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ABSTRACT For decades, radar has been applied extensively in warfare, earth observation, rain detection,
and industrial applications. All those areas are characterized by requirements such as high quality of service,
reliability, robustness in harsh environment and short update time for environmental perception, and even
imaging tasks. In the vehicle safety and driver assistance field, radars have found widespread application
globally in nearly all vehicle brands. With the market introduction of the 2014 Mercedes-Benz S-Class
vehicle equipped with six radar sensors covering the vehicles environment 360◦ in the near (up to 40 m)
and far range (up to 200 m), autonomous driving has become a reality even in low-speed highway scenarios.
A large azimuth field of view, multimodality and a high update rate have been the key innovations on the
radar side. One major step toward autonomous driving was made in August 2013. AMercedes-Benz research
S-Class vehicle—referred to atMercedes as Bertha—drove completely autonomously for about 100 km from
Mannheim to Pforzheim, Germany. It followed the well-known historic Bertha Benz Memorial Route. This
was done on the basis of one stereo vision system, comprising several long and short range radar sensors.
These radars have been modified in Doppler resolution and dramatically improved in their perception
capabilities. The new algorithms consider that urban scenarios are characterized by significantly shorter
reaction and observation times, shorter mean free distances, a 360◦ interaction zone, and a large variety of
object types to be considered. This paper describes the main challenges that Daimler radar researchers faced
and their solutions to make Bertha see.

INDEX TERMS Radar, automotive radar, autonomous driving.

I. INTRODUCTION
In themselves, autonomously moving cars are nothing new.
From 2004 to 2007 DARPA initiated the Grand and Urban
Challenge competition for autonomous driving in landscape
areas [4]. The vehicles were equipped with a huge number of
widely varying sensors. Today BMW prototypes drive on the
highway between Munich and Nuremberg, Google cruises
with their robot car through Nevada and California. Recently
Audi demonstrated a driverless ride in a multi-story car park
in Las Vegas. However, the technical equipment was far from
standard.

In 2014 a brand-new Mercedes-Benz S-Class named
‘‘Bertha’’ drove the Bertha Benz Memorial Route in a
fully autonomous manner, see Figure 1. In August 1888,
Bertha Benz used her husband Carl Benz’s three-wheeled
vehicle to drive from Mannheim to Pforzheim, Germany.
This historic event is nowadays looked upon as the birth
date of the modern automobile. Following the official

Bertha Benz Memorial Route, the S-Class drove through
downtown Heidelberg, passed by the Bruchsal Castle, and
through narrow villages in the Black Forest. It made its way
through numerous intersections and roundabouts, planned its
path through narrow passages with oncoming vehicles and
numerous cars parked on the road, and gave the right of
way to crossing pedestrians. While Bertha Benz wanted to
demonstrate the maturity of the gasoline engine developed
by her husband, the goal of the present experiment was
to show that autonomous driving is possible on highways,
similar well-structured environments, and inner city roads,
using near serial-production sensor equipment. An additional
aim was to identify further research directions for all fields of
action such as radars and radar-based perception. Standard-
production sensor set-ups are enhanced by adding radars
with a drastically higher Doppler resolution to cover critical
situations like roundabouts and crossings, as shown in Fig. 2.
The main differences compared to the serial radars are special
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FIGURE 1. Autonomous vehicle ‘‘Bertha’’, a 2014 Mercedes- Benz S-Class
with well-integrated close-to-production sensors driving fully
autonomously on open public roads.

FIGURE 2. Sensor set-up of autonomous vehicle ’’Bertha’’. One
stereo-vision system looking forward and one mono system for
backward. Eight radar sensors covering 360◦ up to 200m.

algorithms developed for environmental representation tasks
based on the radar’s measurement data.

This was necessary since compared to standard highway
scenarios, urban scenarios are characterized by dramatic
differences in situations which a radar sensor has to handle.
In detail these are shorter reaction and observation times
due to shorter mean-free distances between one’s car and
other traffic participants or obstacles. Another difference
is that a 360◦ interaction zone has to be monitored, for
which new radar-radar fusion concepts have to be developed.
A large variety of different object types have to be taken into
consideration. Not only detection of pedestrians is necessary,
but also their classification in order to provide confidence
measures. Driving lane detection and prediction on high-
ways and rural roads is mandatory for autonomous driving
and maneuvering. The support in adverse light and weather
conditions has to be warranted by the radar system. For this
task, new algorithm concepts also have to be developed.
Clustering and tracking of distributed objects will become
more important in order to assess and predict scenarios appro-
priately in roundabouts and crossing situations. Up to the
Bertha drive, dealing with stationary environment in addition

to dynamic objects was not an issue. For autonomous driving
it is an essential add-on and has to be solved. Hence, the
environmental perception tasks the Bertha radar set-up has
to perform in urban and rural scenarios goes far beyond that
of present day ACC or Pre-Safe emergency braking tasks.

For the radar sensor, this translates into questions about the
optimum frequency of operation and the appropriate band-
width. In parallel to algorithm development, regulatory issues
have to be addressed. Finally, the challenges on packaging
issues for vehicle integration have to be solved.

The preparations for Bertha’s drive initiated the metamor-
phosis of the radar from a simple detector to an imaging like
device: A radar-eye.

The following chapters present the solutions which let
Bertha see.

II. RADAR ARCHITECTURE AND FUSION FOR 360◦

COVERAGE AND PERCEPTION
The Radar sensors set-up for realizing the complete
360 degree coverage in day and night is shown in Figure 2.
As will be described in detail in Section VII, one main
advantage of radar technology is the invisible packaging of
the sensors behind the bumpers. This fact was taken in consid-
eration when designing the radar architecture with reference
to the large field of view (FoV) provided from each single
sensor of over 140 degree. As can be seen in Figure 2, the FoV
of the radars overlap partly, which provides higher sensor
redundancy in important regions and allows for easier sensor
fusion. Hence, with only four sensors at each corner of the
vehicle, it is possible to provide a 360 degree global object
list via an intelligent sensor data fusion.

