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ABSTRACT This paper considers three issues that arise in creating an algorithm for the robust detection
of textured contact lenses in iris recognition images. The first issue is whether the accurate segmentation
of the iris region is required in order to achieve the accurate detection of textured contact lenses. Our
experimental results suggest that accurate iris segmentation is not required. The second issue is whether an
algorithm trained on the images acquired from one sensor will well generalize to the images acquired from
a different sensor. Our results suggest that using a novel iris sensor can significantly degrade the correct
classification rate of a detection algorithm trained with the images from a different sensor. The third issue is
how well a detector generalizes to a brand of textured contact lenses, not seen in the training data. This paper
shows that a novel textured lens type may have a significant impact on the performance of textured lens
detection.

INDEX TERMS Biometrics, machine learning, image processing, image classification, image texture
analysis.

I. INTRODUCTION
Textured (or ‘‘cosmetic’’) contact lenses prevent an iris
recognition system from imaging the natural iris texture.
Therefore, automatic detection of textured contact lenses
is an important anti-spoofing technique for iris recog-
nition systems. At least one commercial iris recogni-
tion system claims to have a method for detecting
the presence of textured contact lenses [16]. However,
to our knowledge there is no published evaluation of the
algorithm used or its accuracy. A number of approaches
have appeared in the literature in recent years, many
reporting correct classification rates of over 95% on
experimental datasets [8], [12], [13], [21], [37]–[39].
These approaches are based on computing texture features
from the iris image and training a classifier to distinguish the
case of no textured lens versus the case of textured lens.

This paper makes contributions on three aspects related to
automatic detection of textured contact lenses in iris recogni-
tion images. One aspect is whether accurate iris segmentation
is needed in order for textured lens detection to be effective.
This question is important because the presence of textured
contact lenses can make accurate iris region segmentation
more difficult. All previous research on textured lens detec-
tion has assumed that an accurate iris region segmentation
is available. Our results show that an accurate iris segmen-
tation is not required in order to achieve high accuracy in

detection of textured contact lenses. A second aspect
is whether textured lens detection generalizes to images
obtained with a different iris sensor. This question is impor-
tant because large-scale and long-term iris recognition appli-
cations will have to deal with images acquired from differ-
ent sensors. Our results indicate that current textured lens
detection algorithms do not necessarily generalize well to
use with images from a novel iris sensor. A third aspect is
how well textured lens detection generalizes to a brand of
lenses not seen in the training data. This question is important
because any deployed iris recognition system will eventually
be confronted with novel brands of textured contact lenses.
Our results suggest that a textured lens detection algorithm
trained on images of only one brand of textured lenses may
be very brittle, but that training on a larger number of brands
of textured lenses improves generalization. The dataset that
we use to explore these issues contains images from a larger
number of different manufacturers of textured lenses than any
other published work.

This paper extends the state-of-the-art in textured lens
detection in several ways. This is the first paper to consider
whether or not the iris must be accurately segmented in order
to detect the presence of textured lenses. The dataset used in
evaluating the effects of novel contact lenses contains lenses
from more different manufacturers than any other publicly
available dataset. This paper also adds additional support to
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the cross-sensor effects that have been considered in some
previous work [9], [38].

The remainder of this paper is organized as follows.
Related work is outlined in Section II. Section III describes
the dataset and method used in this work. Results of the
experiment are presented in Section IV. A comparison to
previous results using LBP is offered in Section V. Finally,
concluding remarks are given in Section VI.

II. LITERATURE REVIEW
Approaches to detection of fake irises, whether they are
printed images of genuine irises, textured contact lenses, or
model eyes, can be broken down into three major categories:
1) pattern recognition on single iris images; 2) exploiting
some biological trait to detect liveness; and 3) analyzing some
physical property of the iris.

A. PATTERN RECOGNITION APPROACHES
As early as 2003, Daugman [7] (building on his previous
work [17]) proposed analysis of the 2D Fourier power spec-
trum to detect the highly periodic fake iris pattern that was
prevalent in ‘dot-matrix’-style textured lenses manufactured
at that time. Some lenses have multiple layers of dot-matrix
printing, or are printed via another technique that does not
produce the regular dot pattern. This reduces or eliminates
the high-power response resulting from the constant spacing
of the dots on the lens. Textured lens detection by this method
may no longer be reliable.

He et al. [12] propose training a support-vector
machine on texture features in a gray-level co-occurrence
matrix (GLCM). They constructed a dataset of 2,000 gen-
uine iris images from the Shanghai Jiao Tong University
(SJTU) v3.0 database and 250 textured lens images, of which
1,000 genuine and 150 textured are used for training. They
report a correct classification rate of 100% on the testing
data.

Wei et al. [37] analyze three methods for textured contact
lens detection: measure of iris edge sharpness, character-
izing iris texture through Iris-Textons, and co-occurrence
matrix (CM). Two class-balanced datasets are constructed
using CASIA [2] and BATH [34] images for genuine iris
images and a special acquisition for textured contact lens
images. Each dataset contains samples of a single man-
ufacturer of textured contact lenses. Correct classification
rates for the three methods and two datasets vary between
76.8% and 100%.

He et al. [13] use multi-scale Local Binary Patterns (LBP)
as a feature extraction method and AdaBoost as a learning
algorithm to build a textured lens classifier. They acquire a
custom dataset of 600 images with 20 different varieties of
fake iris texture, a majority of which are textured contact
lenses. A training set of 300 false iris images is combined
with 6000 images from the CASIA Iris-V3 [2] and
ICE v1.0 [35] data sets.

Zhang et al. [39] investigated the use of Gaussian-
smoothed and SIFT-weighted Local Binary Patterns to detect

textured lenses in images acquired with multiple iris cameras.
They constructed a dataset of 5000 fake iris images with
70 different textured lens varieties. They report a correct
classification rate of over 99%when training on heterogenous
data, but this drops to 88%when different sensors are used for
training and testing sets.

