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ABSTRACT Emergency navigation algorithms for evacuees in confined spaces typically treat all evacuees
in a homogeneous manner, using a common metric to select the best exit paths. In this paper, we present a
quality of service (QoS) driven routing algorithm to cater to the needs of different types of evacuees based
on age, mobility, and level of resistance to fatigue and hazard. Spatial information regarding the location
and the spread of hazards is also integrated into the routing metrics to avoid situations where evacuees may
be directed toward hazardous zones. Furthermore, rather than persisting with a single decision algorithm
during an entire evacuation process, we suggest that evacuees may adapt their course of action with regard
to their ongoing physical condition and environment. Awidely tested routing protocol known as the cognitive
packet networkwith random neural networks and reinforcement learning are employed to collect information
and provide advice to evacuees, and is beneficial in emergency navigation owing to its low computational
complexity and its ability to handle multiple QoS metrics in its search for safe exit paths. The simulation
results indicate that the proposed algorithm, which is sensitive to the needs of evacuees, produces better
results than the use of a single metric. Simulations also show that the use of dynamic grouping to adjust the
evacuees’ category, and routing algorithms that have regard for their on-going health conditions andmobility,
can achieve higher survival rates.

INDEX TERMS Emergency navigation, QoS driven protocol, dynamic grouping, cognitive packet network,
discrete event simulation.

I. INTRODUCTION
High levels of occupancy and crowding in modern urbanised
societies can aggravate destructive crowd behaviours during
an emergency evacuation process and induce unnecessary
fatalities and injuries. Hence, traditional emergency alarm
systems which only alert civilians of emergencies are being
superseded by emergency navigation systems which provide
further guidance. Thus substantial research has been
conducted to understand and model the behaviour of crowds
in normal and emergency situations [1]–[8]. Accompanying
this tendency, other work has studied the design of distributed
systems using sensor networks and computational resources
in order to help direct people and crowds in emergency
situations [9], while there has also been work on cyber attacks
that can take place in such circumstances [10]. The time
needed to find exits or other specific objects which are hard
to see or identify in a hazardous environment, has also been
studied using mathematical models [11].

In order to optimise the design of crowded sites and
evaluate the clearance time for all evacuees, various cellular

automata and agent based models have been employed to
simulate grouping behaviours with respect to individuals’
movement capabilities during emergency evacuations.
In [12] a heterogeneous cellular automata model mimics the
evacuation process in a retirement house; evacuees initially
belong to three groups (middle-aged people, nursing staff and
older people), and groups are also formed dynamically due to
the follow-the-leader effect. In [13] grouping behaviours in
evacuations are induced by introducing ‘‘bosons’’ into cells
of the floor field cellular automaton [7]; bosons are placed
by evacuees as markers to increase the probability for other
group members to reach some particular cell. The resulting
simulations indicate that the evacuation time decreases
with the increasing numbers of groups. More generally,
individuals may need to be treated differently during an
emergency: elderly people should choose the safest paths
that will remain ahead of the spreading hazard, while agile
individuals may be able to take advantage of the fastest paths,
andmay accept some element of risk. Research on robotic and
autonomous systems [14], [15] has shown the advantages of
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cooperative behaviour among agents. Thus in this paper we
investigate the use of dynamic grouping of evacuees based on
their characteristics as a way to improve the outcome of an
emergency evacuation.

Therefore, in this paper, we investigate the improvements
that can be offered by tailoring the evacuation strategy to
diverse categories of evacuees, and by treating evacuees in
a distinct manner based on their capabilities (e.g. mobility).
To this effect, we will use the concepts of the Cognitive
Packet Networks (CPN) which uses a neural algorithm based
technique for finding paths [16], [17]. The remainder of this
paper is organised as follows. We first review the literature
relevant to our work, followed by Section I-B which
presents CPN. The CPN variations for the evacuee routing
problem and the routing metrics are presented in Section II
and Section II-A, respectively. The simulation models and
assumptions are then described in Section III and the details
of dynamic grouping are discussed in Section IV-B. By using
these routing metrics and policies, the experimental results
and discussion are presented in Section IV. Finally, we draw
conclusions in Section V.