The overview of the multi-sensor multi-target tracking
system is schematically illustrated in Figure 3. The sensor
technology module obtains information on the vehicle’s
environment. This information is then processed using
various signal processing algorithms. The results are
forwarded to the application layer. The main focus of this
section will be the signal processing module.

Sensor fusion techniques have the inherent problem of
measurements from different radar sensors arriving at the
processing unit out-of-sequence, i.e., the original temporal
ordering of measurements is lost. This problem is known in
literature as the out-of-sequence-measurement problem [5].

Usually this problem is solved via buffering all incoming
measurements to ensure the correct temporal order. However,
for autonomous driving applications, where the driver is not
in the loop anymore, temporal delays caused by the sensor
fusion have to be avoided by all means [6]. Through the
advanced out-of-sequence algorithms, the state estimation is
more accurate and increases the overall system performance
of autonomous driving applications.

Figure 4 illustrates an example of an out-of-sequence
measurement problem. In this example, measurements from
sensor 2 have a shorter latency and arrive earlier than sensor 1
at the fusion level. The measurements from sensor 1 have
a different updated rate and a larger latency than sensor 2.
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FIGURE 3. Data flow of a multi-target multi-sensor tracking system.

FIGURE 4. Out-of-sequence measurement problem.

Therefore, the measurements from sensor 2 will always arrive
out-of-sequence with respect to the time of the last measure-
ment update by the Kalman filter.

The example illustrated in Figure 4 shows an l-lag
problem, where l represents the number of time steps behind
the current track time [7]. The l-lag problem can be reduced
to a 1-lag problem by calculating an equivalent measurement
as follows [6]:

R∗−1k = P−1k|k−P
−1
k|k−l

K∗k = Pk|kR
∗−1
k
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The purpose for the equivalent measurement is to adapt the
l-lag-problem to a 1-lag problem by combining all the
measurement between time step k-l and k into the so called
equivalent measurement. After having calculated the equiv-
alent measurement R∗k and the equivalent Kalman gain K∗k,
the state and covariance can be retrodicted to the out-of-
sequence-measurement time k0 by
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The covariance matrix Qk|k0 describes the process noise
in the interval [k, k0]. At this point, the out-of-sequence
measurement zk0 can be directly integrated as follows
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where xk|k0 and Pk|k0 are the new state and the new covariance
at time k with the out-of-sequence measurement integrated.
The main advantage of using advanced out-of-sequence

measurements algorithms is the computational benefit, while
having the same tracking performance as reprocessing all
measurements at the out-of-sequence time. In an autonomous
driving application, where computers have control over the
vehicle, temporal delays caused by the sensor fusion have to
be avoided by all means.

FIGURE 5. In-vehicle interface of the signal processing result.
The blue boxes represent classified tracked objects.

The resulting 360 degree tracking is shown in Figure 5.
The blue boxes represent the moving tracked objects that are
forwarded to the situation assessment module. This descrip-
tion of the ego-vehicle environment can be utilized for
instance to process the decision to initiate an autonomous lane
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changemaneuver. It is vital to quickly and accurately estimate
the pose, i.e. position and orientation, in the area around the
vehicle. To improve the estimation, several radar sensors are
fused to one global track management. In case the field of
view does not cover the entire 360 degree, a model based
approach need to be considered.

The rear traffic needs to be observed for a lane change
application. The tracking system must especially intervene a
lane change request if fast vehicles approaches from behind.

Furthermore, it is crucial to achieve a continuous tracking
of all objects around the car. In doing so, the most chal-
lenging part is the data association of a point target to a
two-dimensional object. The objects are described by the
pose, the width and the length. The raw targets are clustered
and the resulting reference target is integrated into the state
estimation of the Kalman filter.

Altogether, for autonomous driving applications it is
important to process an out-of-sequence measurement with
advanced algorithms in order to achieve the best system
performance and to guarantee real-time capabilities.

Tracking and track management as described above is well
suited to cover highway situations. Constraints on the motion
of vehicles and trucks on highways can simplify tracking
and fusion of objects. For instance, the tracking algorithms
assume that the object motion is in one unique direction
within a certain velocity range. Furthermore, the environ-
ment perception for lane change applications does not require
oncoming traffic and stationary objects.

The information required for rural roads and more
pronounced for urban regions requires much more ‘‘imaging
like’’ information and more sophisticated object
representation. The objects that are needed in inner-city
traffic scenarios are not only represented by position infor-
mation, but also by their dimension. The estimation of the
size of the tracked objects is crucial, especially in narrows
streets.

Due to our project aim to use commercially available
sensors which are similar to serial production radars, some
compromises had to be made. The solutions for roundabout
traffic and crossroads will be described in the following
section.

III. ROUNDABOUT AND CROSSING SURVEILLANCE
One cluster of traffic situations which needed add on
solutions to that described in Chapter II was the surveillance
of crossings and roundabouts that had to be passed by Bertha
during the autonomous drive. Rural roads, small villages and
inner city traffic lead to a representative sample of situations
that the radar platform had to cope with. For example, not less
than 18 different roundabouts are located on the Bertha Benz
route. The following sections will give an overview about the
processing framework without the claim to reveal all details
of the underlying algorithms.

For a safe decision that the autonomous vehicle could
proceed on the pre-defined route, the sensor platform had
to ensure that no other traffic participant was crossing the

vehicle path or the roundabout was not occupied by other
vehicles. Solving this problemmeans providing a robustmon-
itoring of the frontal and side region of the vehicle which is
able to detect all moving objects up to the field of view range
of the individual sensors. Crossing situations on rural road
junctions with fast moving vehicles up to 70 kph was the root
cause for implementing the two side long-range radar sensors
on the front end of the vehicle. A special derivative of long
range radar that is already used inMercedes series production
cars for some years was chosen to solve this task. Major
parameters of this radar are noted in Table 1. An advantage
of this solution is that it is possible to access different data
processing levels of the sensor to obtain optimal use of the
sensor performance. As depicted in Figure 2, the long range
radar senses a broader mid-range region beside the narrow
long range field of view.

