAsyκs )̃fYs (ys)dys︸ ︷︷ ︸

I2

(26)

The first integral I1 of (26) may be expressed as

I1 = exp(−lBs)
∫ d0

0
fYs (ys)dys = exp(−lBs) · FYs (d0),

while the second integral I2 of (26) may be derived as

I2=
∫ 2R

d0
exp(−lAsyκs )CYs ·

8
πR

(
π

2
ys
2R
+

nmax∑
n=0

Cn
(ys
2R

)2n+2)
dys

=
8CYs
πR

[
π

4R

0(lAs dκ0 , 2/κ)− 0(lAs(2R)
κ , 2/κ)

κ(lAs)2/κ
+

nmax∑
n=0

×
Cn(0(lAs dκ0 , (2n+3)/κ)−0(lAs(2R)

κ , (2n+3)/κ)

κ(2R)2n+2(lA)(2n+3)/κ

]
.

By setting l = 1, we obtain the average link throughput
µs between a pair of MUs during a TS, which is also the
upper bound of the average social unicast throughput derived
in [103].

3) AVERAGE THROUGHPUT DURING
A TRANSMISSION FRAME
In the first stage of BS-aided multicast, as detailed
in Section IV-A, only a single TS is invoked by the BS for the
sake of multicasting the IoCI. As a result, the link throughput
during a transmission frame between the BS and a MU is the
same as that during a single TS, which is given by substituting
l = 1 into (25).

By contrast, in the second stage of co-multicast aided spon-
taneous dissemination, a single IMmay be assignedwithmul-
tiple TSs, say L, for its own multicast. Let us consider an IM
and uMU pair as an example. Recalling the mobility model
introduced in Section IV-C, the distance ys is unchanged
during the transmission frame. Given the L TSs for the IM’s
multicast, the packet fails to be conveyed to the uMU only
when all the transmission attempts in these L TSs fail. Since
the small-scale fading varies independently from one TS to
another, the successful packet delivery probability during a
transmission frame may be expressed as

λs(ys,L) = 1− [1− µs(ys)]L

= 1−
L∑
l=0

(
L
l

)
(−1)l[µs(ys)]l . (27)

Integrating λs(ys,L) over the PDF fYs (ys) given by (19),
the average link throughput during a transmission frame is
formulated as

λs(L) =
∫ [

1−
L∑
l=0

(
L
l

)
(−1)l[µs(ys)]l

]
fYs (ys)dys

= 1−
L∑
l=0

(
L
l

)
(−1)lE[µls], (28)

where L is the number of TSs that is allocated to the IM for the
multicast during the current transmission frame, and E[µls] is
the l-th moment of the link throughput during a single TS that
has been derived in (26). Specifically, when no TS is allocated
to the IM, namely L = 0, we have λs(L) = 0.

F. DISCRETE-TIME-PURE-BIRTH-MARKOV
CHAIN (DT-PBMC) AIDED DELAY ANALYSIS
In contrast to its large-scale counterpart, the integrated
cellular and small-scale opportunistic network is a discrete
transmission system, where the basic time unit is the duration
of a transmission frame. Since the number of IMs always
increases during the information dissemination process, we
may model this process as a DT-PBMC, whose states are
defined by the number of IMs. Moreover, the BS may also
be considerd as a special IM. For example, the state (1 + n)
represents that both the BS and n MUs own the IoCI. In the
DT-PBMC, the transition from a lower numbered state
to a higher numbered one can only occur once during
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FIGURE 17. The DT-PBMC for the information dissemination in integrated cellular and small-scale
opportunistic networks. (a) Group A receive the information after the transient boundary A. (b) Group A
receive the information after the transient boundary n. (c) Group A receive the information after the
transient boundary N .

a single frame. Consequently, p1+n,1+n+m(t) represents the
probability of a transition traversing from state (1 + n) to
state (1 + n + m) during a given frame t . As portrayed in
Fig.17, there are two special states in the DT-PBMC, which
are the initial state 1(B), representing that only the BS owns
the IoCI at the beginning of the information dissemination
process, and the absorbing state (1+N ), representing that all
the MUs have obtained the IoCI. Except for state (1+N ), the
other states are referred to as the transient states.

1) STATE TRANSITION MATRIX
We can collect the state transition probabilities
{p1+n,1+n+m(t)|0 ≤ n ≤ N , 0 ≤ m ≤ (N − n)} into a state
transition matrix P(t), which is expressed as (29), shown at
the bottom of this page, where the (N × N )-element matrix
Q(t) contains all the state transition probabilities between
any pairs of transient states. Hence Q(t) is referred to as the
transient transition matrix, whileQ0(t) is anN -length vector,
containing the transition probabilities of traversing from any
of the N transient states to the absorbing state (1 + N ).

We note that both the matrix P(t) and Q(t) are random
matrices, varying from one frame to another. The expectation
matrix P is derived by computing the expectation of every
entry in P(t). The elements of the expectation matrix P are
denoted as {p1+n,1+n+m, 0 ≤ n ≤ N , 0 ≤ m ≤ (N − n)},
which are given by the following lemma:
Lemma 1: Due to the independent mobilities of the MUs,

the state transition probability p1+n,1+n+m(t) is an indepen-
dent time-varying random variable. Its expected value is
given by the following formulas:

i) When n = 0 and 0 ≤ m ≤ N , the expected value of
p1,1+m(t) is expressed as

p1,1+m =
(
N
m

)
µmb (1− µb)

N−m, (30)

where µb can been derived by letting l = 1 in (25).
ii) When 0 < n ≤ N and 0 ≤ m ≤ (N − n), the expected

value of p1+n,1+n+m(t) is expressed as

p1+n,1+n+m =
(
N − n
m

)
pim(1− pi)N−n−m, (31)

P(t) =



p1,1(t) p1,2(t) p1,3(t) p1,4(t) · · · p1,N (t) p1,N+1(t)
0 p2,2(t) p2,3(t) p2,4(t) · · · p2,N (t) p2,N+1(t)
...