A. LITERATURE REVIEW
The study of emergency evacuation in confined spaces, which
was initially motivated by defence applications [18], [19],
has attracted much attention owing to the potential of losses
in terms of human lives and property during a disaster.
Since previous research indicated that destructive crowd
behaviours such as stampedes can lead to serious
fatalities [8], muchwork has been dedicated to investigate and
design crowd behaviour models [20], [21] based on cellular
automata models [2], [4], social force models [22],
fluid-dynamics [23], [24] and agents [25], [26]. Another
tendency of this research field is emergency navigation,
which concentrates on combining mathematical models [27]
or algorithms [28] with underlying sensing, communications
and distributed real-time computation to guide evacuees to
safety in a built environment. In situations with different
types of individuals, due to different speeds and delays,
some individuals may overtake and pass others [29] leading
to confusion in managing and accounting for the evacuees.
In this literature review, we mainly focus on emergency
navigation, since our work relates to navigation algorithms
in emergency situations.

Due to limitations in processing power, early emergency
navigation systems are commonly computer-aided
information reporting systems to assist emergency managers
in making decisions [30]. Associated emergency navigation
algorithms at that time normally used purely mathematical
models to simplify an evacuation process and seek optimal
solutions. Thus in [31] evacuation planning is considered
as a minimum cost network flow problem that converts
the original building graph to a time-expanded network.
By solving the time-expanded network via a linear
programming algorithm, evacuees can obtain optimal routes
and achieve shortest evacuation time.

With the fast development of information and
communications technology (ICT), research then moved to
the development of complex Emergency Cyber-Physical-
Human systems to direct evacuees to exits with the aid
of an on-site wireless sensor network (WSN). At the
core of emergency navigation systems, various emergency
navigation algorithms have been proposed such as network
flow based algorithms [32], [33], queueing model based
approaches [34], [35], potential-maintenance algorithms [14],
[36], [37], biological-inspired approaches [38]–[40] and
prediction-based algorithms [41], [42]. Network flow based
algorithms commonly predict the upper bound of evacuation
time and convert the original building model to a
time-expanded network by duplicating the original network
for each discrete time unit. Then linear programming
or heuristic algorithms are used to compute the optimal
evacuation plan. This approach can achieve the optimal
solution but does not take the spreading of the hazard
into consideration. By treating significant locations such as
doorways or staircases as ‘‘servers’’, queueing model based
approaches [43], which generalise the Markovian models
of computer systems [44], transfer building graphs to a
queueing network to estimate congestion and evacuation
delays. Potential based algorithms normally can dynamically
develop navigation paths by assigning attractive or repulsive
potentials to the exits and hazards, and the evacuees
move as a result of the net attraction-repulsion in various
directions [45]. However, these approaches require con-
stant information exchange to update navigation maps for
evacuees, even when the maps are concentrated at a few
fixed nodes and shared with the evacuees to determine their
paths. Biological-inspired approaches employ heuristics to
search for routes [40] such as genetic algorithms, where the
‘‘fitness’’ of a path is based on its length and the congestion
or the hazards it may contain; initially shortest paths are
selected based on distance, and then new paths may evolve
incrementally through crossover and mutation. Prediction-
based algorithms utilise Bayesian networks to anticipate the
hazard or crowd dynamics in disasters [42] and infer the
location of people and hazards. A novel e-infrastructure
is presented in [41] to predict spread of hazards based on
predictive models and live sensory data in a faster-than-real-
time manner.

Since many emergency response systems are based on
wireless sensor networks (WSN), routing protocols have
been borrowed or adapted from existing solutions. However,
communications which are essential in this context can
easily malfunction during emergencies, and in [46] a resilient
emergency support system (ESS) is proposed to disseminate
emergency messages among evacuees with the aid of
opportunistic communications (Oppcomms). Experimental
results indicate that this system is robust to network failures
during an emergency. But because Oppcomms are
susceptible to malicious attacks such as flooding or denial of
service [47], a defence mechanism that uses a combination of
identity-based signatures (IBS) and content-based message
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verification to detect malicious nodes is proposed and an
infrastructure-less emergency navigation system is presented
in [48] to guide evacuees with the aid of smart handsets and
cloud servers. Also in [49] a WSN based distributed emer-
gency management system that uses Dijkstra’s algorithm to
calculate shortest paths for evacuees is considered.

Sensor nodes (SNs) collect hazard information, while
decision nodes (DNs) provide advice to evacuees through
visual indicators or portable devices. To avoid a full graph
search and reduce communication costs, in [50] the system
was modified by replacing Dijkstra’s algorithm with the
Cognitive Packet Network (CPN) [51] routing algorithm.