Galbally et al. [10] propose a fake iris classifier based on
quality metrics. Twenty-two quality features are extracted
from the iris image and combined into a feature vector by
a Sequential Floating Forward Selection (SFFS) algorithm.
The final feature vector is used to classify an image as either
a real or a fake iris.

Kohli et al. [21] perform an analysis of the effects of
various types of contact lenses on the performance in a com-
mercial iris biometrics system. They investigate four tech-
niques for contact lens detection and present ROC curves
demonstrating an improvement when lens detection is used
to filter probe images.

Doyle et al. [8] present an analysis of local binary pat-
tern texture extraction to classify an iris image as no lens,
transparent lens, or textured lens. Several machine learning
algorithms are investigated and an ensemble of classifiers is
constructed. A dataset of 1,000 images from each of the three
classes is used for training, and a dataset of 400 images per
class is used to test. The correct-classification rate for the
three-class problem (textured lenses, clear lenses, no lenses)
is 71% but increases to 98% when detecting textured
lenses alone. Further analysis on larger datasets is offered
in [9].

Yadav et al. [38] compare previous textured lens detection
algorithms and multiple proposed algorithms over a common
dataset, extending the work in [8], [9], and [21]. A com-
bined dataset with 11,670 images from four different sensors,
representing four manufacturers of textured lenses, is used to
evaluate the existing techniques and the proposed techniques.
The proposed algorithms are shown to outperform the previ-
ous methods. Additionally, analysis of the impact of textured
lenses, and the benefit of their detection, is presented in the
form of ROC curves.

Komulainen et al. [23] apply the Binarized Statistical
Image Feature (BSIF) developed by Kannala and Rahtu [20]
to the problem of cosmetic lens detection. In their work,
they use the 2013 release of the Notre Dame Cosmetic Lens
Database. Instead of unrolling the iris region, as in the orig-
inal work with this dataset [9], [38], the feature extraction is
performed on the Cartesian image. BSIF is shown to outper-
formLBP; LBP had an average CCR of 94.01% andBSIF had
an average CCR of 98.42%. Additionally, BSIF was shown
to generalize slightly better than LBP in the ‘‘leave-1-out’’
experiment defined by the dataset.

Menotti et al. [28] propose using deep representations for
iris spoof detection. A modification to the standard convo-
lution neural network (convnet) was created (spoofnet) and
achieved close to state-of-the-art correct classification rates
on two publicly-available fake iris datasets (98.93% accu-
racy on Biosec [32], 98.63% on MobBIOfake [33]) and did
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achieve state-of-the-art accuracy for one publicly available
fake iris dataset (99.84% on Warsaw [5]).

This paper extends our previous work in textured lens
detection [8], [9], [38] in several ways. Our previous work
focused on LBP as a feature extraction technique, however we
instead use the BSIF feature extraction [20] in this work. The
dataset that is used in this work contains additional lens man-
ufacturers that were not present in the previous versions of the
dataset. Additionally, we evaluate the correct detection rate of
novel lens manufacturers when an increasing number of lens
manufacturers are used for training andwhether segmentation
is necessary for accurate detection of textured lenses.

B. BIOLOGICAL APPROACHES
Park [30] describes a countermeasure to textured lenses in
iris biometrics. Park proposes exploiting the natural hippus1

movements of the human iris to determine if the acquired
samples are of fake or real irises. The proposal involves
capturing multiple images of the same subject eyes at the
time of acquisition and comparing the pupil-to-iris ratio of
the multiple samples. The natural hippus contractions should
result in changes in the pupil to iris ratio between the different
samples. To improve the natural hippus, visible light LEDs
added to an iris camera are proposed.

Puhan et al. [31] extend the work of Park [30] by proposing
a method by which the Park detection would fail to recognize
a textured lens. Their spoofing method involves the use of
a textured lens that does not fully occlude the genuine iris
texture near the pupillary boundary. By doing so, the majority
of the iris texture would be blocked, but would still allow for
the hippus movement to be detected. Puhan et al. also propose
a countermeasure by which such attacks could be detected.

Pacut and Czajka [29] describe three methods for detect-
ing printed irises: frequency spectrum (FS), controlled light
reflection (CLR), and pupil dynamics (PD). The FS method
uses frequency analysis of the image to classify the image
as either genuine or printed. The CLR method uses an iris
camera supplemented with additional near-IR diodes that
produce additional reflections detectable in real irises. The
PD method uses a visible light illuminant to constrict the iris
while a near-IR video sensor records the eye.

Lee et al. [25] propose a method for fake iris detection
involving capturing the iris under two different wavelengths
of near-IR illumination and checking the reflectance ratio
between the sclera and iris portions of the image. The iris
and the sclera should have different reflectance ratios when
under different illuminations. When there is no observed
difference between the two reflection ratios, the iris and sclera
are assumed to be made of the same material, and therefore it
is a fake. This method was shown to perform well against
irises printed on paper, plastic eyes, and textured contact
lenses.

1Hippus, also known as pupillary athetosis, is spasmodic, rhythmic, but
regular dilating and contracting pupillary movements between the sphincter
and dilator muscles. From https://en.wikipedia.org/wiki/Hippus, accessed
June 2nd, 2015.

Bodade and Talbar [1] describe a system for fake iris
detection by using an external illuminant to produce a pupil-
lary constriction. Fake irises will be unchanged in the pres-
ence of the extra light, but a true iris will have a smaller
pupil to iris ratio under the new illumination. They report
99.45% and 100% accuracy on two datasets of fake iris
images.

Huang et al. [14] create a 2-camera NIR face acquisition
system, from which iris images are extracted, with the capa-
bility to illuminate the iris with visible light in order to force a
pupillary constriction. Unlike other methods, the pupil to iris
ratio is not the only measure of dilation in this work. An SVM
is trained using small patches of iris texture as well.

