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ABSTRACT Amethod for detecting a low observable target track using an acceleration-based overall motion
model is proposed. Unlike the existing track-before-detect methods that are based on sequential state updates,
this method computes integrated echo energy for the entire hypothesized motion. The detection and the
estimation of the track are made simultaneously using the batch processing approach. A comparison of track
detection probability shows higher performance against low observable targets. Using a motion similarity
metric and motion model homogeneity, a performance prediction model is derived and compared with the
simulation results.

INDEX TERMS Tracking, track before detect, detection, batch processing, hidden Markov model, motion
model, weak target, low observable target, marine vehicle.

I. INTRODUCTION
Signal processing can be thought of as the function between
the sensor and the decision-making process. In many signal
processing applications, including tracking, different levels
of trade-offs are made between computational efficiency
and decision performance. Limited computational resources
stresses the importance of efficiency, which is achieved by
making decisions early in the processing chain. However,
as the cost of computation decreases, there is more room
for the signal processing to retain more sensor data before
proceeding to the decision step. In this paper, this will be
illustrated in the context of tracking application.

Conventional active sonar tracking is done by threshold-
ing the matched filtered sensor data to estimate the target
position, repeated for each transmission. Track of a target
is the connection of the position estimates across
transmissions [1]. Thresholding, or detection, is an irre-
versible process through which information is lost, but it
allows for efficient information processing afterwards since
the following processes only need to work with position
estimates and how to connect them, without the need to retain
all of the sensor data [2].

One of the shortcomings of the conventional tracking
method is that when target echo level is low, also referred to as
low-observable target, the thresholding process does not suf-
ficiently separate target energy and energy from non-targets,
also known as clutter. As a consequence, higher probability of
detection cannot achieved without having to tolerate increase
in probability of false detection. Thresholding becomes

an unreliable signal processing method for low-observable
targets.

Track-before-detect (TBD) approaches were devised to
improve reliability of tracking performance by retaining the
sensor data longer and making a number of assumptions
on viable motion of the target for short period of time.
For example, by assuming the maximum speed is
known [2]–[4], one can hypothesize a number of potential
tracks and compute scores for each hypothesized tracks by
applying the data to find the track with the highest score.
This approach was theorized and demonstrated by a number
of papers including [2] and [5]–[10]. A survey of different
TBD approaches were shown in [1].

By making assumptions for motion characteristics,
TBD approaches can limit the search space for viable tracks
and make decisions within the viable track space making
it computationally feasible. TBD approaches are explicitly
or implicitly embedding information in the signal pro-
cessing, thereby assisting the decision and improving the
performance. In contrast, when the assumptions are incorrect,
these approaches may even perform worse than conventional
tracking. For example, if a minimum speed was assumed
to be higher than the typical target speed, then the track
search space would not include the true track and not even
hypothesize anything similar to it, eventually failing to find
the true track.

This paper is an extension of the TBD approaches that
allows it to perform reliably for low-observable targets at
lower signal to noise ratio (SNR) while still maintaining
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computational feasibility. It is similar to existing TBD
approaches in that it makes assumptions about the target
motion, and hypothesizes many trial tracks, computes scores
or likelihood that indicate how well it is supported by
data, then makes the decision toward to the highest-scoring
hypothesis. The differences are that it makes the assumption
on the motion for longer time scales using a acceleration-
based motion model and it employs a notion of motion
similarity. Details will be discussed in the following sections.

II. PROBLEM DEFINITION
Consider a set of time series recorded by an acoustic sensor
following active transmissions. One of time series is denoted
as a scan. Each scan may be matched filtered with the
transmitted signal or with the Doppler-compensated matched
filter kernel if the radial velocity of the target is assumed.
In this section, the matched filtered and basebanded time
series data will be the common input to each of the tracking
algorithms being compared. Measurement model and target
motion model are described in the following sections.

A. MEASUREMENT MODEL
The measurement at each scan, k , is the recorded acoustic
time series data denoted as yk (t), where the argument t is
the time since transmission. The matched filtered and base-
banded output of each scan, zk (t), can be expressed as the sum
of basebanded autocorrelation function, Rk (t) and the filtered
noise, vk (t).

zk (t) = Rk (t)+ vk (t) (1)

One of the properties of the basebanded autocorrelation
function, correlation width, wc, is defined as the 3dB width
of R(t). This width is known to be inversely proportional
to the time-bandwidth product of the transmitted wave-
form [11]. This quantity will be used to further analyze the
target motion in section III-B.