B. THE COGNITIVE PACKET NETWORK
CPN was designed to address challenges of large packet
networks where paths may not be known in advance and
need to be discovered as a function of quality of service
or reliability, but its reinforcement algorithms based scheme
was motivated by the adaptive routing of mobile agents and
vehicles in dangerous environments [52], where the mobile
agents discover the hazards in the course of their navigation.
Thus one can say that CPN’s specific design was actually
motivated by emergency management.

Unlike traditional packet network protocols where routers
have all the intelligence, CPN constructs intelligence into
packets for routing and flow control through a decentralised
self-adaptive decision architecture [53] and takes
‘‘soft’’ decisions to alter or change paths [54] using learning
algorithms and adaptation.

CPN contains three types of packets: smart or cognitive
packets (SP/CP), acknowledgements (ACK) and dumb
packets (DP). Each CPN node maintains a Mailbox (MB)
storing diverse Classes of QoS information grouped under
path and associated QoS measurements, which is regularly
updated by the ACKs that traverse the node. A MB will
discard the expired QoS information or the worst one when it
reaches its capacity. SPs are sent by CPN nodes to explore
the network and gather relevant information with respect
to a user-specified QoS. The measurements made by the
SPs represents their ‘‘experience’’ of the network state and
future SPs exploit this in making better decisions. The
preferred learning method is the RNN [55] with
reinforcement learning (RL) which penalizes or rewards
SP decisions so that subsequent decisions can provide better
results inmeetingQoS goals. TheQoS goals (routingmetrics)
which are detailed in Section II-A are the inputs of RNN.
When an SP reaches one exit, an ACK, carrying the SP’s
measurements, is generated by the destination node and it
travels back to the source node along the discovered loop-
free path. The ACK updates the MB of every node along its
path and triggers the nodes to run the learning algorithms
and update the relevant decisions. The DPs, which carry the
payload, are always source-routed using the highest ranked
path information. The DPs can also be used to carry out
measurements. In summary, the first set of SPs sent, aim to
establish a connection between the source and the intended

destination while the subsequent SPs update the paths to
optimise a givenQoSmetric. To avoid burdening the network,
packets that are considered lost, i.e. SPs which have traversed
a set maximum number of hops or travelled for a set time
without reaching their destination, and ACKs or a DPs which
enter a node that is not along their specified path, are simply
discarded.

Each CPN node maintains a recurrent (fully connected)
RNN, and each neuron in the RNN is associated with a neigh-
bour CPN node.When a SP reaches a CPN node, in amajority
of the cases it chooses, as the next hop, the neighbour node
whose neuron has the highest excitation probability; however
in 10% of the cases the next hop is chosen at random among
all possible neighbours in order to explore new paths. The
excitation probability of neurons is calculated numerically
when path quality information is brought back by an ACK.
The speed with which CPN reacts is due to reinforcement
learning, in that the algorithm at each step seeks to make
a decision that is better than the previous one, rather than
an optimal decision, and also these packets are travelling
at electronic speeds at least 1000 faster than the speed of
the evacuees, so that path search and updates by SPs are
conducted constantly and updated in advance of the motion
of evacuees. The speed of adaptation of CPN, specifically in
a simulation environment for emergency management, has
been studied in [56], while many experiments are reported
in [53].

C. HEALTH-AWARE CLASSIFICATION
Although we have classified evacuees into two groups that
use separate routing metrics in Section II-A, it will be useful
for evacuees to switch groups during an evacuation. For
instance, when an individual of Class 1 is injured, it should
be moved to Class 2 due to its reduced mobility. This Health-
Aware Classification mechanism can be implemented so that,
for instance, an individual of Class 1 whose health level has
dropped below a certain percentage of its original value can
be moved into Class 2. The details are shown in Pseudocode 1
and a list of symbols used is summarised in Table 1.

Pseudocode 1 The Process of Changing an Evacuee From
‘‘Class 1’’ to ‘‘Class 2’’. DN, Decision Node
1: When an evacuee reaches the vicinity of a DN, obtainGid

of the evacuee
2: if Gid ∈ Gone then
3: gain the health value He, Ht of the evacuee
4: if He < Ht then
5: Gid ← Gtwo
6: end if
7: end if

The health value of an evacuee is affected by the fatigue
level and exposure to the hazard. In reality, it can be calculated
by a portable device carried by evacuees. The fatigue level
is determined by the walking distance of an evacuee, which
can be updated when reaching a sensor node. The impact
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TABLE 1. List of symbols used in the Pseudocode 1.

of hazard can be evaluated by the hazard intensity of all
the adjacent sensors. Hence, the current health value of an
evacuee can be obtained by using (1).