Kanematsu et al. [19] present a method for fake iris detec-
tion by determining the brightness of the iris before and after
a pupillary light reflex. They show that there is a significant
difference between live irises and fake irises, enough to per-
fectly segment their dataset.

Czajka [6] presents a liveness measure based on pupil
dynamics. Short videos (< 3 seconds) of the eye are acquired
under changing illumination. The Kohn and Clynes [22]
model of pupil dynamics is used tomodel expected pupil dila-
tion under various illumination changes. Specifically, the iris
responds more quickly to a dark-to-light illumination change
than a light-to-dark illumination change. Overall results as
a liveness detection mechanism are positive and the author
offers a fair assessment of the failure modes of this particular
approach.

C. PHYSICAL APPROACHES
Lee et al. [24] suggest that the Purkinje images will be differ-
ent between a live iris and a fake iris. They propose a novel iris
sensor with structured illumination to detect this difference in
Purkinje images between a known model of the human eye
and an observed fake iris texture. They report results on a
dataset of 300 genuine iris images and 15 counterfeit images.
They report a False Accept Rate and a False Reject Rate of
0.33% on the data, but suggest that the dataset may be too
small to draw generalized conclusions.

Hughes and Bowyer [15] document a prototype stereo iris
sensor for textured lens detection. The iris is idealized as a
planar torus located posterior to the cornea. When captured
with a stereo sensor, the iris is seen as a flat surface. Contact
lenses rest on the surface of the convex cornea. Therefore,
if a subject is wearing a textured lens the stereo sensor will
not see a flat surface but rather a curved surface. This tech-
nique approaches detecting textured lenses as distinguishing
whether the imaged iris texture lies on a flat surface or a
spherical surface in 3D.

III. EXPERIMENTAL METHOD
A. DATASET
The Notre Dame Contact Lens Detection 2015 (NDCLD‘15)
Dataset2 is used in this paper. It also defines the leave-n-out

2Available by request at http://www3.nd.edu/~cvrl/CVRL/Data_Sets.html.
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experiments, where n = {1, 2, 3, 4}. Segmentation informa-
tion from a commercially-available iris biometrics SDK is
also supplied.

1) ACQUISITION
The IrisAccess LG 4000 sensor [27] captures images of
both irises simultaneously. All images have a resolution of
640×480 pixels. Two banks of infrared LEDs, one on each
side of the sensor, illuminate the eyes. Images can be captured
under either ‘‘direct’’ or ‘‘cross’’ illumination, referring to
which bank of LEDs illuminates the eye. The illumination
options may be used to obtain images with reduced specular
highlighting; choice of illuminator is a part of automated
image selection for the sensor. The raw iris image data
appears to undergo some displacement, to place the pupil
near the center of the 640×480 output image, padding with a
constant gray level if necessary.

The IrisGuard AD100 [16] sensor captures images of both
irises simultaneously. Two types of LEDs allow for near-IR
and visible-light illumination of the eyes. All images have a
resolution of 640×480 pixels.
All iris images were captured in a windowless indoor lab

under consistent lighting conditions. Subjects were super-
vised during acquisition to ensure proper acquisition pro-
cedures were followed. Human subjects participated under
the terms of protocols approved by the University Human
Subjects Institutional Review Board. Before any biometric
information is captured, participants self-report information
such as ethnicity, gender, and whether or not the participant
is wearing contact lenses. This information is captured for
each acquisition session.

2) COMPOSITION
A well-constrained database of 7300 images was constructed
to evaluate contact lens detection under various experimental
scenarios. The main dataset is composed of 6000 images for
model training and 1200 images for model evaluation. Images
were acquired using either an IrisAccess LG4000 or an Iris-
Guard AD100 sensor; both sensors are equally represented.
The dataset is composed of images from one of three equally-
represented classes: No Lens, Soft Lens, and Textured Lens.
Images in the No Lens class were acquired while the subject
was not wearing any type of contact lens. Images in the
Soft Lens class were acquired while the subject was wearing
a clear soft contact lens which may or may not contain a
support boundary, lettering, or other small markings, and
may be either toric3 or non-toric. Images in the Textured
Lens class were acquired while the subject was wearing a
textured/cosmetic soft contact lens with an opaque printing
designed to alter the visual appearance of the iris texture.
Hard lenses are not represented in this dataset. The distribu-
tion of images in the Training Set can be seen in Table 1 and
the distribution of images in the Verification Set can be seen

3Toric lenses are often constructed such that they do not freely rotate
around the optical axis as is the case with non-toric lenses.

TABLE 1. Image distribution of the base Training Set.

TABLE 2. Image distribution of the base Verification Set.

TABLE 3. Image distribution of the Textured Lens group by manufacturer.

in Table 2. The training set and the verification set are subject
disjoint; subject eyes appearing in the training set are not part
of the verification set.

For the training set, ten images from each subject eye
were selected from the No Lens and Soft Lens classes. For
the Textured Lens class, more images are selected from each
subject eye, due to the limited number of subjects available
to wear textured contact lenses. Between 36 and 192 images
are selected from each subject eye in the Textured Lens class,
dependent upon howmany different brands of textured lenses
were worn by that subject. The subject breakdown of the
dataset can be found in Tables 5, 6, and 7.

For the No Lens and Soft Lens classes in the verification
set, ten images were selected from each subject eye not
represented in the training set. For the Textured Lens class,
more images are selected from each subject eye, due to the
limited number of subjects available to wear textured contact
lenses. Between 35 and 65 images are selected from each
subject eye, dependent upon how many different brands of
textured lenses were worn by that subject.

The image distributions in each combination of Sensor
and Class are balanced between Right Eye and Left Eye.
The image distributions in each Sensor for No Lens and Soft
Lens are additionally balanced between Male and Female;
the Textured Lens subject pool was predominately Male. The
majority of the dataset is Caucasian subjects, but African and
Asian are also represented.