...
. . .

...
...

...

0 0 · · · pn+1,n+1(t) · · · pU ,N (t) pU ,N+1
...

...
. . .

...
...

0 0 · · · 0 · · · pN ,N (t) pN ,N+1
0 0 · · · 0 · · · 0 pN+1,N+1


=

(
Q(t) Q0(t)
0 1

)
(29)
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where pi is the expected probability of an arbitrary uMU
successfully receiving the IoCI, which is formulated as

pi = 1−
[
1− λs

(
d
n0
n
e

)]mod(n0,n)
·

[
1− λs

(
b
n0
n
c

)]n−mod(n0,n)
. (32)

Proof: Please refer to Appendix B for the proof.
Furthermore, the expectation Q of the transient-state tran-

sition matrix Q(t) contains the entries in the first N rows and
first N columns of the general state transition matrix P.
Various delay metrics can be derived with the aid of the

DT-PBMCof Fig.17, including (a) the group delay KG, which
is defined as the delay when the entire group A of MUs has
successfully received the IoCI, (b) the individual delay KI ,
namely the delay of a specific MU receiving the information,
(c) the dissemination delay KD, which represents the delay
when all the N MUs in the cell have successfully received the
information, and, finally (d) the BS-aided multicast delay Kb,
which is the delay of the BS-aided first stage of information
dissemination. Furthermore, in this section, the BS-aided-
Single-hop-Multicast (BSSHM) delay K bm is also derived and
used as a benchmarker.

2) TRANSIENT BOUNDARY
As shown in Fig.17, multiple-step state transitions may occur
during a single frame’s transmission. For example, the tran-
sition can emerge from state 1(B) directly to any of the states
(1 + n) (0 ≤ n ≤ N ). Consequently, we cannot exactly
tell at which state the specific group A of MUs have first
successfully received the IoCI as we dealt with the CT-PBMC
of Fig.8 in Section III-E, because within a sample trace of the
state transitions traversing from the initial state 1(B) to the
absorbing state N , certain states might be skipped. However,
we may ascertain that this group of MUs must successfully
receive the IoCI after a certain state n, which also indicates
that not all the MUs belonging to the group A have success-
fully received the information during the previous states. As
a result, the states emanating from state (1 + n) to (1 + N )
can be equivalently considered together as an absorbing state
for the event that all the MUs belonging to the group A have
successfully received the information after state n, as shown
in Fig.17(b). Corresponding to the above event, state n may
be referred to as the transient boundary.
Lemma 2: Let the size of the group A be defined as |A| =

A. The legitimate transient boundary may be any of the
states spanning from state A to state N , as shown in Fig.17.
The probability pn that the transient boundary is at state n
(A ≤ n ≤ N ) is given by the following equation:

pn =
(
n− 1
A− 1

)/ (
N
A

)
, A ≤ n ≤ N . (33)

Proof: Please refer to Appendix C for the proof.

3) GROUP DELAY ANALYSIS
Given that the transient boundary is at state n (A ≤ n ≤ N ),
all the MUs belonging to the target group A receive the IoCI

right after state n. Correspondingly, we represent the group
delay as Kn frames. As shown in Fig.17(b), in this case, the
absorbing states for the group A are comprised of the states
{n + 1, n + 2, · · · ,N ,N + 1}. As a result, transition matrix
Qn(t) of the new DT-PBMC of Fig.17(b) is a sub-matrix of
Q(t) containing its entries in the first n rows and n columns,
which is expressed as

Qn(t)=


p1,1(t) p1,2(t) · · · p1,n(t)

0 p2,2(t) · · · p2,n(t)
...

...
. . .

...

0 0 · · · pn,n(t)

, A ≤ n ≤ N .

(34)

According to (34), for different values of n, Qn has dif-
ferent size. In order to unify the size of the matrices
{Qn, n = 1, 2, · · · ,N }, we may redefine Qn without affect-
ing the result of the matrix product as

Q̃n(t) =
(
Qn(t) 0n,N−n
0N−n,n 0N−n,N−n

)
, (35)

where 0m,n is a (m× n)-element matrix whose entries are all
zeros. Particularly, the expected matrix of Q̃n(t) is denoted
as Q̂n, while the entries of Q̂n are defined in (30) and (31).

According to [103, Th. 1], the ij-entry qi, j of the matrix
Q̃n(kG) =

∏kG
t=1 Q̃n(t) is the probability of state j being

reached after kG frames from the initial state i. Since
the information dissemination starts at state 1, as shown
in Fig.17, given a series of the i.i.d. transition matrices
{Q̃n(t), t = 1, · · · , kG}, the sum of the entries in the first
row of the matrix Q̃kG

n is the probability of Kn > kG, which
is expressed as

P(Kn > kG|Q̃n(1), · · · , Q̃n(kG))

= τT Q̃n(kG)1 = τT
kG∏
t=1

Q̃n(t)1,

where τ is a (N × 1)-element column vector, whose first
entry is one and all the other entries are zeros, while 1
is a (N × 1)-element column vector, whose entries are all
ones. According to the Bayesian principle [82], given n
as the transient boundary, the tail distribution of the group
delay Kn is derived as presented in (36), as shown at the
top of the next page, where f [Q̃n(t)] denotes the PDF
of the random matrix Q̃n(t).
Since the transient boundary may be at any state span-

ning from state A to state N with the probabilities of{
pn =

(n−1
A−1

)/(N
A

)
, n = A, · · · ,N

}
, as shown in Lemma 2,

according to the Bayesian principle [82], we may obtain the
tail distribution of the group delay KG as

P(KG > kG)

=

N∑
n=A

P(Kn > kG)pn =
N∑
n=A

τT Q̂kG
n 1 ·

(
n− 1
A− 1

)/(
N
A

)

= τT

(
N∑
n=A

Q̂kG
n

N
·

(
n− 1
A− 1

)/(
N
A

))
1. (37)
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P(Kn > kG) =
∫
Q̃n(1)

. . .