TABLE 1. Sensor parameters of the long range radars for crossing
surveillance and rear monitoring.

Roundabouts of different topology and inner-city crossings
furthermore require gap-less monitoring of the frontal and
frontal-side region. Two short-range radar sensors with a very
broad field of view of 150◦ each were chosen to fulfil this
requirement. Table 2 depicts the main radar parameters of the
short range sensors. A reasonable overlap of the two radars
sensing regions leads to the possibility of special signal
processing and an enhanced monitoring robustness of the
platform. The short-range radar sensors used allowed access
to the detection level data, a pre-requisite for establishing
a separate signal processing framework including stationary

TABLE 2. Sensor parameters of the short range radars for vehicle
surrounding perception.
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FIGURE 6. Main radar platform components overview depicting the
mounting position of long range radars (green) and short range
radars (red) and the private CAN connections to the radar PC.

and moving multi-object detection and tracking with
classification of pedestrians (see details in Chapter IV).

The entire radar sensor network signal processing and
data recording is performed on a dedicated compact PCI slot
card computer board. Seven radar sensors, up to four video
cameras for documentation purposes, the vehicle bus system
and the planning component are connected to the radar PC.
Figure 6 gives an overview over the radar platform main
components and connections. The Automotive Data and
Time-Triggered Framework (ADTF) running on a Linux
operating system serves as a framework for the developed
signal processing. The realized platform allowed the
complete event-based recording of all input data streams
and enabled a scenario re-processing during the development
phase of the project on workstations in the lab.

FIGURE 7. Top level system architecture overview illustrating the
6 parallel running signal processing chains based on the sensor data
of 3 long range radars (LRR) and 4 short range radars (SRR).
All components are supervised by the merge filter component.

Due to the stringent requirements related to fail-safe
operation of each component of an autonomously driving
vehicle, several measures were implemented inside the radar
platform for a complete supervision of all radar system com-
ponents starting from the individual radar sensors up to the
components of the signal processing chain. Fast periodical
radar platform status messages permitted an external failure
monitoring even in case of a complete system breakdown.
The radar processing was split into several parallel signal
processing paths which were combined in a merging filter
which collected all the processed objects from different
sensors or observation regions. Figure 7 gives a first overview

over the high level system architecture. Within the merging
filter, the main internal system supervision was implemented.
During the processing cycle inputs from the different chains
are fused together and composed to the object list that repre-
sents the environment description delivered by the radar PC.
The object list is then transferred to the PC hosting the
object fusion and motion planning algorithms via an Ethernet
connection with a cycle time of 66 milliseconds. The object
description contains information about the position, motion
states, spatial dimension and quality criteria.

The long range radars were integrated behind the vehicle
bumpers like every other additional radar sensor. A key factor
was thus the proper integration, positioning and alignment
of the sensors inside the vehicle to guarantee the maximum
possible range coverage. More details regarding this effort
can be found in Chapter VII of this article. The long range
radar sensors at the side and the backward-looking sensor are
all processed individually as single sensor systems. An addi-
tional object management and state prediction algorithm was
implemented that operates on the already tracked object data
transmitted by the radar sensors. Rare intermediate object
losses in some complex traffic situations can be prevented
with this measure and continuous tracks of moving vehicles
up to the maximum operation distance can be established.
Furthermore, tracks that are labeled as stationary on the radar
output interface or irrelevant moving objects (e.g. leaving
objects on the adjacent lane that have passed the ego vehicle)
are suppressed by the processing to limit the number of tracks
and therefore reduce the computational load of the radar PC.
The remaining tracked objects of moving traffic participants
are then passed into the merge filter component.

Four short range radar sensors were integrated in the front
and rear bumpers near the vehicle corners. The resulting
observation coverage with only small blind spot areas at
the car side vicinity is indicated in Figure 2. Three parallel
running processing chains were developed to fulfil the
previously discussed requirements in an optimized manner.
Two of the paths combine the two frontal near range sensors
and therefore cover the whole perception of the environment
in the driving direction, including the frontal side region.
This was necessary because the task of pedestrian detection
and classification has significantly divergent requirements
compared to the universal object detection and tracking
sub-module.More details regarding the pedestrian processing
can be found in Chapter IV.

Most of the developed algorithm components are not used
in only one of the short range radar processing chains, but
input signals and parameterization differ to an extent that
a combination does not make sense. In the following, the
processing chain of the universal object detection and
tracking will be described in some more detail. Fig. 8 depicts
the general algorithm architecture of the three short range
radar processing chains.

As first step, many pre-processing filters have to be applied
to the targets received from each individual sensor. Multiple
turnaround filtering, suspicious target rejection, clutter and
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FIGURE 8. General architecture of the short range radar processing
chains.

ghost target suppression is only a selection of the necessary
treatment to optimize the achievable performance of the
overall perception system. Two more special algorithms
should be mentioned as part of the pre-processing stage.
One of them implements a movement classification on the
target level. The algorithm groups the targets into the static
and dynamic world representation that can then be fed into
different algorithm branches. The other filter is capable of
identifying and rejecting targets as reflections of the ego
vehicle in mirror structures like signs at the road border or
guard rails. Because the short-range radar fields of views
overlap in portions of the environment, sensor targets are
fused together for the frontal and the rear region separately
before applying further processing steps. Based on these
sensor targets, cloud-extended objects are extracted from the
data by using a cluster algorithm. DBSCAN [8] was
implemented due to the requirement to extract objects inde-
pendently from the knowledge of the number of existing
targets in the current scenario. The parameterization was
chosen so that a separation of different physical objects is
realized in most practical scenarios. Moreover, clusters above
a certain extension threshold are further analyzed to identify
velocity gradients for false target suppression and calculate
spatial extension measures. A set of representation points is
derived from each cluster as input for the tracker stage.