B. TARGET MOTION MODEL
Target motion model is the probabilistic description of the
overall motion of the target over the time span of the collected
data, i.e., all of the scans. Formarine vehicles, one can assume
the probability of traveling along a straight path is higher
compared to the probability of making frequent abrupt turns,
for a given amount observation time. The motion model
presented in this paper reflects this assumption, for exam-
ple, by assigning higher probability to the simple straight
motion than the complex multi-turn motion. This is similar
to the assumptions made in motion models considered in, for
example, [1]–[3]. However, this paper focuses not only on the
local curvature, but also on the overall motion over longer
time scales, e.g., the number of turns and the time intervals
between the turns are also considered in the motion model.

First-order Markov process has been used to describe
the position and velocity transitions for the target state
dynamics [12]–[14], as well as hidden Markov mod-
els (HMM) [15], [16]. These models are expansive in that

they allow a search of possible paths close to an exhaustive
one, but they are also computationally expensive to perform
when the time scale is extended for reliable detection of
low-observable targets.

An observationmade onmarine vehicles is that they exhibit
smoothmotion due to infrequent and small accelerations. The
motion model used in this paper considers the radial acceler-
ation of the target as the hidden state and uses exponential
distributions with varying parameter values for each state.
As a result, the overall smoothness of the sampled motion
is closer to that of marine vehicle’s than what is seen from,
for example, a first-order Markov process model. Initial posi-
tion, velocity, and radial acceleration are randomly sampled,
and the track over the observation time is determined with
Newtonian dynamics using the acceleration sampled from
the proposed HMM motion model. 2 shows the equation
for target motion expressed in terms of the hidden state,
acceleration.

a =
dv
dt
=
d2r
dt2

(2)

This motion model is similar to Singer’s acceleration-
based dynamic model [17], which was applied in tracking
applications including [4], [18], and [19] and included in
surveys of dynamic models for tracking [20], [21]. While
Singer’s model uses a combination of uniform distribution
and specified probability masses, P0 and Pmax , for no accel-
eration and maximum acceleration, respectively, the motion
model used in this paper assumes a symmetric exponential
distribution for the magnitude of the acceleration centered at
no acceleration as shown in Figure 1.

FIGURE 1. PDFs of acceleration, Singer’s model and the proposed model.

C. TRACK DETECTION
As seen in Figure 2, the position of the target changes
from one scan to the next. The time-varying position of
the target over multiple scans is defined as the track, x.
For low-observable targets, track-before-detect approaches
are employed to integrate target energy to enhance tar-
get track detection. Dynamic programming (DP) and
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FIGURE 2. Entire observation.

particle filter (PF), two of the existing track-before-detect
approaches, will be introduced, followed by the proposed
track detection algorithm.

1) DYNAMIC PROGRAMMING
DP, well known for its application in sequence estimation as
the Viterbi algorithm for hidden Markov models, is applied
to TBD to find the overall maximum likelihood (ML) track
by finding the maximum likelihood subsections of the over-
all track, recursively [22]. For each new update, likelihood
values are computed for each hypothesized subsection of the
track that terminate at the same state, or position. Subsequent
subsection of tracks are appended to the previously deter-
mined maximum likelihood track.

The trade-off between performance and efficiency is real-
ized by controlling the amount of time between each updates.
Shorter update interval approaches conventional tracking and
longer update interval leads to exhaustive search. For low-
observable targets, it is difficult to avoid longer integration
time without loss of performance. It has been illustrated
in [4] that better fitting motion model can help alleviate the
problem.

2) PARTICLE FILTER
PF assumes a hidden Markov model for the underlying state
transitions, or the track evolution, and estimates the state
sequence based on the updated posterior given the observa-
tions provided in each scan. States are the target positions
as were described for DP. However, the difference is that
only the distribution function is provided as the output in
particle filtering and in dynamic programming states are
discrete. PF can be applied in various ways depending on the
assumptions made for the dynamic system, but the sequential
posterior distribution update is the basis of the algorithm.

The two probabilistic models used in PF are the motion
model, dk , and the measurement model, zk . The particles are
sampled from the prior, which is evolved according to the
motion model. With the observations and given the state of
the particle, likelihoods are evaluated and used to construct
the importance distribution. The importance distribution is

used for the resampling, which is interpreted as the posterior
given the observation.