All textured contact lenses in the NDCLD‘15 base
dataset came from five major suppliers of textured lenses:
Johnson&Johnson [18], Ciba Vision [3], Cooper Vision [36],
Clearlab [4] and United Contact Lens [26]. Multiple colors
were selected for each manufacturer and some lenses were
also toric lenses designed to correct for astigmatism. The
distribution of images per lens manufacturer can be found
in Table 3.
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FIGURE 1. Cropped AD100 sample images for the five textured lens manufacturers represented in this work in the same eye. These images
are samples only, they may or may not be part of the dataset. (a) No Lens. (b) Ciba. (c) Cooper. (d) J&J. (e) UCL. (f) Clear Lab.

TABLE 4. Image distribution of the Textured Lens group by Leave n Out.

The database also defines multiple datasets for
leave-n-out experimentation, where n = {1, 2, 3, 4}. The
number of images in each of the arrangements can be found
in Table 4. In order to create a dataset with the proper num-
ber of cosmetic lens images (250) from each manufacturer,
another 100 cosmetic images were added to the database.
This accounts for the apparent discrepancy in the first
paragraph of the dataset description. (6,000 training +
1,200 testing + 100 extra = 7,300 images.)
Sample images of each textured lens manufacturer can

be seen for the AD100 sensor in Figure 1 and for the
LG4000 sensor in Figure 2.

B. SEGMENTATION
All images were segmented using a commercially-available
iris biometrics SDK to extract center and radius for circles
defining the pupillary boundary and the limbic boundary.
The segmentation divides each iris image into three regions:
(1) pupil, (2) iris, and (3) sclera/periocular. Details about the
specific implementation of the algorithm are not available
as the software is closed-source. The software outputs cen-
ter point (x, y) and radius of two circles only. More accu-
rate segmentation representations (ellipses, snakes) and mask
(eyelid/eyelash occlusion, spectral highlights) information
are not available with this software.

Segmentations for the Training Set were inspected visually
by overlaying circles defined by the segmentation algorithm.

TABLE 5. Subject distribution of the AD100 images.

TABLE 6. Subject distribution of the LG4000 images.

TABLE 7. Subject distribution of the Combined images.

Ill-fitting circles were corrected by taking a ‘‘best-fit’’ circle
from four mouse clicks each around the limbus and the pupil-
lary circles. The Verification Set segmentation was not visu-
ally inspected or adjusted to better simulate an unsupervised
‘‘real-world’’ iris biometrics system.

C. FEATURE EXTRACTION
Binarized Statical Image Feature (BSIF) analysis [20]4

is applied at multiple scales to produce feature vectors.
The kernel size for the BSIF pattern analysis
is s = {3, 5, 7, 9, 11, 13, 15, 17}5 for a total of

4Source code for BSIF is generously provided by the Univer-
sity of Oulu Center for Machine Vision Research. http://www.ee.
oulu.fi/~jkannala/bsif/bsif_code_and_data.zip

5The runtime of the BSIF feature increases with larger kernel sizes but no
runtime performance analysis has been performed in this work.
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FIGURE 2. Cropped LG 4000 sample images for the five textured lens manufacturers represented in this work in the same eye. These images
are samples only, they may or may not be part of the dataset. (a) No Lens. (b) Ciba. (c) Cooper. (d) J&J. (e) UCL. (f) Clear Lab.

8 different feature vector sets. The kernel depth was
held constant at 8-bits resulting in a feature vector of
length 256.

Three different applications of BSIF are evaluated in this
work: Whole Image, Best Guess and Known Segmentation.
InWhole Image, the BSIF feature vector is calculated for the
entirety of the image. In Best Guess, the kernel is evaluated
inside a set torus, eliminating the need for a segmentation
algorithm,while also excluding eyebrow and other noise from
the majority of images. The pupillary boundary is defined by
the average center point of all pupillary circles in the verified
training set and the pupillary circle radius is defined as the
average pupillary radius from the verified training set. The
limbic boundary is defined by the average center point of all
limbic circles in the verified training set and the limbic circle
radius is defined as the average limbic radius from the verified
training set, plus a delta of 30 pixels. The distributions of
centers and radii for the verified combined training set can be
found in Figure 3. The segmentation provided by the dataset6

is used in Known Segmentation to limit the scope of the
BSIF kernel to only the localized iris texture in each image.
The known iris radius is increased by 30 pixels to include the
contact lens boundary which is usually located just outside
the limbic boundary in the sclera.

Both the LG4000 and AD100 cameras appear to perform
some iris localization during the acquisition process which
positions the iris roughly in the center of the image, which can
be seen in the box plots in Figure 3. However, the apparent
size of the iris can vary, as seen visually in Figures 1 and 2
and plotted in Figure 3. Furthermore, the presence of a tex-

6Segmentation information is provided by a commercial matcher. Training
set segmentation was manually verified and corrected, verification set was
not inspected.

tured contact lens yields less accurate segmentations versus
the presence of a soft lens or the absence of any contact
lens.

D. MODEL TRAINING
Six different classifiers were explored as possible approaches
to train models on the feature sets. The specific classifiers
were Naïve Bayes, Logistic, Multilayer Perceptron, Sim-
ple Logistic, SMO, and LMT. Implementations of these
algorithms were provided by Weka [11].

The images in the dataset were down-sampled by 50%
in each direction to facilitate evaluation of BSIF scales
above s = 17. Applying the original kernel sizes of
BSIF on the reduced data simulates BSIF kernel sizes of
s = {6, 10, 14, 18, 22, 26, 30, 34}. Combined with the BSIF
kernels applied to the original-scale data yields a total of
16 different feature vector sets.

Models were trained over the single-sensor portions of
the dataset and on the two-sensor combined dataset. When
data from both sensors was used, the source sensor was
not used as a feature. A separate ensemble of models is
constructed for each combination of sensor, data arrange-
ment, and feature extraction method. The ensemble is
6 classifiers by 16 scales for 96 trained models in the
ensemble.