∫
Q̃n(kG)

P(Kn > kG|Q̃n(1), . . . , Q̃n(kG))f [Q̃n(1), . . . , Q̃n(kG)]dQ̃n(1) · · · dQ̃n(kG)

=

∫
Q̃n(1)

. . .

∫
Q̃n(kG)

(
τT

kG∏
t=1

Q̃n(t)1

)
f [Q̃n(1), . . . , Q̃n(kG)]dQ̃n(1) . . . dQ̃n(kG)

= τT

( kG∏
t=1

∫
Q̃n(t)

Q̃n(t)f [Q̃n(t)]dQ̃n(t)

)
1 = τT

( kG∏
t=1

E[Q̃(t)]

)
1 = τT Q̂kG

n 1 (36)

Furthermore, since KG is a discrete random variable,
its average value may be expressed as E[KG] =∑
+∞

kG=0 P(KG > kG) [82]. As a result, the average group delay

can be formulated as

E[KG]

=

+∞∑
kG=0

P(KG>kG)=τT

 N∑
n=1

(
n− 1
A− 1

)/(
N
A

) +∞∑
kG=0

Q̂kG
n

1

= τT

(
N∑
n=A

1

(I− Q̂n)

(
n− 1
A− 1

)/(
N
A

))
1, (38)

where the last equal relation is derived with the aid
of [103, Th. 2] and [103, Th. 4].

4) INDIVIDUAL DELAY
In order to characterise the statistical properties of the
individual delay KI , we can simply set the size of the target
group A to |A| = A = 1. Consequently, upon substituting
A = 1 into (37) and (38), the tail distribution of the individual
delay KI can be expressed as

P(KI > kI ) = τT
(

N∑
n=1

Q̂kI
n

N

)
1, (39)

while its average value can be derived as

E[KI ] = τT
(

N∑
n=1

(I− Q̂n)−1

N

)
1. (40)

5) DISSEMINATION DELAY
The statistical properties of the dissemination delay KD can
be obtained by setting the size of the target group A to |A| =
A = N . In this case, we have Q̃N (t) = Q(t), which is defined
in (29). When substituting A = N into (37) and (38), the tail
distribution as well as the average of the dissemination delay
KD can be expressed as

P(KD > kD) = τTQ
k
1, E[KD] = τT (I−Q

k
)−11, (41)

respectively. In (41), Q is the expectation of Q(t).

6) BS-AIDED MULTICAST DELAY IN THE FIRST STAGE
It can be shown that if the transient boundary is at state 1,
the transition matrix Q̃1(t) only has a single non-zero entry
p1,1(t) =

∏
All MUs(1 − µb,j(t)), whose expected value is

p1,1 = (1−µb)
N . In this case, the group delay K1 is reduced

to the multicast delay Kb that only the BS multicasts during
the first stage. Corresponding to (36), the tail distribution of
Kb is given by

P(Kb > kb) = (1− µb)
Nkb , (42)

while its average value can be expressed as

E[Kb] =
+∞∑
kb=0

P(Kb > kb) = 1/[1− (1− µb)
N ]. (43)

As shown in (43), if N tends to infinity, we have
lim
N→∞

E[Kb] = 1 frame, as expected. This explains that on

average only one frame is needed by the first stage of our
hybrid information dissemination scheme, when a large num-
ber of MUs are supported in the integrated network.

7) BS-AIDED SINGLE-HOP MULTICAST (BSSHM) DELAY
For the sake of comparison, we also consider the delay of the
conventional BSSHM. In this case, the BS repeatedly dissem-
inates the IoCI as a sole transmitter until all the MUs have
successfully received it. As a result, given the probability
µb,i(t) of the ith MU successfully receiving the IoCI during
the tth frame, the probability p(bm)1+n,1+n+m(t) of traversing
from state (1+ n) to state (1+ n+ m) is given by

p(bm)1+n,1+n+m(t)=
∑
AllM

∏
uMUi∈M

µb,i(t)
∏

uMUj /∈M
(1− µb, j(t)),

(44)

for 0 ≤ n ≤ N and 0 ≤ m ≤ N − n. After taking the
expectation, we obtain

p(bm)1+n,1+n+m =

(
N − n
m

)
µmb (1− µb)

N−n−m. (45)

Based on (45), the expectation of the state transition

matrix Q
(bm)

can be formed. Upon replacing Q in (41)
by Q

(bm)
, we obtain both the tail distribution and the average

of the BSSHM delay K (bm).