As the SNR decreases, the true state is less likely to yield
high amplitude, and thus likelihood. This makes it difficult
for PF to estimate the true track in a sequential manner even
when the integration of energy along the true track may have
occurred. This is what the proposed method is designed to
solve.

III. PROPOSED BATCH TRACK DETECTION APPROACH
WITH MOTION MODEL
The proposed track detection algorithm is applicable to sce-
narios where longer decision delay is allowed for more
reliable performance against low-observable targets. This
approach is an extension of the TBD approaches in that it
makes assumptions about the target motion, and hypothesizes
many trial tracks, computes likelihood values based on how
well it is supported by the data, then makes the decision
toward the highest-scoring hypothesis. The performance gain
comes from using an acceleration-based motion model for
longer time scales. Details will be discussed in the following
sections.

A. BATCH PROCESSING METHOD
The proposed batch processing algorithm consists of three
steps. First, using the HMM motion model and pre-specified
number of samples, sample trial target motions. Secondly,
process the collected data using each of the trial motion
and compute the likelihood. Lastly, find the trial motion that
yields the maximum likelihood. This can be considered a spe-
cial case of dynamic programming that uses a acceleration-
based HMM for motion model, or a special case of particle
filtering which assigns higher chance of sampling for more
probable overall motion of the target. It is a random search
approach that takes into account of the likelihood of the
overall motion as well as the likelihood by examining the
processed output magnitude.

Each randommotion sample from the HMMmotionmodel
is a hypothesized overall relative motion between the target
and the sensor that spans the duration of collected data. The
number of trial is a parameter determined by acceptable
computational load as well as the desired expected perfor-
mance based on the expected SNR. Lower SNR target energy
requires longer integration time, thus longer overall motion.
Smooth overall motion assumption indicates low complexity
motion, and this allows the search space to be manageable
compared to exponentially growing search space for
first-order Markov process.

Each trial motion, x, describes the time evolution of the
position as well as the velocity, x ′, associated with the motion
of the target. As seen in Figure 2, the overall motion spans
M scans. Each of M scans are processed with correspond-
ing position and velocity of the motion, i.e., the scan is
matched filtered with corresponding Doppler compensation
and it is time-shift compensated to make the target energy in
each scan coherently align with other scans. (3) and (4) are

1410 VOLUME 3, 2015



J. D. Park, J. F. Doherty: Track Detection of Low Observable Targets Using a Motion Model

FIGURE 3. Aligned observation using the correct motion information.

the processed scan and the integrated output, with the argu-
ment scaled to represent range instead of time as in (1).
Figure 3 shows an example where the target motion is per-
fectly compensated and the target echo arrivals from each
scan are aligned to be coherently integrated. The true range
cell accumulates all of the target energy and other range
cells integrate noise. By concentrating the target energy
into a small number of range cells, if not one, the output
peak, O, has high peak-to-background contrast.

ok (r) = zk (r − xk ) = Rk (r − xk )+ vk (r − xk ) (3)

O = max{
M∑
m=1

ok (r)}

= max{
M∑
m=1

zk (r − xk )}

= max{
M∑
m=1

Rk (r − xk )+ vk (r − xk )} (4)

FIGURE 4. Processed with incorrect motion.

Figure 3 and Figure 4 show that a trial motion more similar
to the true motion results in a higher contrast peak since the
target energy is concentrated into a smaller number of range
cells as a result of aligning the scans better. However, it should

be noted that even when the alignment is not perfect, the peak
contrast can still be high enough to be evident that there is
significant amount of concentrated target echo energy. This
indicates that the trial motions do not have to match the true
motion exactly; as long as the trial motion is similar enough to
the true motion, it results in a peak with high enough contrast.
It should also be noted that the level of allowed dissimilarity
of trial motion that would still produce a high enough contrast
peak depends on the target echo energy level. If there isn’t
enough energy to accumulate even when the alignment is
done perfectly, it will not produce a high-enough-contrast
peak. More on this topic is discussed in III-D.