E. MODEL EVALUATION
Each ensemble of models is evaluated using the verifi-
cation set defined in Section III-A.2. The single-sensor
training also allows for the evaluation of a novel sensor
(i.e., AD100 models evaluated on LG4000 verifica-
tion images) and the leave-n-out verification set allows
for the examination of the effect of a novel textured
lens.
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FIGURE 3. Center points and radii for both the pupillary and limbic
segmentation circles for the combined dataset. (a) X. (b) Y. (c) R.

IV. EXPERIMENTAL RESULTS
Observing the confusion matrices and correct classification
rates (CCR) in aggregate allows for generalized conclusions

FIGURE 4. Boxplots of the Correct Classification Rate (CCR) of each
Weka [11] classifier for Best Guess and Known Segmentation.

to three questions regarding contact lens detection: (1) is
segmentation a necessary part of the process? (2) what effect
does a novel sensor have on constructed models? and (3)
what effect does a novel textured lens have on constructed
models?

As previously mentioned there are six classifiers that
are used for textured lens detection. With the exception of
Naïve Bayes, all classifiers perform at about the same correct
classification rate, roughly 84%. The specific rates can be
found in Figure 4.While the classifier does not appear to have
much impact, the scale at which the BSIF features are applied
shows a definite trend. The BSIF code comes with preset
scales at s = {3, 5, 7, 9, 11, 13, 15, 17} and the average CCR
for each s is presented in Figure 5 for both the original-
scale and reduced-scale verification data. For the original-
scale verification data, the smallest scale s = 3 starts with a
CCR of 83% and goes up to a CCR of 85% with s = 17. For
the reduced-scale verification data, the smallest scale s = 6
starts with a CCR of 83% and peaks at s = 18 with a CCR
of 85%.

Figure 6 shows the marginal increase in CCR achieved
when an ensemble of n models is used, where
n = {1, 2, ...96}. When n = 1 the performance is similar
to the average single classifier results shown in Figure 4
and Figure 5. However, as the n increases, the CCR asymp-
totically approaches the maximum observed CCR for each
combination of sensor and segmentation method.

A. VALUE OF KNOWN SEGMENTATION
The three different segmentation scenarios (mentioned in
Section III-C) are evaluated and ranked by the average
CCR on the verification set. A bar chart of the results can
be found in Figure 7. The results presented in this sub-
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FIGURE 5. Correct classification rate (CCR) for each BSIF feature size.
Results are shown for kernel sizes of s = 3, 5, 7, 9, 11, 13, 15, 17 and
down sampled images resulting in s = 6, 10, 17, 18, 22, 26, 30, 34.

section are the average of the homogeneous7 and combined
8 experiments.

Using the entire image as the region of interest for the
BSIF feature extraction technique described in Section III-C
yields a surprisingly accurate CCR, on par with using known
segmentation with LBP. For the AD100 set, the CCR is
99.5%, for LG4000 the CCR is 99.67%, and combined the
CCR is 99.75%. However, using the average segmentation
to guess at the location of the iris within the image out-
performs this method. Guessing at the true segmentation
of the verification sets by using the average center point
and radius of the training sets results in a perfect CCR
of 100% for AD100 and LG4000. Using the known seg-
mentation maintains the same perfect CCR of 100% for
AD100 and LG4000. The combined numbers for best guess
and known segmentation are 99.92% and 99.92%, respec-
tively. However, the sensor is not given as part of the feature
vector. The independently-trained models could trivially be
used instead of the combined classifier if the sensor is known.

Using the known segmentation does not improve over best
guess in CCR. The lack of improvement when moving from
best guess to known segmentation may motivate an early-
reject mechanism when a textured lens is detected as a sepa-
rate thread while segmentation is being performed.

B. NOVEL SENSOR
The homogeneous sensor case is defined by evaluating
the trained models on a dataset from the same sensor,
i.e. using LG4000 data to evaluate the performance of a

7The homogeneous sensor case is defined by evaluating the trainedmodels
on a dataset from the same sensor.

8The combined dataset is defined as the union of the AD100 and LG4000
datasets.

FIGURE 6. CCR as a function of number of models in the ensemble.
(a) AD100. (b) LG4000. (c) Combined.

classifier trained using LG4000 images. Accordingly, the
heterogeneous sensor case is defined by evaluating the trained
models on a dataset from a different sensor, i.e., using
LG4000 data to evaluate the performance of a classifier
trained using AD100 images. A bar chart of the average
results can be found in Figure 8.
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FIGURE 7. Correct Classification Rate trends across the different
segmentations. Results for the homogenous sensor experiments are
shown. Combined contains images from both sensors, not labeled as to
which sensor the image comes from.

FIGURE 8. Correct Classification Rate trends for Homogeneous and
Heterogeneous AD100 and LG4000 verification datasets for Known
Segmentation.

Unsurprisingly, the CCR of the homogenous case is higher
than the heterogeneous CCR. A drop is observed from 100%
in the homogenous case to just over 95% in the heterogenous
case. Evaluation of the combined dataset shows that it is
possible to correct for the effect of a novel sensor when
images frommultiple sensors are included in the training step.

The drop in CCR from homogenous sensor to heteroge-
nous sensor implies that there are sensor-specific factors in
the detection of textured contact lenses. These may be due to,
for example, differences in the near-IR wavelength used and
how it interacts with the pigment used in the textured lenses.
This result suggests that, for maximum detection accuracy,
a textured lens detection algorithm should be trained with
sample images from each sensor with which it will be used.

C. NOVEL TEXTURED LENS
The effect of a novel lens on a trained ensemble of models
is evaluated by the CCR of a verification set of images
containing textured lenses from a different manufacturer
or manufacturers than the set of images used to train
the ensemble. The CCRs reported here follow the experimen-
tal outline of combined sensor evaluations and Best Guess
segmentation.