Implementing a set of different Kalman trackers as a
tracking framework allowed the flexible development of
the multi-object tracking of spatial distributed objects.
Components such as input conversion, data association,
Kalman filter, and track management could be selected from
an algorithm library. More details about the tracking module
are given in Chapter II. The tracked objects from the frontal
and rear region are then transferred to the merging filter for
preparation of the comprehensive radar object list.

The developed radar sensor platform was well suited for
the traffic crossing surveillance task. Inner-city crossing

scenarios benefit from the 40 meter short range radar cocoon
in combination with the 60 m mid-range coverage of the side
long range radar sensors. For the crossways on rural roads,
the fixed alignment of the relatively narrow far range field of
view was a limiting factor that could be mitigated by
predictive path planning for the autonomous driving vehicle.
Detection and tracking of oncoming vehicles could be
realized up to a distance of 200m. Figure 9 exemplarily
depicts a crossing scenario to give an impression of the radar
platform output data in such situation.

FIGURE 9. Crossing scenario illustrating the radar target data
(colored points) and tracked objects (red points with line) recorded
at an inner-city road junction.

The roundabout observation was solely based on the
processing of the two frontal near range radar sensors.
Moving objects like cars, trucks, motor cycles and bicycles
could be detected and tracked early enough to enable a robust
decision of the situation interpretation stage if the roundabout
could be entered by the ego vehicle.

FIGURE 10. Upper left: Sensor data of the roundabout scenario with
stationary (green) and moving (yellow) labeled targets; upper right:
processed moving objects (yellow); lower left: map cutout of the
scenario; lower right: video images of the scene from a camera
looking on the right frontal side.

In Figure 10 an example of a roundabout situation is
illustrated for which the wide field of view coverage of
the radar platform is a necessary prerequisite. Nevertheless,
especially roundabout situations turned out to be an ambitious
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challenge for the radar based sensing system. Vast varieties of
the roundabout topology and infrastructure were a source for
a lot of surprises and future improvement measures.

IV. SIGNAL PROCESSING FOR DETECTION AND
CLASSIFICATION OF PEDESTRIANS
In order to enable an autonomous car like ‘‘Bertha’’ to also
drive accident free through inner-city scenarios it is manda-
tory not only to recognize all cars and obstacles but also
all other kinds of traffic participants such as pedestrians.
However, with radars, pedestrians cannot be recognized like
any other object, they represent a special category of traffic
participant which needs to be identified. The reason is that
an autonomous car needs a special reaction after determined
whether the object is a pedestrian or not.

This type of identification is called object classification.
On the one hand it improves the safety for vulnerable road
users and on the other hand it enables the autonomous car
to interact in inner-city scenarios in an appropriate way with
pedestrians, e.g., at crosswalks where Bertha needs to react
early on and human-like to pedestrians heading towards the
crosswalk. In such situations the car has to give the pedestrian
the right of way and start decelerating early enough. It has to
behave not like a safety systemwith a late emergency braking,
but like a human driver, which means that the pedestrian
feels that the car has recognized him and that he or she can
pass. This interaction took place at all crosswalks along the
whole historical route from Ladenburg to Pforzheim. One
crosswalk on this route is of special interest, in Bruchsal near
the old historical castle (see Figure 11). This crosswalk is
directly after a right-turn, so that the car needs to recognize
the pedestrian not only straight ahead but also far enough
on both sides even behind the right turn of the street. If the
car comes closer to the right-turn, the pedestrians leave the
field-of-view of normal pedestrian classification sensors like
cameras. The solution of this problem is only feasible with

FIGURE 11. Challenging crosswalk behind right-turn at Bruchsal.

sensors which have a wide field-of-view. The two short-range
radar sensors used in the front of the car had a very broad field
of view of 150◦ (see previous chapter) so that the complete
area of interest around the front of the car and frontal side
region could be covered up to a distance of 40m.

In addition to the coverage area, the pedestrian detection
and classification put some other challenges on the radar
sensors. Firstly, the sensors need to be very sensitive because
of the weak radar reflection of pedestrians compared to
cars or other metal objects. Secondly, the high sensitivity
requires a high number of parallel computed radar raw detec-
tions which can be computed in every cycle. Determination
from any clutter is enabled by a high signal-to-noise ratio.
Thirdly, the radar sensors require very high Doppler sepa-
ration ability. This last attribute enables the sensors to see
multiple raw targets from the same walking pedestrian with
different Doppler velocities. This so called ‘‘Micro-Doppler-
Effect’’ [9] is the key ability to enable radar sensors to
use classification algorithms to separate walking pedestrians
from other weak reflecting or slowly moving targets. The raw
micro-Doppler detections of a walking pedestrian are shown
in Figure 12.

FIGURE 12. Normalized micro-Doppler detections of a walking
pedestrian.

The micro-Doppler signature allows classifying
pedestrians based on the following characteristics of their
radar signals: Since all parts of a human body reflect radar
signals (with different amplitudes) it is possible to detect the
various limbs of the pedestrian. Hereby, the human walking
movement is characterized by the typical periodical
variations of the Doppler velocity. In contrast to that, rigid
moving objects like cars have only one stable Doppler
velocity according to the overall object velocity. Additionally,
amplitudes are mainly low and the raw detections show
a small regional extension. Before the classification
of a walking pedestrian by common pattern classification
algorithms, the raw detections have to be processed stepwise
as shown in Figure 13. These steps can be summarized as the
‘‘object detection’’ of possible pedestrians.

In the preprocessing step, the raw detections from both
sensors are transformed from the sensor polar coordinate
system into the car-centered Cartesian coordinate system.
Based on the precisely measured movement of the car the
precisely measured Doppler is split into the Doppler which
is induced by the movement of the car and the part which is
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FIGURE 13. Object detection processing steps.

a result of the movement of the target. Thereafter, the
detections are discriminated with regard to the following
three types: stationary, slowly moving or fast moving. Using
appropriate thresholds it is possible to identify slowlymoving
detections which could be caused by a pedestrian.