This leads to the third step of the algorithm. Since it is
more likely for a trial motion more similar to the true motion
to produce a higher contrast peak, the peak-to-background
contrast is interpreted as a measure of the confidence, or
the likelihood, of the trial motion. The higher the contrast,
the more likely the true motion of the target is similar to the
trial motion and therefore the confidence is higher in making
a detection of the target track. Given the noise distribution,
it is also feasible to set a threshold to the peak contrast
above which a detection is made. In addition, overall track
estimation is done simultaneously as the detection is made.

B. MOTION SIMILARITY
As illustrated by the comparison between Figure 3
and Figure 4, the shape of the overall trial motion determines
the alignment of the target echo arrivals. More specifically,
how similar the shape of the trial motion to the shape of
the true target motion determines how well the target energy
is integrated. In the context of the track detection algorithm
described in section III-A, a motion similarity metric between
two motions becomes useful for measuring how well target
energy can be localized and for estimating the algorithm
performance.

Similarity between two time series has been extensively
studied as shown in surveys such as [23] and applied in [24].
These are mainly based on defining similarity in terms of the
longest common subsequence (LCSS) [25]. The definition of
similarity used in this work is not the same as LCSS, although
similar in that it measures the proportion of the sequence
where the difference is less than a specified tolerance.

The definition of similarity in the context of the proposed
batch track detection algorithm is based on how similarly
two different motions align and accumulate the target energy
for all scans. For two motions a and b, and arbitrary shifting
parameter γ,

s(a, b) =
1
M

max
γ

M∑
i=1

R(ai − bi − γ ). (5)

The value of the similarity metric s(a, b) spans from
0 to 1. Function R(x) is the matched filtered and basebanded
output normalized to have a peak value of 1, whose
width is inversely proportional to the bandwidth of the
transmitted waveform. Correlation width, wc, is defined as
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the 3dB width of the function R(x). It is known that larger
bandwidth yields higher matched filter processing gain and
higher range resolution [26], but high range resolution does
not make it easier to align and accumulate target echo energy
from multiple scans. As shown in Figure 4, the peak size of
the processed output can be different for the same motion
due to differences in correlation peak widths resulting from
different transmission waveform bandwidths for each trans-
mission. Therefore, motion similarity is dependent on wc of
each scan. The value of wc is considered the tolerance of
misalignment.

Note that the similarity is defined as the maximum sum
of the function R(x), where x is the difference between
two motions being compared. Intuitively, this can be approx-
imated as the maximum number of elements where x is
smaller than wc. Therefore, similarity is dependent on wc.
In the example shown in Figure 4, the output peak contrast
for imperfect motion compensation is still high enough to be
detected. However, whenwc is smaller, it makes the similarity
measure more sensitive to variability of x and it may not
accumulate to produce a high enough contrast peak.

The proposed batch algorithm takes advantage of the fact
that a similar enough trial motion can still accumulate enough
energy to make detection of the track. It relies on the smooth-
ness of the overall motion of targets and the erratic nature of
the motion of random clutter, on a large time scale. The algo-
rithm also makes use of the fact that a hypothesized motion
does not have to exactly match the actual target motion.
Some overall mismatch is allowed and the level of allowed
mismatch determines the efficiency of the batch algorithm.

Due to themismatch tolerance, determined bywc, there can
be many different motions of the same overall trend with vari-
ations of small scale fluctuations.With large enoughwc, these
realizations can be considered essentially the same motions
in terms of alignment and target echo integration. Therefore,
a motion model that does not produce redundant motions for
a given value of wc allows for more efficient performance
of the proposed algorithm. This indicates a motion sampling
method with improved efficiency, or achieving similar detec-
tion performance with less number of trial motions.

C. MOTION MODEL HOMOGENEITY
An important property of the motion model with respect to
the proposed track detection algorithm is the homogeneity of
sampled motions. A motion model is said to be homogeneous
relative to wc when the distribution of the similarity between
random-pair motion-samples from the motion model have
high similarity value and less pairs have low similarity value.
On the contrary, if the pair-wise similarity distribution has
more weight on lower similarity values, then the motion
model is considered heterogeneous.

The batch algorithm performs random search in the motion
space, with more weights in the more likely samples, and
it is intuitive to forecast that when the actual target motion
is included or is similar enough to what is described in the
motion model, the probability of detecting the track is high.

The algorithm relies on the typicality of the motion as well
as the fact the trial motion does not have to exactly match the
actual motion.