For the leave-1-out experiment, the models were trained
on data from four of the textured lens manufacturers

and tested against the data from the fifth. For instance,
an ensemble of models was trained on images from
Johnson&Johnson, CibaVision, Cooper Vision, and United
Contact Lens and then evaluated using images from Clear-
Lab. This was repeated for each of the five manufacturers
represented in this dataset, and for each of the five verification
sets. The average CCR across all leave-1-out experiments
is 97.65%.

For the leave-2-out experiment, the models were trained
on data from three manufacturers and tested on data from
the remaining two manufacturers. For instance, an ensemble
of models was trained on images from Johnson&Johnson,
CibaVision, and Cooper Vision, and then evaluated using
images from United Contact Lens and ClearLab. This was
repeated for each combination of

(5
3

)
manufacturers repre-

sented in this dataset, and for each of the five verification
sets. The average CCR across all leave-2-out experiments
is 95.97%.

For the leave-3-out experiment, the models were trained
on data from only two manufacturers and tested on data from
the remaining three. For instance, an ensemble of models was
trained on images from Johnson&Johnson and CibaVision,
and then evaluated using images from Cooper Vision, United
Contact Lens and ClearLab. This was repeated for each com-
bination of

(5
2

)
manufacturers represented in this dataset, and

for each of the five verification sets. The average CCR across
all leave-3-out experiments is 92.59%.

For the leave-4-out experiment, the models were trained on
data from a single manufacturer and tested against data from
the remaining four. For instance, an ensemble of models was
trained on images from Johnson&Johnson and then evaluated
using images from CibaVision, Cooper Vision, United Con-
tact Lens, and ClearLab. This was repeated for each of the five

FIGURE 9. Drop in CCR as a function of number of lens manufacturers left
out of the training set and used exclusively in the verification set. Results
are shown for Best Guess segmentation.
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manufacturers represented in this dataset, and for each of the
five verification sets. The average CCR across all leave-4-out
experiments is 85.69%.

The decreasing trend as a function of number of lens
manufacturers used in the training set can be seen in Figure 9.

FIGURE 10. Contribution to CCR of each manufacturer. Lens mentioned
on X axis was included in training set. Results are shown for Best Guess
segmentation.

Figure 10 shows the average CCR for each lens manufac-
turer when that lens type is included in the training set. This
chart clearly shows that the models trained with certain lens
manufacturers generalize better to a novel lens type. Models
trained on images acquired with Johnson&Johnson lenses
performed several percentage points higher than when other
lens manufacturers are used.

FIGURE 11. Correct Classification Rate comparison for LBP and BSIF
under identical experimental frameworks using similarly-structured
datasets.

V. COMPARISON WITH LBP
This same experimental framework is examined in [38] using
a similarly-structured9 dataset. Due to the similarities of
experimental design and dataset construction, direct com-
parison between the application of BSIF and LBP in this
problem space can be made. Figure 11 highlights the rel-
ative performance of LBP and BSIF for the homogeneous
sensor, heterogeneous sensor, and combined sensor cases.
In all cases, BSIF texture extraction technique is superior
to LBP texture extraction. A comparison of the difference

9The NDCLD‘13 and NDCLD‘15 datasets are structured the same,
but the NDCLD‘15 dataset has the same number of images from the
LG4000 and AD100 sensors.

FIGURE 12. Correct Classification Rate comparison for LBP and BSIF
under identical experimental frameworks using similarly-structured
‘‘leave-1-out’’ datasets.

in performance between BSIF and LBP on the leave-1-out
experiment is offered in Figure 12.

Again, the same experimental framework is examined
in [9] for the ‘‘leave-1-out’’ experimentation, allowing for a
comparison between the relative performance of BSIF and
LBP for each lens manufacturer. In every case, the BSIF
feature generalized better to the ‘‘leave-1-out’’ experiment
than did LBP. For the case of Johnson&Johnson, the BSIF
feature greatly outperformed LBP.

VI. CONCLUSIONS AND DISCUSSION
The work in this paper investigates three different issues that
arise in the construction of a robust algorithm for detecting
iris recognition images that contain textured contact lenses.
Three major conclusions can be drawn from the results of
these experiments.

A. IS ACCURATE IRIS SEGMENTATION REQUIRED?
Our results suggest that an exact segmentation of the iris
region is not required in order to achieve accurate detection
of textured contact lenses in iris images. The CCR for both
Best Guess and Known Segmentation are roughly equiva-
lent. Systems that rely on detection of textured lenses may
be able to detect them without requiring computationally
expensive segmentation algorithms. Additionally, the accu-
racy of iris segmentation is reduced when textured lenses are
present in the image and therefore it is preferable to elimi-
nate the requirement that the image must first be segmented
before classification. The evidence for this is summarized
in Figure 7.

B. DOES ACCURACY DEGRADE FOR NOVEL SENSOR?
Due to sensor-specific factors, trained models do not gen-
eralize with the same accuracy to different sensors when
trained on only a single sensor, as is shown in Figure 8.
When data from multiple sensors were used for training,
the CCR regained most of the loss from the heterogenous
evaluation. However, the introduction of a novel sensor into
a working biometrics system may still require additional
models to be trained in order to maintain a high detection rate
of textured lenses.
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C. DOES ACCURACY DEGRADE FOR NOVEL LENS TYPE?
The CCR of a trained textured lens detector drops slightly
when a type of textured lens that it has not previously seen
is introduced into the verification dataset. However, the more
manufactures that are observed in the training set, the more
robust the models are to novel lens manufacturers. If training
on only one lens manufacturer, the CCR on novel lenses is
about 86%. This increases dramatically to almost 98% when
data from four manufacturers is used in training. Therefore, a
trained classifier does reliably generalize to a manufacturer of
textured contact lenses that was not represented in the training
data.

D. FINAL REMARK
One possibly surprising result emerging from this work con-
cerns the texture filters LBP and BSIF. For this particular
problem of textured contact lens detection, BSIF appears
to offer substantially better performance. BSIF accuracy is
generally higher, and generalizes better. (Figures 11 and 12.)