After all detections have been transformed to the
coordination system of the car, it is possible to combine
those from both frontal sensors by merging the two mea-
surements with the minimal time difference to one set of
frontal raw radar detections. In a next step, all detections
which belong to the same object have to be identified by a
clustering algorithm. The clustering, which is done by a mod-
ified DBSCAN algorithm, is focused on possible pedestrian
targets by ignoring all fast moving detections and also all
stationary detections which are too far away from the next
slowly moving detection. These modifications are used to
determine clusters containing all detections belonging to one
possible pedestrian object, not only the slowly moving but
also the near-stationary detections, which could belong to
the leg in the standing phase. In the same processing step,
immediately after the clustering, the average cluster values
in position and velocity are calculated. These average cluster
values are used in the next processing step to track the motion
of the potential pedestrian using a Kalman filter over the
consecutive measuring periods to determine the tracked
object of the potential pedestrian object. Tracking is the final
detection step and classification can take place. The classifi-
cation process itself consists again of additional sub steps as
shown in Figure 14.

In the first step of the classification process, the data of the
tracked objects and the whole associated radar raw detection
clusters are accumulated over some consecutive time steps.
This step combines the raw information with the tracking
data and increases the data basis for the following processing
steps by accumulation over time. In the feature calculation
step many different features are calculated based on the raw
data, including micro-Doppler features, and also based on
the tracking results such as the covariance matrix values.
The normalization of these features is also performed here.
In Figure 15 two features are exemplarily shown.

FIGURE 14. Pedestrian classification processing steps.

FIGURE 15. Examples: Pedestrian classification features.

The difference in these features between the walking
pedestrian and the car, although it is just starting in this scene,
is obvious. The Doppler Profile is calculated over all raw
targets which belong to the cluster and the variance in y is
directly provided by the Kalman Filter. All features, not only
these two, were also normalized in the Feature Calculation
step. Afterwards, these normalized features are evaluated by
a neural-network classifier with one hidden layer. During
training of the neural-network, a compromise between good
classification results and over-fitting had to be found by
adapting the number of hidden knots.

Finally, these raw classification values, which vary in
part significantly from time step to time step, are stabilized.
The variation is caused by different target densities of the
pedestrian object. The stabilization is done in the post-
processing step by a first threshold, which requires sequential
high confidence values to identify a pedestrian for the first
time, and afterwards by a second threshold, which evaluates
a lower requirement to keep the positive identification as
a pedestrian.

The result of this classification chain is a stable pedestrian
classification, based on already available automotive radars
sensors with a huge field-of-view and range in the area of
interest in the front of the autonomous car combined with a
high identification rate of walking pedestrians. This classifi-
cation enables the car to identify pedestrians moving towards
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a crosswalk early enough in all possible inner city scenarios to
interact human-like with them and to respect the traffic rules
autonomously.

V. RADAR BASED DRIVING LANE DETECTION
AND REPRESENTATION
After processing the vehicles mobile and dynamic object list
in a 360◦ environment, the next puzzle piece is to provide
infrastructure like information. Among other information, an
autonomous car like Bertha has to know the upcoming road
course to stay on the road. To this end a camera is typically
used to extract the lane markings. However, especially on
rural roads lane markings are often hard to detect and
environmental conditions like counter sun light or snow on
the surface reduce the line markings detectability. Radar can
help solve these issues.With the aid of imaging radar, the road
course can be determined because the road surface deflects
the radar signal away whereas the road boundary (e.g. guard-
ing rails, grass, gravel, rough terrain) reflects the signal back
towards the radar. The radar image of a rural road is shown
in Figure 16 on the left.

FIGURE 16. Left: original image. Middle: gridmap. Right: spatial
derivative.

After applying a deconvolution of the image and building a
grid map the road course becomes clearly visible (Figure 16
middle). The subsequent algorithm estimating the road course
is based on the following assumptions:
• The road boundary is parallel to the road course
• The road surface is free of radar echoes
Mathematically this means two approximate constraints

an appropriate road course has to fulfill are defined. These
constraints are subsumed by a quality function introduced
later on. The road course is estimated by maximizing the
quality function over the parameters of the road model. The
road model is introduced in the next section.

A. ROAD MODEL
Several road models are used in the literature. The most
common one is a clothoid. This is driven by standards applied
to road design. The third-order Taylor series expansion is used

to get a computational feasible approximation of the clothoid.
The vehicles ego-path therefore is a polynomial of third order:

y (x) = c1x + c2x2 + c3x3

where x is the longitudinal and y the lateral distance from the
vehicle. The left and right borders of a road have different
clothoid parameters depending on the lateral distances to the
vehicle. They are calculated using the normal of the derivative
at x, the lateral offset c0 and the width w:

ϕ(x) = arccot(c1 + 2c2x + 3c3x2)

xleft (x) = x + cos(ϕ (x)) · c0
yleft (x) = y (x)+ sin(ϕ(x)) · c0
xright (x) = x + cos (ϕ (x)) · (c0 − w)

yright (x) = y (x)+ sin (ϕ (x)) · (c0 − w)

The angle ϕ(x) is orthogonal to the derivative of y(x). The
vehicle is in-between the left and right border if w is greater
than c0 and both are greater than 0. Figure 17 illustrates how
the left and right borders are calculated.

FIGURE 17. Road model; the left border is plotted in red and the
right one in magenta. The black lane is the road course. x1 and x2
show the calculation of the right and left border, respectively.

B. QUALITY FUNCTION
The quality function is based on the following assumptions:
• The angle of the spatial derivative at the road boundary
is orthogonal to the road course.

• The amplitude of the spatial derivative reaches its
maximum at the road boundary.

• The amplitude of the grid map is zero on the road
surface.