D. PERFORMANCE PREDICTION
In this section, an analytic expression of performance for
the proposed method will be presented. The performance is
dependent on SNR, length of motion or number of scans,M ,
and on the motion model homogeneity, h. Definitions of
these terms will be presented, followed by the performance
prediction.

Signal to noise ratio, or SNR, defined as

20 log
σS

σN
, (6)

is a function of target echo level, σS and the ambient noise
level, σN . SNR is computed for each transmission, not for the
overall integrated energy across multiple scans. The number
of scans is denoted asM . Therefore, the total integrated target
energy can be computed as σ 2

S × M × D, where D is the
transmission pulse duration.

As in section II-B, the motion model, H , is the proba-
bilistic description of the target motion. Given each sampled
motion, x, associated with parameter λ, the conditional dis-
tribution function of similarity to other sample motions can
be modeled as a truncated exponential distribution function
expressed as,

fS (s|H = x) =
λ exp(−λs)
1− exp(−λ)

, 0 ≤ s ≤ 1. (7)

The parameter λ is dependent on the true target motion;
negative λ value indicates trial motions are likely to be
similar to the target motion, and positive λ value indicates
trial motions are likely to be dissimilar to the sampled target
motion, x. A motion model with positive homogeneity, h, is
when there aremore true target motion samples are associated
with negative λ value. In practice, homogeneity is likely to
become smaller as M increases. However, the assumption in
this paper is the motion of marine vehicles are well mod-
eled with positive homogeneity. Figure 5 shows an example
of fS (s) with negative λ value.

The performance metric in this paper is the probability of
successful track detection. The criterion for success is defined
in terms of the root mean squared error (RMSE) in order to
make comparisons with other algorithms. Given an estimated
track, x̂, and a threshold, ε, it is considered a success when,

RMSE(x, x̂) =

√√√√ M∑
m=1

(xm − x̂m)2 ≤ ε. (8)

To make the analysis tractable, it is assumed there is a
one-to-one mapping between small-value region in RMSE
and near-1 region in similarity, e.g., ε ' 0 in RMSE cor-
responds to τ ' 1 in the similarity metric, where τ is
the threshold in similarity. In this analysis, it is considered
a success when the maximum likelihood value associated
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FIGURE 5. Distribution function of similarity to a true target motion with
associated parameter value λ = −2.

with trial motions with s ≥ τ is greater than the maximum
likelihood value associated with trial motions with s < τ .

Consider a trial motion with similarity s. The random vari-
able representing the output likelihood associated with this
trial motion is expressed as parametrizedNormal distribution,

O(s) ∼ N (Ms,M
σ 2
N

σ 2
S

). (9)

With N sampled trial motions, the output likelihood
values, On, are partitioned into two groups; A =
{On : sn ≥ τ } andB = {On : sn < τ }. The number of samples
in each group are NA, NB. It is considered a success when the
maximum of A is larger than the maximum of B, assuming
a trial motion with similarity to true motion close to 1 will
yield a reliable integrated target energy. For convenience,
the maximum output values are denoted as Amax and Bmax .
Therefore, the probability of success is,

Prob{Amax > Bmax}. (10)

The cumulative distribution functions (CDF) of maximum
value of random variables with different underlying distri-
bution functions, assuming independence, is expressed as
the product of individual CDFs with different parameter
values sn,

FAmax (o) =
NA∏
n=1

FOn|sn (o(sn)), (11)

FBmax (o) =
N∏

n=NA+1

FOn|sn (o(sn)), (12)

FOn|sn (o(sn)) is an alternative expression of (9), and
sn values are determined by N and λ associated with the true
target motion as,

sn =
exp(λnN )− 1

exp(λ)− 1
(13)

Note that NA and NB = N − NA can also vary with
different true motions and associated similarity distribution
function, (7), and the spacings between sn’s are inversely

proportional to the PDF depicted in Figure 5. Those with
sn ≥ τ contribute to (11) and those with sn < τ contribute
to (12).

fAmax |λ(o) =
dFAmax |λ(o)

do
. (14)

Probability of successful Track Detection, PTD, for a
given σS and λ, using (10), (11), (12) and (14), is
expressed as,

PTD(σS , λ) =
∫
O
fAmax |λ(o)FBmax |λ(o)do. (15)