8) ENERGY ANALYSIS
Apart from the various delay metrics, we may also analyse
the average energy required for disseminating the IoCI to all
the N MUs. According to the above analysis, at state 1, the
energy consumed during a single frame is Pb since the BS
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TABLE 8. Parameters of the PHY layer.

only invokes a single TS for multicasting the IoCI. However,
at state (1 + n), the energy dissipated during a single frame
is n0Ps, as n0 TSs are allocated to the IMs for their multicast.
Hence, the energy dissipation of different states during a
transmission frame is denoted by the N -elements column
vectorP , whose first element is Pb and all the other elements
are n0Ps.
In order to evaluate the average energy dissipation, the

number of frames that the system spends in a specific state
(1 + n) must be known. Thanks to [103, Th. 3], the ij-entry
ψij of the matrix 9 =

∑
∞

kD=0Q(kD) =
∑
∞

kD=0
∏kD

t=1Q(t)
represents the average number of frames that the system
spend at state j when the initial state is i, where Q(t) is
given by (29). Since in our hybrid information dissemination
scheme the system emerges from state 1, we only consider the
first row of the matrix9. Given a series of matrices {Q(kD) =∏kD

t=1Q(t), kD = 0, 1, · · · ,∞}, the average energy dissi-
pation until the information dissemination is completed is
derived as

E[ED|Q(kD), kD = 0, 1, · · · ,∞] = τT9P

= τT ×

∞∑
kD=0

Q(kD)×P .

According to the Bayesian principle [82], we have

E[ED] = τT ×

 ∞∑
kD=0

∫
Q(kD)

Q(kD)f (Q(kD))dQ(kD)

×P

= τT ×

∞∑
kD=0

E[Q(kD)]×P

= τT×

∞∑
k=0

Q k
×P = τT × (I−Q)−1 ×P, (46)

where f [Q(kD)] is the PDF of Q(kD) and the last
equal relation is derived with the aid of [103, Th. 2]
and [103, Th. 4].

G. NUMERICAL RESULTS
The parameters of the PHY layer are presented in TABLE 8.
For the transmissions from the MUs to MUs, the param-
eters are in line with the 802.11 protocol [52], while for
the transmission from the BSs to MUs, the parameters are

in line with the Long-Term-Evolution-Advanced (LTE-A)
standard [107]. The radius of the cellular system is set to
R = 200 m and all the N MUs roam in this circular area. The
BS is located at the center of the circular area. The classic RR
scheduling is invoked during the information dissemination
process.

The performance metrics of our hybrid information dis-
semination scheme are evaluated by both the analytical (ana)
results as well as by the simulation (sim) results, including
the average link throughput during a transmission frame,
and various delay metrics as well as the average energy
required for disseminating the IoCI. All the delay metrics
are quantified in terms of the number of frames, while
the energy dissipation is quantified in terms of ‘mW*TS’.
In order to obtain reliable statistical results, we repeatedly run
the simulation inMATLAB10 000 times. The performance of
the conventional BSSHM is also presented as a benchmarker.

FIGURE 18. The average link throughput during a transmission frame
between a IM and uMU pair. The transmit power of the IM varies from
0 dBm to 20 dBm. The number of TSs allocated to the IM for its multicast
varies from 1 to 20. As a benchmarker, we also portray the average
throughput between the BS and a MU when the transmit power of the BS
is 23 dBm. All the other parameters are listed in TABLE 8. The analytical
results are derived by evaluating Eq.(28).

1) AVERAGE LINK THROUGHPUT DURING
A TRANSMISSION FRAME
We portray the average link throughput during a transmission
frame between a IM and uMU pair associated with different
number of TSs allocated to the IM in Fig.18. As the transmit
power of the IM increases, we observe an increasing trend for
the average link throughput. Furthermore, we also observe
that the average link throughput during a frame increases,
as more TSs are allocated to the IM. The analytical results
derived in (28) perfectly match the simulation results.

2) VARIOUS DELAY METRICS
i) Individual Delay: The transmit power of the BS is set

to Pb = 23 dBm, which is the typical value for picocellular
systems, while that of the MUs is Ps = 4 dBm, which is
the typical value for 802.11 based transmitters. As shown in
Fig.19(a), by invoking the BSSHM, the average individual
delay of a specific MU receiving the IoCI remains near-
constant at about 1.5 frames, as the number N of MUs
increases from 1 to 100. The reason for this trend is that the
individual delay in the case of BSSHM is only affected by the
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FIGURE 19. Various delay metrics of our hybrid dissemination scheme. We investigate the impact of the transmit power of both the BS and the
MUs, the impact of the number of TSs, and the impact of the number of the MUs in the area studied, as well as the impact of the size of the
target group on the average individual delay, the average dissemination delay and the average group delay as well as the tail distribution of the
group delay. Apart from the parameters quantified in figures, all the other parameters are provided in TABLE 8. (a) Average individual delay.
(b) Average dissemination delay. (c) Average group delay. (d) Tail distribution of group delay.

wireless link connecting the MU to the BS rather than being
related to N . If only a single TS is provided for the second
stage of the co-multicast aided spontaneous dissemination,
which indicates that only a single IM is selected randomly
out of the IOs during each frame, the average individual
delay firstly increases and then tends to about 3.5 frames
as N increases. By contrast, the curves of the average individ-
ual delay associated with n0 = {5, 10, 20} firstly increases
until reaching their peaks, before they start to decay and
tend to constant values. Moreover, if more TSs are provided
for the spontaneous dissemination, as reflected by higher
values of n0, the average individual delay may be reduced.