The first two assumptions lead to the first part of the quality
function:

D (S) =

∑
Ep∈S

[
A(Ep) · (1− |ϕI (Ep)− ϕM (Ep)|

]
|S|
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with S the set of all pixels on the road boundary, Ep = (x, y)
a point on the grid map, A(Ep) ∈ [0, 1] the amplitude of the
gridmap, ϕI (Ep) the angle of the spatial derivative and ϕM (Ep)
the angle of a given road course.
D(S) measures the weighted sum of angle deviations along

a given road course. The higher D(S) is, the more the road
model is parallel to the measured radar data.

The second part of the quality function, namely R(S),
measures the weighted sum of reflections on the road surface:

R (S) =

∑
Ep∈C(S) A(Ep)

|C|

with C(S) the set of all pixels of the gridmap inside the road
boundary. The overall quality function Q(S) then is:

Q (S) = D (S)− R(S)

S contains all pixels (x, y) on the boundary of a given road
course and is defined by:

S =
{
(x, y)

∣∣∣∣ ((x = xleft (x0) ∩ y = yleft (x0))∪
((x = xright (x0) ∩ y = yright (x0))

}
with x0 ∈ [0m, 120m].

FIGURE 18. Estimated road course mapped onto the image of the
monitoring camera.

C. MAXIMIZING THE QUALITY FUNCTION
The road course is eventually found bymaximizingQ(S) over
the roadmodel parameters: c0, c1, c2, c3. Figure 18 shows the
result. For more details the reader is referred to [20].

The next important step is to provide the static object infor-
mation to the vehicle. This will allow a more comprehensive
understanding of the situation if the dynamic world will be
combined with infrastructure and the static environment. This
step is described in the following section.

VI. RADAR-GRIDS FOR REPRESENTING THE
STATIONARY ENVIRONMENT
The goal of this step is to compute an occupancy grid as
introduced by Elfes [10] in order to accumulate the radar data
of all stationary detections over time. The occupancy grid
map Mk =

{
m1,m2, . . . ,mN

}
consists of N grid cells mi,

which represent the environment as a 2D-space with equally
sized cells. For the current localization and obstacle detection
application, the grid cell size is fixed to 0.1m × 0.1m. Each
cell is a probabilistic variable describing the occupancy of this
cell. Assuming that Mk is the grid map at time k and that the
grid cells are independent one to another, the occupancy grid
map can be modeled as a posterior probability:

P (Mk |Z1:k ,X1:k) =
∏
i

P (mi|Z1:k ,X1:k)

where P (mi|Z1:k ,X1:k) is the inverse sensor model, which
describes the probability of occupancy of the ith cell, given
the measurements Z1:k and the dynamic object state X1:k .
Each measurement consists of n radar detections

Zj =
{
z{1,j}, z{2,j}, . . . , z{n,j}

}
.

The occupancy value of each cell is calculated by a binary
Bayesian filter. In practice, the log posterior is used to inte-
grate new measurements efficiently. Instead of performing
multiplications, using the log odds ratio simplifies the
calculation to addition and avoids instabilities of calculating
probabilities near zero or one. The log odds occupancy grid
map is formalized as:

Lk (mi) = log
P (mi|Z1:k ,X1:k)

1− P (mi|Z1:k ,X1:k)

The recursive formulation of map update in log odds ratio
form is given by [11]:

Lk (mi) = Lk−1 (mi)+ log
P (mi|Z1:k ,X1:k)

1− P (mi|Z1:k ,X1:k)
− L0 (mi)

where Lk−1 (mi) and L0 (mi) are the previous and prior log
odds values of grid cell i. Assuming that no prior knowledge
is available, the prior probability of unknown cells is set to
P (mi) = 0.5, the above equation produces the prior log odds
ratio L0 = 0. The log odds formulation of the above equation
can be inverted to obtain the corresponding probability of
mapMk . A radar based occupancymap is displayed in Fig 19.
The map is projected into the image of the documentation
camera so that one can appreciate how the radars perceive
the environment.

A. OBJECT DETECTION
Object detection and scene understanding are key compo-
nents in Advanced Driver Assistance Systems. In order to
enable autonomous driving in semi-structured environments
low level mappingmust be further processed to achieve a high
level of awareness [12].

A result of for the real-time algorithm [13] capable of
detecting both parallel and cross-parked vehicles from radar
data is depicted in Fig. 20. Parked vehicle candidates are then
extracted from the occupancy grid representing the stationary
environment. These candidates are described and classified in
order to assert the presence of vehicles. The proposed method
addresses the challenge of detecting both parallel and cross-
parked vehicles. A distinction is made between cross-parked
vehicles, which stand perpendicular to the lane direction, and
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FIGURE 19. Radar occupancy grid (top) and its projection into the
documentation camera image (bottom). The map colors represent
the probabilities of occupancy. The driven path is plotted as
dashed white line.

FIGURE 20. Parked vehicle detection in a parking lot. Vehicle trajectory is
represented by a green line. Red and green boxes respectively represent
parallel-parked and cross-parked vehicles which are detected by the
system. It is interesting to note that the classifiers correctly distinguished
the two cross-parked SMART vehicles from the larger parallel-parked
vehicle at the top right.

parallel-parked vehicle, which are obviously parallel to the
lane direction.

Radar data has been recorded during different sequences
ranging from a drive in a parking crowded with perpen-
dicular parked vehicles to a drive on an urban street with
dispersed parallel-parked vehicles. From these data, lists of
candidate have been pre-processed and carefully labeled. As a
result, two data sets were created. The perpendicular-parked

FIGURE 21. Average ROC curves for cross-parked and parallel-parked
vehicles classification.

vehicles set contains 1119 samples (268 true vehicles and
851 false vehicles) while the parallel-parked vehicles set
contains 1342 samples (300 true vehicles and 1042 false
vehicles). In order to predict the performance of the
classifiers, a repeated random sub-sampling validation was
performed. As depicted in Fig. 21 the average accuracy of
the classifiers is 97.9% ± 0.7% for perpendicular-parked
vehicles and 96.9% ± 0.7% for parallel-parked vehicles.