The motion model, H , with respect to the distribution of
similarity for different target motion samples, is modeled
as another truncated exponential distribution function with
the homogeneity parameter, h. It is the distribution function
of λ values expressed as,

f3|h(λ) =
he−

h
2

1− e−h
e

hλ
2λmax

2λmax
, −λmax ≤ λ ≤ λmax (16)

Finally, using (15) and (16), the probability of success only
dependent on σS is expressed as,

PTD(σS ) =
∫
3

∫
O
f3|h(λ)fAmax |λ(o)FBmax |λ(o)dodλ. (17)

IV. RESULTS
A comparison between existing track-before-detect (TBD)
methods, dynamic programming (DP) and particle filter (PF),
and the proposed track detection algorithm will be pre-
sented with a simulation, followed by a comparison between
the model prediction and the simulation for the proposed
algorithm.

A. SIMULATION
The simulation set-up for comparing the proposed Batch
Track Detection (BTD) algorithm to the two TBD methods,
DP and PF, is as follows. For each trial, the overall target
motion of lengthM , denoted as x, is randomly sampled from
the acceleration-based HMM. Target’s echo energy, with a
specified SNR, is inserted in the target position of each
scan, xm, a value from x. The matched filtered and base-
banded time series data is provided to each of the algorithms,
DP, PF, and the proposed track detection method. Each algo-
rithm produces an estimate of the track, x̂, and it is compared
to the true track, x.

The performance of tracking algorithms will be presented
as a function of target SNR. The performance metric is
defined as the probability of success for a specified SNR.
It is considered a success when the root mean squared
error (RMSE) between x̂ and x is smaller than the specified
threshold, ε.

As seen in Figure 6, the performance of proposed batch
track detection algorithm is higher than that of existing TBD
methods at lower SNR values. Note that the performance
gap is larger for longer tracks, M = 400, dotted lines. This
illustrates how the proposed approach can perform reliably as
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FIGURE 6. Track detection performance with varying SNR,
pulse length: 1000.

long as the total integrated energy is high enough to yield a
high-contrast peak, while TBDmethods begin to fail once the
SNR falls below a certain value.

FIGURE 7. Track detection performance comparison between simulation
and model. Solid lines are simulation and dashed lines are model.
Black lines are with 200 transmissions and blue lines are with
400 transmissions).

Figure 7 compares the performance from the simulation
with the prediction. The difference comes from the fact PDF
of similarity does not match the actual distribution of mea-
sured similarity metric. However, the overall performance
and its SNR dependence is captured in the prediction model.

V. CONCLUSION
A track detection method using an overall motion model is
proposed for detecting low observable targets. This method
is differentiated from dynamic programming (DP) or particle
filter (PF) in that it computes the track likelihood based on
integrated target energy for the entire hypothesized motion
of the target sampled from a motion model in contrast to the
sequential state update in DP and PF. Instead of the recursive
state updates, this method employs a random search of the
motion of the target for the entire duration of the observation.

Themotionmodel is an acceleration-basedHiddenMarkov
model similar to the Singer’s acceleration dynamic model
and it allows the random search to be computationally
feasible. With exhaustive motion space search using first-
order Markov process, the search space grows exponentially
with the number of transmissions. Here, a smooth motion
assumption is made using the acceleration-based HMM. The
realistic assumption of marine vehicle motion allows for effi-
cient sampling and the processing algorithm also allows for a
level of mismatch associated with the correlation width, wc.
Comparison of the proposed method to existing TBD

methods is shown in terms of the probability of successful
detection of track against target echo SNR. Given that the
target motion matches the proposed motion model, while
the recursive method fails to accumulate enough energy to
make a reliable track estimates for very low SNR targets,
the proposed method is able to coherently integrate the target
echo energy and detect the true track at lower SNRs.

Using motion similarity and motion model homogeneity,
a performance prediction model is derived and agrees with
the simulation results. Some assumptions and approximations
allow for intuitive interpretation of the prediction model and
provides insight as to how the algorithm performs.

VI. DISCUSSION AND FUTURE WORK
As shown in Figure 7, the performance of the proposed
approach depends on the similarity distribution for each true
target motion. Since the algorithm is a model-based signal
processing approach, performance is predictable when the
assumption on motion model matches the reality. However,
it begins to deviate when the model fails to make correct
assumptions. The effect of model mismatch is the topic of
current effort and will be investigated both empirically with
simulations and analytically, using the similarity distribution
functions.
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