Furthermore, compared to BSSHM, our hybrid information
dissemination scheme associated with n0 = 20 TSs may
reduce the average individual delay by 9% when there are
more than 30 MUs.
ii) Dissemination Delay: The transmit power of the MUs

is set to Ps = 4 dBm, while that of the BS for the
first stage of the information dissemination is varied from
0 dBm to 23 dBm. As the benchmarker, the transmit power
of the BS used for the BSSHM is set to Pb = 23 dBm.
We assume that n0 = 20 TSs are provided for multiple
IMs’ multicast. As shown in Fig.19(b), the BSSHM delay
associated with Pb = 23 dBm increases steadily as we
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increase the number N of the MUs. For our hybrid
information dissemination scheme associated with Pb =
{12, 23} dBm, the average dissemination delay first increases
until reaching its peak, beyond which it decays. However, for
the case of Pb = {0, 6} dBm, the average dissemination delay
continuously decreases. Specifically, our hybrid information
dissemination scheme associated with the most economical
scenario of Pb = 0 dBm, outperforms the BSSHM associated
with Pb = 23 dBm, when the number of MUs is higher
than 50. Furthermore, whenN = 100, our hybrid information
dissemination scheme associated with Pb = 23 dBm may
reduce the average dissemination delay by 40.6%, compared
to the BSSHM. Furthermore, the analytical results derived
from (41) perfectly match the simulation results.
iii) Group Delay: The transmit power of the BS is still set

to Pb = 23 dBm, while the transmit power of the MU takes
values from the set {0, 4, 8, 12, 20} dBm. The maximum
number of TSs provided for co-multicast is n0 = 5. The total
number of MUs is set to N = 100, but the size |A| = A
of the target group A increases from 1 to 100. Observe in
Fig.19(c) that the average group delay of all the members in
the target group A receiving the IoCI steadily increases as the
group size increases. Moreover, the increased transmit power
Ps of the MUs may significantly reduce the average group
delay. According to Fig.19(c), if Ps is larger than 8 dBm,
our hybrid information dissemination scheme may achieve
a lower average group delay than the BSSHM. Specifically,
when Ps = 12 dBm and the group size is A = 50, compared
to the BSSHM, our hybrid information dissemination scheme
may reduce the average group delay by 33%. Moreover,
the analytical results derived from (38) perfectly match the
simulation results.

In order to study the tail distribution of the group delay,
the maximum tolerable delay threshold is set to 2 frames,
As shown in Fig.19(d), the probability of the group delay
exceeding 2 frames increases as the size of the target group
increases. A higher Ps leads to a lower ‘threshold-violation’
probability. Similarly, our hybrid information dissemination
scheme associated with Ps = 8 dBm outperforms the conven-
tional BSSHM. Furthermore, the analytical results derived
from (37) match the simulation results.

3) AVERAGE ENERGY DISSIPATION
Fig.20 portrays the average energy required for disseminating
the IoCI to all the MUs, where we have Pb = 23 dBm and
Ps = 4 dBm. The average energy dissipation first decays, as
we initially increase N , and then it steadily increases, as we
further increaseN . As presented in Fig.20, if we providemore
TSs for the co-multicast of the IMs, which is represented by a
higher n0 value, more energy is dissipated, but it still remains
significantly lower than that of the BSSHMbenchmarker. For
example, when N = 100 and n0 = 20 TSs are provided
for co-multicast, our scheme may reduce the average energy
dissipation by about 70%, compared to the BSSHM, as evi-
denced by Fig.20. Furthermore, the analytical results derived
from (46) match the simulation results.

FIGURE 20. The average energy dissipation during exhaustively
disseminating the IoCI to all the MUs in the area studied. The transmit
power of the BS is 23 dBm, while the transmit power of the MUs
is 4 dBm. The number of the MUs in the area studied varies from 1 to 100,
while the number of TSs provided by the TDMA system varies from
1 to 20. Other parameters are provided in TABLE 8.

H. CENTRALITY BASED RESOURCE SCHEDULING
AND DISCUSSION
The tools of SNA may be exploited in the integrated cellular
and small-scale opportunistic network as well for further
improving the information dissemination performance.
As shown in our previous work [57], various distance-
based and transmission rate-based centralities may be con-
ceived, such as the Shortest-Longest-Distance centrality,
the Shortest-Shortest-Distance centrality, and the Shortest-
Sum-Distance centrality as well as the Highest-Sum-Rate
centrality. The simulation results of [57] demonstrate the
advantage of these centrality based resource scheduling
schemes over the traditional RR regime.

V. CONCLUSIONS
In Section I, we provided a rudimentary introduction to the
current trends of SNA and to its application in telecommu-
nications, followed by the design dilemmas of information
dissemination in current cellular networks in Section II. Then
a tutorial was provided in Section III on the information
dissemination process of integrated cellular and large-scale
opportunistic networks with the goal of improving connectiv-
ity of cellular networks as well as for off-loading excess tele-
traffic to opportunistic networks. Apart from the well-known
exponentially distributed inter-contact duration, which is pre-
sented in Figs.7(a)(b), we also demonstrated in Fig.7(c)
that the contact duration between a pair of MUs obeying
RD mobility model can be approximated by an exponential
distribution. Surprisingly, the contact duration between the
BS (a static node) and a MU closely matches a Gamma
distribution, as shown in Fig.7(d). Then in Section III-D,
we jointly considered the impact of inter-contact duration
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TABLE 9. Comparison between integrated cellular large-scale opportunistic network and its small-scale counterpart.

and contact duration on the performance analysis of the
information dissemination by modelling it as a CT-PBMC.
With the aid of this CT-PBMC, we analytically derived the
dissemination and individual delay as well as the average
number of receivers before the IoCI expires. The simulation
results of Fig.13 validated the accuracy of our mathematical
model and demonstrated that a more active social participa-
tion of the MUs is capable of significantly improving the
IoCI delivery ratio. Furthermore, the amount of tele-traffic
off-loaded by the SNA assisted initial receiver selection is as
much as 1.75 times that of the random selection method, as
shown in Fig.14.