VII. KEY PERFORMANCE FACTOR: PACKAGING
OF MMW RADARS
Purely based research results of environmental sensors
typically do not consider packaging issues. This becomes
quite obvious while inspecting the vehicles used in the
DARPA grand challenge or other autonomous vehicle
projects [4]. However, one key performance factor for man-
aging the transfer from research to serial implementation is
how to package environmental sensors in standard vehicles
like sedans. One big advantage of automotive radars from the
vehicle design point of view is their capability to be mounted
invisibly behind painted bumpers or other layered structures.
Any of these radar sensor covers has to be designed carefully
to avoid performance degradation due to transmission losses,
reflections, and edge effects.

Even more than for lower operating frequencies, this is
a crucial issue concerning sensor systems working in the
frequency range from 76 GHz to 81 GHz. Bumpers and
other components mounted on a vehicle’s front- or rear-end
have to be considered as radome structures. Unlike for lower
frequencies e.g. used for UWB radar or communication, in
the desired frequency range, the material thickness is not
electrically thin and thus much smaller than the wavelength.
Strong reflection back to the sensor and high transmission
loss will cause performance degradation of the radar sensor.
This chapter will focus on the challenging needs and
trade-offs connected with hidden radar sensor integration in
automotive platforms.

The base vehicle of the Bertha Benz research car was a
series-productionMercedes Benz S class. One important goal
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of the project was to demonstrate the fully autonomous long
distance drive with state-of-the-art radar sensors and cameras
with sensor integration as close to the series production’s
conditions as possible. Therefore, exterior parts such as
e.g. bumpers were not modified substantially.

As with every other automotive sensor development
project, the integration of extra sensors at new mounting
positions had to be carefully prepared. Several of the issues
lead to conflicting requirements. In effect, radar sensor
integration is a highly complex system engineering
task.

There are several issues directly linked to the electromag-
netic behavior of multi-layer structures, with the RF MMICs
(radio frequency monolithic microwave integrated circuit) in
the sensors and radar signal processing results:
• electromagnetic characteristics of exterior material and
paint (permittivity and loss tangent)

• tolerance of the sensor against direct reflection between
exterior parts and the sensor

• vehicle design and shape of parts covering the sensor
• tolerance of the sensor against angular distortion due to
transmission through exterior parts

• manufacturing tolerances (variation of paint and exterior
material thickness as well as variation of material
composition)

• multiple paint layers, especially repairs
• coverage of exterior parts with water, snow, ice, dust or
salt, etc.

• functional demands for field of view, detection range and
sensitivity of the radar sensor

Furthermore, there are several influences and requirements
of other engineering divisions that have to be considered:
• mechanical stability of exterior parts and assembly
group in crash scenarios

• mechanical tolerance and variation of position and angle
of the sensor relative to car body shell, mounting bracket
or exterior part

• cooling air blockage to be minimized by the presence of
a front radar

• power dissipation of the sensor and probably high
ambient temperature close to engine and exhaust system

• installation space conflicts with other components
During the past years, extensive studies of manufacturing

tolerances and the composition of substrate materials as well
as paint were carried out by Daimler AG (see [14]–[16]).
Those results were the foundation of the sensor integration
in the Bertha Benz vehicle.

An electromagnetic wave traveling from air through a
dielectric medium and back to air is reflected partially at
both boundary layers. Modelling the scattering parameters
(also known as S parameters) lead to a useful characterization
of the electromagnetic behavior of the transition between
different materials [17].

One possible way to analytically describe material
transitions is depicted in Fig. 22. The electric field E of
an electromagnetic wave at a dedicated point of time is

FIGURE 22. Transition between air and a dielectric medium of
thickness d . S parameters represent the portions of an electromagnetic
wave that are transmitted and reflected at the dielectric boundaries.

given by

E = E0e−jkz

where k is the wave number depending on the frequency
of the wave, z is its direction of propagation and E0 is its
amplitude. The wave impedance Z related to the propagation
in an isotropic dielectric medium is

Z =

√
µ0µr

ε
=

120π�
√
1− j tan δ

with the impedance of free space Z0 = 120π�, the magnetic
constant µ0, and the parameter defining the material’s
electromagnetic properties: permeability µr , complex
permittivity ε and the electric loss tangent tan δ.
At the boundary between air and dielectric medium, the

wave is split into a transmitted and a reflected wave. The
relationship between incoming wave and those portions is
given by the S parameters sI11 for reflection and sI21 for
transmission

sI11 = −s
I
22 = −s

II
11 = sII22 =

Zair−Zmedium
Zair+Zmedium

and

sI21 = sI12 = sII21 = sII12 =

√
2Zair · Zmedium
Zair+Zmedium

.

The propagation through the dielectric medium with its
thickness d is given by the multiplicator e−jγ d , where

γ = jk = jk0
ε

ε0

is the complex propagation constant with the wave number

k =
2π
λ
.

From the S parameters given above, terms for
reflection amplitude |r| and transmission amplitude |t| of the
electromagnetic wave can be calculated. The representation
of material transitions with S parameters is not only possible
for single layer materials, but also for stacks of arbitrary
homogenous and isotropic materials.

Depending on the frequency of the wave and the thickness
andmaterial properties of the dielectric medium, the reflected
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and transmitted portions of the wave show constructive or
destructive interference. For a certain multi-layer material
setup, one can derive a local optimum of the thickness of the
dielectric medium. This reduces reflection of the electromag-
netic wave back to the sensor and transmission through the
exterior part. The effects can be investigated with the help
of antenna measurements, full wave simulations or analytical
investigations.

FIGURE 23. Simulation of transmission
∣∣t∣∣ and reflection |r | through a

bumper with metallic paint. Variation of the permittivity of the paint
εr ,paint shifts the reflection minimum.