As a final overall conclusion, provided that the detection
algorithm is trained with images from the same sensor used
in testing, and that there are no lens types seen in testing that
were not seen in training, textured lens detection appears to
be a solved problem. In these restricted conditions, which
may be approximated in some practical situations, accuracy
close to 100%may be achieved. In less controlled conditions,
accuracy may drop for a type of lens that was not repre-
sented in the training data. However, it appears that training
on a large number of different lens types can give some
confidence that this method generalizes with reasonably high
accuracy.

REFERENCES
[1] R. Bodade and S. Talbar, ‘‘Dynamic iris localisation: A novel approach

suitable for fake iris detection,’’ in Proc. Int. Conf. Ultra Modern
Telecommun. Workshops (ICUMT), 2009, pp. 1–5.

[2] Chinese Academy of Sciences Center for Biometrics and Security
Research. (Jun. 2015). CASIA Iris Databases. [Online]. Available:
http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp

[3] CibaVision. (Apr. 2013). FreshLook Colorblends. [Online]. Available:
http://www.freshlookcontacts.com

[4] Clearlab. (Jan. 2014). Eyedia Clear Color Elements. [Online]. Available:
http://www.clearlabusa.com/eyedia-clear-color.php

[5] A. Czajka, ‘‘Database of iris printouts and its application: Development
of liveness detection method for iris recognition,’’ in Proc. 18th Int. Conf.
Methods Models Autom. Robot. (MMAR), 2013, pp. 28–33.

[6] A. Czajka, ‘‘Pupil dynamics for iris liveness detection,’’ IEEE Trans. Inf.
Forensics Security, vol. 10, no. 4, pp. 726–735, Apr. 2015.

[7] J. Daugman, ‘‘Demodulation by complex-valued wavelets for stochastic
pattern recognition,’’ Int. J. Wavelets, Multiresolution Inf. Process., vol. 1,
no. 1, pp. 1–17, 2003.

[8] J. S. Doyle, K. W. Bowyer, and P. J. Flynn, ‘‘Automated classifica-
tion of contact lens type in iris images,’’ in Proc. 6th IAPR Int. Conf.
Biometrics (ICB), Jun. 2013, pp. 1–6.

[9] J. S. Doyle, K. W. Bowyer, and P. J. Flynn, ‘‘Variation in accuracy of
textured contact lens detection based on sensor and lens pattern,’’ in Proc.
IEEE 6th Int. Conf. Biometrics, Theory, Appl. Syst. (BTAS), Sep./Oct. 2013,
pp. 1–7.

[10] J. Galbally, F. Alonso-Fernandez, J. Fierrez, and J. Ortega-Garcia, ‘‘A high
performance fingerprint liveness detection method based on quality related
features,’’ Future Generat. Comput. Syst., vol. 28, no. 1, pp. 311–321,
2012.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, ‘‘The WEKA data mining software: An update,’’ ACM
SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[12] X. He, S. An, and P. Shi, ‘‘Statistical texture analysis-based approach for
fake iris detection using support vector machines,’’ in Proc. Int. Conf. Adv.
Biometrics, 2007, pp. 540–546.

[13] Z. He, Z. Sun, T. Tan, and Z. Wei, ‘‘Efficient iris spoof detection via
boosted local binary patterns,’’ in Proc. Int. Conf. Adv. Biometrics, 2009,
pp. 1080–1090.

[14] X. Huang, C. Ti, Q.-Z. Hou, A. Tokuta, and R. Yang, ‘‘An experimental
study of pupil constriction for liveness detection,’’ in Proc. IEEEWorkshop
Appl. Comput. Vis. (WACV), Jan. 2013, pp. 252–258.

[15] K. Hughes and K. W. Bowyer, ‘‘Detection of contact-lens-based iris bio-
metric spoofs using stereo imaging,’’ in Proc. 46th Hawaii Int. Conf. Syst.
Sci. (HICSS), Jan. 2013, pp. 1763–1772.

[16] IrisGuard. (Apr. 2013). AD100 Camera. [Online]. Available: http://
www.irisguard.com/uploads/AD100ProductSheet.pdf

[17] A. K. Jain, R. M. Bolle, and S. Pankanti, Eds., Biometrics: Personal
Identification in Networked Society. NewYork, NY,USA: Springer-Verlag,
1999.

[18] Johnson & Johnson. (Apr. 2013). ACUVUE2 Colours. [Online]. Available:
http://www.acuvue.com/products-acuvue-2-colours

[19] M. Kanematsu, H. Takano, and K. Nakamura, ‘‘Highly reliable liveness
detection method for iris recognition,’’ in Proc. Annu. Conf. Soc. Instrum.
Control Eng. (SICE), 2007, pp. 361–364.

[20] J. Kannala and E. Rahtu, ‘‘BSIF: Binarized statistical image features,’’ in
Proc. 21st Int. Conf. Pattern Recognit. (ICPR), 2012, pp. 1363–1366.

[21] N. Kohli, D. Yadav, M. Vatsa, and R. Singh, ‘‘Revisiting iris recogni-
tion with color cosmetic contact lenses,’’ in Proc. 6th IAPR Int. Conf.
Biometrics (ICB), Jun. 2013, pp. 1–7.

[22] M. Kohn and M. Clynes, ‘‘Color dynamics of the pupil,’’ Ann. New York
Acad. Sci., vol. 156, no. 2, pp. 931–950, 1969.

[23] J. Komulainen, A. Hadid, and M. Pietikäinen, ‘‘Generalized textured
contact lens detection by extracting BSIF description from Cartesian iris
images,’’ in Proc. IEEE Int. Joint Conf. Biometrics (IJCB), Sep./Oct. 2014,
pp. 1–7.