Then a hybrid information dissemination regime con-
ceived for the integrated cellular and small-scale opportunis-
tic network was proposed in Section IV, which consists
of two stages in the densely populated area, namely the
BS-aided multicast stage and the co-multicast aided sponta-
neous dissemination stage. By jointly considering the impact
of RR resource scheduling, of the MUs’ mobilities, the PL,
and the small-scale fading, we modelled this hybrid infor-
mation dissemination regime as a DT-PBMC and derived the
group delay that the system imposes during the dissemination
of the IoCI to a specific group of MUs, which is a generic
form jointly representing both the dissemination delay and
the individual MU delay. Moreover, the average energy

dissipation imposed by successfully disseminating the IoCI
was also obtained. Furthermore, we demonstrated that our
hybrid scheme significantly reduces both the average dis-
semination delay, as shown in Fig.19(b) and the average
energy dissipation, as shown in Fig.20, for example, by
40.6% and 70%, respectively, when compared to the BSSHM.

For the readers’ convenience, the major features of the
integrated cellular and large-scale/small-scale opportunistic
networks are listed in TABLE 9. Based on our studies, we
have the vision that owing to the tremendous benefit of future
heterogeneous networks relying on the social participation of
the MUs, the integrated cellular and opportunistic networks
deserve much more joint effort from both the communication
community and the social science community.

APPENDIX A
PROOF OF THEOREM 1
For the specific case of 1 ≤ n ≤ (N − 1), after a sufficiently
short time interval 1t , the probability of the CT-PBMC,
shown in Fig.8, remaining in state n is derived as

pn(t +1t) = pn−1(t )̃λn−11t + pn(t)[1− λ̃n1t], (47)

where λ̃n1t is the probability of the CT-PBMC travers-
ing from state n to state (n + 1) during the time inter-
val1t , whereas λ̃n−11t holds a similar meaning. After some
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equivalent transformation applied to (47), we arrive at

d
dt
pn(t) = lim

1t→0

pn(t+1t)−pn(t)
1t

= λ̃n−1pn−1(t)−λ̃npn(t).

(48)

Similarly, we can also derive the corresponding differential
equation for the cases of n = 0 and n = N . As a result, the
following set of differential equations are obtained

d
dt
p0(t) = −̃λ0p0(t), n = 0,

d
dt
pn(t) = λ̃n−1pn−1(t)− λ̃npn(t), 1≤n≤N−1,

d
dt
pN (t) = λ̃N−1pN−1(t), n = N .

(49)

Since only the BS owns the IoCI at the beginning of the
information dissemination, the initial condition is given by
{p0(0) = 1, p1(0) = 0, · · · , pN (0) = 0}. As a result, applying
the Laplace transform to the above differential equations, and
taking the aforementioned initial condition into account, we
arrive at

sP0(s) = −̃λ0P0(s)+ 1, n = 0,
sPn(s) = −̃λnPn(s)+ λ̃n−1Pn−1(s), 1 ≤ n ≤ N − 1,
sPN (s) = λ̃N−1PN−1(s), n = N ,

(50)

from which we obtain

Pn(s) =



1

s+ λ̃0
, n = 1

1

s+ λ̃n

n−1∏
m=0

λ̃m

s+ λ̃m
, 0 < n < N ,

1
s

N−1∏
m=0

λ̃m

s+ λ̃m
, n = N .

(51)

Finally, applying the inverse-Laplace-transform to the above
equations, we may arrive at the closed-form equations for
pn(t), as expressed in (15). The theorem is proved. �

APPENDIX B
PROOF OF LEMMA 1
A. EXPECTED STATE TRANSITION PROBABILITY p1,1+m
Since the first main stage of our hybrid information dissem-
ination scheme is the BS-aided multicast, we first derive the
state transition probability p1,1+m(t) during the t-th frame
for 0 ≤ m ≤ N . A series of successful packet delivery
probabilities {µb,i(t), i = 1, · · · ,N } are provided during the
t-th transmission frame, whereµb,i(t) is the successful packet
delivery probability of the link connecting the i-th MU to
the BS. Assuming that the group M of MUs, whose size is
|M| = m, successfully receives the IoCI, while the others
fail to do so, p1,1+m(t) can be derived as

p1,1+m(t) =
∑
AllM

∏
MUi∈M

µb,i(t)
∏

MUj /∈M
(1− µb,j(t)),

(52)

for 0 ≤ |M| = m ≤ N , where ‘ALL M’ represents all
the possible combinations for construction of M. Since the
geographic positions of theMUs are i.i.d., which also leads to
i.i.d. random variables {µb,i(t), i = 1, · · · ,N }, the expected
value of p1,1+m(t) is derived as

p1,1+m =
∑
AllM

∏
MUi∈M

E[µb,i(t)]
∏

MUj /∈M
(1− E[µb,j(t)])

=

(
N
m

)
µ m
b (1− µb)

N−m, 0 ≤ m ≤ N , (53)

where µb can be obtained by letting l = 1 in (25). The first
part of Lemma 1 is proved. �

B. EXPECTED STATE TRANSITION
PROBABILITY p1+n,1+n+m
Let us now derive the state transition probability p1+n,1+n+m(t)
during the t-th transmission frame for the stage of sponta-
neous dissemination, where 0 < n ≤ N and 0 ≤ m ≤
(N − n). In this case, there are n IMs at state (1 + n)
and hence we have (N − n) uMUs. The IMs are parti-
tioned into two sets R1 =