As an exemplary result of analytical investigations, Fig. 23
shows the transmission |t| and the reflection |r| through a
bumper with metallic paint. The simulation was carried out
with a multi-layer model implemented in Matlab. For the
ideal case of properly chosen bumper thickness (in this
example 3.44 mm), the result is a reflection |r| better
than −20 dB for the whole frequency band from
77 to 81 GHz. Introducing a variation of the material charac-
teristics of the paint would shift the desired minimum of |r|
to lower or higher frequencies. In this case, the permittivity
is changed. Nevertheless, the transmission |t| stays approxi-
mately constant.

There are several ways to optimize a radome for the
needs of hidden radar sensor integration. Considering
manufacturing tolerances, varying material combinations and
required bandwidth, thickness optimization of the substrate
material was found to be a good compromise between
RF performance, costs and effort [14]. Other approaches are
quarter wavelength transforming structures, FSS structures
(frequency selective surface) or inductive structures on the
back side of the radome (e.g. in [16]). Thickness optimization
by applying layers of special adhesive foil was found to
be the most suitable for the Bertha Benz research car. This
way, the standard bumpers could be adapted for radar sensors
operating in the 77 GHz frequency range.

VIII. FREQUENCY MANAGEMENT: PAVING THE GROUND
FOR WORLDWIDE USE OF RADARS
Generally, frequency management and interference studies
are very often underrepresented in research reports and devel-
opment projects. However, at the end they are the final gate

to market introduction. Interoperability is a key issue
especially the more the market penetration with radar sensors
develops. Frequencymanagement is mandatory for frequency
regulation, the imperative permission status before market
introduction. Chapter VIII provides a brief overview on the
status of both radar development activities.

During the last years, much progress has been made in the
frequency regulation for automotive radar. The 76–77 GHz
ACC band was regulated in the 1990’s already, followed
by standardization in Europe. Now this band is allocated
for Intelligent Transport Services in many countries. Some
harmonization efforts still have to be carried out, e.g., closing
of a frequency gap in Japan.

For short range applications beneath ISM narrowband
systems at 24-24.05 GHz, UWB sensors (bandwidth >

500 MHz) are widely applied, because of their possible real-
time high-range resolution. The Federal Communications
Commission (FCC) regulated UWB for the North American
market in 2002 already. For automotive UWB short range
radar systems the FCC allocated the 22–29 GHz band, with a
maximum mean power density of −41.3 dBm/MHz.

In 2002, more than 30 mainly European car manufacturers
and suppliers founded the Short range Automotive Radar
frequency Allocation consortium (SARA). SARA’s main
objective was to support UWB regulation for automotive
radar in the 24 GHz range in Europe. Because of strong
objections by the telecom industry and earth observation
institutions, a lot of effort was dedicated to find a com-
promise and to enable automotive UWB radar systems.
In 2012, the successor of SARA, the Global Automotive
Radio Regulations Group (GARREG) was founded in
order to promote the interests of the global automotive
industry.

On 17 January 2005 the commission of the European Com-
munity EC finally allocated the range of 21.65–26.65 GHz
for UWB short range radar. The marketing of these systems
in Europe is allowed till 2018. Hence, in March 2004 the
European commission allocated the 77–81GHz frequency
range for UWB SRR with permitted usage from 2005
onwards. This band has been identified in ITU as the
definitive band for automotive SRR (ITU-R M1452). The
worldwide establishment and speed up of the harmonized
79 GHz frequency allocation is carried out intensively under
the frame of the EC funded ‘‘79 GHz’’-project [18]. In the
interim phase, automotive OEMs integrate mid- and short
range sensors operating in the 76-77 GHz band.

During the next decade, a frequency shift to frequencies
above 100 GHz seems probable, in particular due to further
reduction of the RF frontend aperture size. At 122 GHz,
an ISM band is available with an allocated bandwidth
of 1 GHz. Unfortunately, this does not fulfil the announced
minimal bandwidth requirement of 2 GHz. With respect to
design considerations of future sensors, frequencies around
150-160 GHz are under discussion (twice the present opera-
tional frequencies). At present, there is no allocation available
in this band for automotive radar operation.
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Recently, the interest of non-automotive applications to use
the mature and cost efficient automotive radar technology has
been observed (e.g. SAR helicopter landing support, airplane
wingtip sensors, road monitoring, level gauging . . . ). This
requires a sophisticated evaluation of the criticality of these
applications with respect to automotive functions, in partic-
ular safety and autonomous applications and their protection
needs.

Beneath the discussed spectrum engineering and
frequency management issue, dealing with enabling
coexistence between automotive radar and other services,
electromagnetic compatibility are of crucial importance for
automotive radar operation.

Automotive radars have to avoid interference of
automotive radars operated in other cars and have to be
resistant against interference of these external radars. This
can be solved by technical as well as standardization
measures. Extensive studies on sensor-sensor interference
and -mitigation have been conducted within the EC FP7
public funded MOSARIM project [19]. In MOSARIM a set
of design rules and design guidelines has been developed.
These guidelines form the basis for the design and develop-
ment of future interoperable automotive radar sensors.

IX. SUMMARY
Bertha successfully drove approximately 100 km of the
Bertha Benz Memorial Route in public traffic fully
autonomously. For the environmental perception, eight Radar
sensors have formed the 360◦ environmental perception
backbone assisted by a front-looking stereo camera. This
paper presents performance results which have never been
envisioned for automotive radars before. Accompanying the
development of an appropriate packaging process, the
foundation has been laid for application of the research
activities to series production. With Bertha, radar has started
it’s metamorphosis from a simple detector to an imaging-like
device: A Radar-Eye. This is a research trend that has to be
continued to make an autonomous-driving product a reality.

Beside the necessary further evolution of technology topics
the realization of fully autonomous vehicles of course faces
a lot more challenges.

Legislation, liability and regulation issues have to be
solved on a common basis and as a key factor the public trust
and acceptance in this new technology has to be achieved.
Most of these topics are meanwhile at least initially addressed
and first intermediate steps towards the final vision of fully
autonomous vehicles are currently on its way.
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