[24] E. C. Lee, K. R. Park, and J. Kim, ‘‘Fake iris detection by using Purkinje
image,’’ in Proc. 6th IAPR Int. Conf. Biometrics, 2006, pp. 397–403.

[25] S. J. Lee, K. R. Park, and J. Kim, ‘‘Robust fake iris detection based on
variation of the reflectance ratio between the IRIS and the sclera,’’ in Proc.
Biometrics Symp., Special Session Res. Biometric Consortium Conf., 2006,
pp. 1–6.

[26] United Contact Lenses. (Jan. 2014). Cool Eyes Opaque. [Online].
Available: http://www.unitedcontactlens.com/contacts/opaque-lenses.
html

[27] LG. (Oct. 2011). LG 4000 Camera. [Online]. Available:
http://www.lgiris.com

[28] D. Menotti et al., ‘‘Deep representations for iris, face, and fingerprint
spoofing detection,’’ IEEE Trans. Inf. Forensics Security, vol. 10, no. 4,
pp. 864–879, Apr. 2015.

[29] A. Pacut and A. Czajka, ‘‘Aliveness detection for IRIS biometrics,’’ in
Proc. 40th Annu. IEEE Int. Carnahan Conf. Secur. Technol., Oct. 2006,
pp. 122–129.

[30] K. R. Park, ‘‘Robust fake iris detection,’’ in Articulated Motion and
Deformable Objects. Berlin, Germany: Springer-Verlag, 2006, pp. 10–18.

[31] N. B. Puhan, S. Natarajan, and A. S. Hegde, ‘‘Iris liveness detection for
semi-transparent contact lens spoofing,’’ inAdvances in Digital Image Pro-
cessing and Information Technology. Berlin, Germany: Springer-Verlag,
2011, pp. 249–256.

[32] V. Ruiz-Albacete, P. Tome-Gonzalez, F. Alonso-Fernandez, J. Galbally,
J. Fierrez, and J. Ortega-Garcia, ‘‘Direct attacks using fake images in iris
verification,’’ in Biometrics and Identity Management. Berlin, Germany:
Springer-Verlag, 2008, pp. 181–190.

[33] A. F. Sequeira, J. C. Monteiro, A. Rebelo, and H. P. Oliveira, ‘‘MobBIO:
Amultimodal database captured with a portable handheld device,’’ inProc.
VISAPP, 2014, pp. 133–139.

[34] University of Bath/SmartSensors. (Jun. 2015). University of Bath Iris
Database. [Online]. Available: http://www.smartsensors.co.uk/irisweb/

[35] University of Notre Dame. (Jun. 2015). Iris Challenge Evaluation 2005.
[Online]. Available: http://www3.nd.edu/~cvrl/CVRL/Data_Sets.html

[36] Cooper Vision. (Apr. 2013). Expressions Colors. [Online]. Available:
http://coopervision.com/contact-lenses/expressions-color-contacts

1682 VOLUME 3, 2015



J. S. Doyle, K. W. Bowyer: Robust Detection of Textured Contact Lenses

[37] Z. Wei, X. Qiu, Z. Sun, and T. Tan, ‘‘Counterfeit iris detection based on
texture analysis,’’ in Proc. 19th Int. Conf. Pattern Recognition (ICPR),
2008, pp. 1–4.

[38] D. Yadav, N. Kohli, J. S. Doyle, R. Singh, M. Vatsa, and K. W. Bowyer,
‘‘Unraveling the effect of textured contact lenses on iris recognition,’’ IEEE
Trans. Inf. Forensics Security, vol. 9, no. 5, pp. 851–862, May 2014.

[39] H. Zhang, Z. Sun, and T. Tan, ‘‘Contact lens detection based on
weighted LBP,’’ in Proc. 20th Int. Conf. Pattern Recognit. (ICPR), 2010,
pp. 4279–4282.

JAMES S. DOYLE, JR. received the B.S. degree
in computer engineering from Purdue University,
West Lafayette, IN, in 2007, and the M.S. and
Ph.D. degrees in computer science and engineer-
ing from the University of Notre Dame, South
Bend, IN, in 2011 and 2015, respectively. He is
currently a Lead Software Engineer with MITRE
Corporation, Clarksburg, WV. His research inter-
ests include iris biometrics, pattern recognition,
and computer vision.

KEVIN W. BOWYER (F’98) is currently the
Schubmehl-Prein Professor of Computer Science
and Engineeringwith theUniversity ofNotreDame
and serves as the Chair of the Department of
Computer Science and Engineering. His research
interests range broadly over computer vision and
pattern recognition, including data mining, classi-
fier ensembles, and biometrics. He was a recipient
of the 2014 Technical Achievement Award from
the IEEE Computer Society, with the citation for

pioneering contributions to the science and engineering of biometrics.
Over the last decade, he has made numerous advances in multiple areas of

biometrics, including iris recognition, face recognition, and multibiometric
methods. His research group has been active in support of a variety of
government-sponsored biometrics research programs, including the Human
IDGait Challenge, the Face Recognition Grand Challenge, the Iris Challenge
Evaluation, the Face Recognition Vendor Test 2006, and the Multiple
Biometric GrandChallenge. He has edited the recent book entitledHandbook
of Iris Recognition with Dr. M. Burge.

Prof. Bowyer is a fellow of IAPR, and a Golden Core Member of
the IEEE Computer Society. He serves as the General Chair of the 2015
IEEE International Conference on Automatic Face and Gesture Recognition.
He served as the General Chair of the 2011 IEEE International Joint Confer-
ence on Biometrics, the Program Chair of the 2011 IEEE International Con-
ference on Automatic Face and Gesture Recognition, and the General Chair
of the IEEE International Conference on Biometrics Theory Applications
and Systems in 2007, 2008, and 2009. He has served as the Editor-in-Chief
of the IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
and the IEEE BIOMETRICSCOMPENDIUM, and also serves on the Editorial Board
of the IEEE ACCESS.

VOLUME 3, 2015 1683