{
IMr1 , 1 ≤ r1 ≤ mod(n0, n)

}
and R2

{
IMr2 , 1 ≤ r2 ≤ (n− mod(n0, n))

}
according to the

number of TDMA TSs that are allocated to them after the
RR scheduling. As introduced in Section IV-B, each IM of
R1 is allocated dn0/ne TDMA TSs, while each IM of R2 is
allocated bn0/nc TDMATSs. The set of uMUs at state (1+n)
is denoted as M = {uMUi|1 ≤ i ≤ (N − n)}.
We consider a single uMU denoted as uMUi. The success-

ful packet delivery probabilities from the IMs inR1 to uMUi
are denoted as λR1,i=

{
λr1,i

(
t, d n0n e

)
, 1≤r1 ≤ mod(n0, n)

}
,

while those from the IMs in R2 to uMUi are denoted as
λR2,i =

{
λr2,i

(
t, b n0n c

)
, 1 ≤ r2 ≤ mod(n0, n)

}
. Since the

positions of different IMs are i.i.d. random variables, all the
elements in both λR1,i and λR2,i are independent of each
other. As a result, as long as at least one IM from R1 or R2
successfully delivers the packet to uMUi, the packet can
be successfully received. Therefore, the successful packet
reception probability pi(t) of uMUi is derived as

pi(t) = 1−
∏

IMr1∈R1

[
1− λr1,i

(
t, d

n0
n
e

)]
×

∏
IMr2∈R2

[
1− λr2,i

(
t, b

n0
n
c

)]
. (54)

The expectation of pi(t) is derived as

pi = 1−
∏

IMr1∈R1

{
1− E

[
λr1,i

(
t, d

n0
n
e

)]}
·

∏
IMr2∈R2

{
1− E

[
λr2,i

(
t, b

n0
n
c

)]}
= 1−

[
1− λs

(
d
n0
n
e

)]mod(n0,n)
·

[
1− λs

(
b
n0
n
c

)]n−mod(n0,n)
. (55)
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FIGURE 21. A possible trace of the state transitions. (a) Original trace of the state transitions. (b) Equivalent trace of the state
transitions.

Furthermore, we assume that a subsetM′
⊆M of uMUs,

whose size is |M′
| = m, successfully receive the IoCI during

the t-th frame, while M/M′ of uMUs fail to do so. As a
result, the state transition probability p1+n,1+n+m(t) can be
expressed as

p1+n,1+n+m(t)=
∑

AllM′

∏
uMUi∈M′

pi(t)
∏

uMUj∈M/M′

(1−pj(t)).

(56)

Since the positions of different uMUs are i.i.d. random vari-
ables, {pi(t), uMUi ∈M} are i.i.d. random variables as well.
Hence, the expectation of p1+n,1+n+m(t) is derived as

p1+n,1+n+m =
(
N − n
m

)
pim(1− pi)N−n−m, (57)

where pi is given by (55). The second part of Lemma 1 is
proved. �

APPENDIX C
PROOF OF LEMMA 2
Assuming that the transient boundary is at state n, we portray
in Fig.21(a) a sample trace of the state transitions emerging
from the initial state 1 to state (1 + m1 + · · · + mk+1),
which is the first state after crossing the transient boundary n.
Naturally, when state n is the transient boundary, according
to the above assumption, we have (1 +

∑k
i=1 mi) ≤ n and

(1 +
∑k+1

i=1 mi) ≥ (n + 1). Let us denote the set of the
uMUs whose members have successfully received the IoCI
during the i-th frame as Mi, with its cardinality |Mi| = mi,

where 1 ≤ i ≤ (k+1). Let us denote theMUs simultaneously
belonging to Mi and to the target group A as the set Ai with
a cardinality of |Ai|. As shown in Fig.21(a), since all the
members of the target group A have successfully received
the IoCI until the (k + 1)th frame, we have A =

⋃k+1
i=1 Ai,

and {Ai
⋂

Aj = φ|i 6= j}. Note that the cardinality |Ai|
of the group Ai is a random integer assuming a value in
[0,mi] subject to the constraint of

∑k+1
i=1 |Ai| = A. As a

specific case during the i-th frame, we have |Ai| = ai,
where ai is a possible sample for the random integer |Ai|
and ai ∈ [0,mi]. As a result, the vector, which reflects the
number of newly servedMUs belonging to the target group A
from the first frame to the (k + 1)-th frame, is constructed
as a = (a1, a2, · · · , ak+1)T , subject to the constraints of∑k+1

i=1 ai = A.
Based on the above discussions, we know that before

the transition from state (1 + m1 + · · · + mi−1) to state
(1 + m1 · · · + mi), we have (N − m1 − · · · − mi−1) uMUs,
amongst which (A − a1 − · · · − ai−1) uMUs belong to
the group A . After the state transition, |Mi| = mi uMUs
have successfully received the information, amongst which
|Ai| = ai uMUs belong to the target group A . Hence, the
joint event of (Ai ⊆Mi, a) occurs during the i-th frame with
the probability of (58), as shown at the bottom of this page.

As a result, the probability that, after the kth frame,
(m1 + m2 + · · · + mk ) uMUs have successfully received the
IoCI, amongst which (a1+a2+· · ·+ak ) uMUs belong to the
target group A , can be expressed as (59), shown at the bottom
of this page.

P (Ai ⊆Mi, a) =

(
A− a1 − · · · − ai−1

ai

)(
N − m1 − · · · − mi−1 − A+ a1 + · · · + ai−1

mi − ai

)
(
N − m1 − · · · − mi−1

mi

) (58)

P

(
k⋂
i=1

(Ai ⊆Mi) , a

)
=

k∏
i=1

P (Ai ⊆Mi, a) =
A!(N − A)!

N !

·

k∏
i=1

mi!
ai!(mi − ai)!

·
(N − m1 − · · · − mk )!

(A− a1 − · · · − ak )!(N − m1 − · · · − mk − A+ a1 + · · · + ak )!
(59)
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P
(

A (1)
i+1 ⊆M(1)

i+1, a
)
=

(
A− a1 − · · · − ak

a(1)k+1

)(
N − m1 − · · · − mk − A+ a1 + · · · + ak

m(1)
k+1 − a

(1)
k+1

)
(
N − m1 − · · · − mk

m(1)
k+1

)

=
m(1)
k+1! · (A− a1 − · · · − ak )!

(m(1)
k+1 − a

(1)
k+1)! · a

(1)
k+1!

(N − m1 − · · · − mk − A+ a1 + · · · + ak )!
(N − m1 − · · · − mk )!/(N − n+ 1)

(60)

P(State n is the transient boundary, a)

= P

(
k⋂
i=1

(Ai ⊆Mi) , a

)
︸ ︷︷ ︸

Eq. (59)

·P
(

A (1)
i+1 ⊆M(1)

i+1, a
)

︸ ︷︷ ︸
Eq. (60)

·P
(

A (2)
i+1 ⊆M(2)

i+1, a
)

︸ ︷︷ ︸
Eq. (61)

·P
(

A
⋂

M(3)
k+1 = φ, a

)
︸ ︷︷ ︸

Eq. (62)

=

(
m1

a1

)
·

(
m2

a2

)
· · · · ·

(
mk
ak

) (m(1)
k+1

a(1)k+1

)/(
N
A

)
(63)

As shown in Fig.21(b), given that the transient boundary
is state n, the last state transition traversing from state (1 +∑k

i=1 mi) to state (1 +
∑k+1

i=1 mi), can be decomposed into
three consecutive virtual events as follows.
Event ©1 : Firstly, let us consider the virtual transition

traversing from state (1+
∑k

i=1 mi) to state n. Before this state
transition, there are (N−m1−· · ·−mk ) uMUs, which include
(A − a1 − · · · − ak ) uMUs belonging to the target group A .

After the state transition, a set M(1)
k+1 of uMUs satisfying

|M(1)
k+1| = m(1)

k+1 = n − 1 −
∑k

i=1 mi have successfully
received the IoCI. Here M(1)

k+1 includes a set A (1)
i+1 of uMUs

belonging to A , and we have |A (1)
i+1| = a(1)i+1 = ak+1−1 = A−

1−
∑k

i=1 ai. In other words, after this transition, there is only
a single uMU in A who has not received the information. The
probability of the above event occurring is derived as (60),
shown at the top of this page.
Event ©2 : Secondly, let us consider the virtual transition

traversing from state n to state (1+ n). After Event©1 , there
are (N−n+1) uMUs, which include a single uMU belonging

to the target group A . After the state transition, a setM(2)
k+1 of

uMUs with
∣∣∣M(2)

k+1

∣∣∣ = m(2)
k+1 = 1 have successfully received

the IoCI. Explicitly, we have |M(2)
k+1| = m(2)

k+1 = |A
(2)
i+1| =

a(2)i+1 = 1. As a result, the probability of this event is

P
(

A (2)
i+1 ⊆M(2)

i+1, a
)
=

1
N − n+ 1

. (61)

Event ©3 : Finally, let us consider the virtual transition
traversing from state (1 + n) to state (1 +

∑k+1
i=1 mi). After

Event©1 and©2 , among the remaining (N − n) uMUs, a set

M(3)
k+1 of uMUs satisfying

∣∣∣M(3)
k+1

∣∣∣ = m(3)
k+1 = mk+1 −

m(1)
k+1−m

(2)
k+1 have successfully received the IoCI during this

virtual state transition. Note that inM(3)
k+1, there are no uMUs

belonging to the target groupA , since all theMUs in the target

set A received the IoCI after Event©1 and©2 . Consequently,
the probability that Event©3 occurs is given by

P
(

A
⋂

M(3)
k+1 = φ, a

)
= 1. (62)

In summary of the above three virtual events
of©1 ,©2 and©3 , when a is assumed, the joint probability that
the transient boundary is located at state n can be expressed
as (63), shown at the top of this page.

Finally, upon summing up (63) over all possible combina-
tions for the elements in a, we obtain the probability pn that
the transient boundary is located at state n, which is given by

pn =
∑
All a

P(State n is the transient boundary, a)

=

∑
All a

(
m1

a1

)
·

(
m2

a2

)
· · · · ·

(
mk
ak

) (m(1)
k+1

a(1)k+1

)/(
N
A

)
=

(
n− 1
A− 1

)/(
N
A

)
, (64)

for A ≤ n ≤ N . Note that sincem(1)
k+1+

∑k
i=1 mi = n−1 and,

for all 1 ≤ i ≤ k , the entries of a are subject to 0 ≤ ai ≤ mi
as well as 0 ≤ a(1)k+1 ≤ m

(1)
k+1, while a

(1)
k+1+

∑k
i=1 ak = A−1,

the combinatorial problem described by the numerator of the
second line of (64) is equivalent to that of selecting (A − 1)
MUs out of the total (n−1) ones. As a result, the third equality
of (64) holds, and Lemma 2 is proved. According to (64),
we can see that pn is not related to any specific value of
{mi, i = 1, 2, · · · , k + 1} and {ai, i = 1, 2, · · · , k + 1}. �
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