Hc+ = Hc − fDw − h

∑n
i=1 Hi
n

(1)

where Hc+ represents the current health value of an evacuee
and Hc represents the last health value, term f is a constant
fatigue rate that coordinates the relation between health value
andwalking distanceDw since last updates. Term n represents
the number of adjacent sensors andHi is the associated hazard
intensity. Term h is a constant that coordinates the relation
between the health value and the hazard intensity.

II. CPN FOR EVACUEE ROUTING
The CPN architecture is modified to address the needs
of emergency evacuation as follows. First, there are no
DPs (dump packets) since the evacuees themselves are the
‘‘payload’’ that is being controlled by CPN. Two types of
wireless nodes are used to sense (for the purpose of the SPs)
and convey the information needed by CPN:
• Sensor Nodes (SNs) that sense the presence of hazards
(e.g. fire, gas) and detect the presence of evacuees in
their vicinity (e.g. via RFID or a smart tag that people
may be carrying), are in communication with neighbour-
ing DNs and provide themwith the information that they
have sense,

• Decision Nodes (DNs) that act as wireless CPN routers
and transmitters for SPs (which search for evacuee
paths) and ACKs (which bring back the sensed infor-
mation) and provide advice to evacuees in their vicinity.

There will be a DN in each office or room in the building, and
in a large room there may be many DNs. Each DN functions
as a CPN node, and is placed in a fixed location (e.g. on
the ceiling) known in advance to the software of the EMS.
Thanks to wireless communication, each DN knows whether
the DNs and SNs in its immediate environment are properly
working, and this is part of the information that it uses to
provide guidance to evacuees. Between any pair of DNs in
a large room at least one SN is deployed, and there may be
more deployed in themiddle of twoDNs (for instance at doors
of rooms) to monitor the situation of the surrounding area.

Thanks to the neighbouring SNs, each DN knows the state
of the link or hop to its neighbouring DNs, and it sends out
SPs that move from DN to DN, to obtain the state of the
paths to exits: thus each SP sent out by a DN will collect path

information as it moves through DNs, while DNs themselves
will know the state of each neighbouring hop segment from
the SNs in their immediate vicinity. ACKs which are paired
with specific SPs will head back from the exit destination to
the nodes.

Thus using the CPN algorithm, the DN will select the best
(i.e. the shortest among the safest, or overall safest) path from
its own location to a safe exit. The CPN algorithm will also
return an ACK packet from an exit to the DN that has sent out
an SP, when that SP reaches the exit with the path information
(including path quality). Thus by sending out multiple SPs,
each DN maintains a list of paths to exits together with the
‘‘age’’ of the path, and the path’s quality metric. However,
contrary to CPN, evacuees, will obtain advice successively
from different DNs (by wireless or via direction signs) and
will not use a fixed ‘‘source routed’’ path, and the evacuees’
path will be updated as they move and receive new advice.
Although all evacuees receive full path information, a move-
ment depth value is set so that as long as there is no path
blockage due to increased hazards or congestion, evacuees
are encouraged to traverse a given number of nodes before
using the newly obtained path update. Each SP is assigned a
‘‘maximum life-time’’ which is simply the maximum number
of hops that it is allowed to traverse before it is discarded, the
purpose being to reduce congestion. The maximum number
of hops is set to the total number of DNs in the network plus
one.

A. ROUTING METRICS
The routing metrics that we define are the QoS goals used
in the RNN based reinforcement learning algorithm of CPN.
When an ACK brings back sensory data to the source node,
the collected information will be used to compute the current
values of the routing metrics, and the result will be used to
update the weights of the RNN. We specifically use a time-
oriented and a hazard oriented metric, as defined below.

In Figure 1, we show how the graph of the building is
constructed with the nodes being the locations of the DNs,
while the SNs, collectively called the set S, are placed on
the edges between nodes. SNs provide real-time informa-
tion regarding hazards. A DN i receives data from a set of
nearby SNs, defined as the set Ni. A SN s belongs to Ni if

FIGURE 1. DNs are located on the black dots while SNs are positioned
on the red rings. SNs in the green circle belong to N570002.
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the Euclidean distance between the s and i is not greater than
R: Ni = {s ∈ S : ||l(i) − l(s)|| ≤ R} where l(.) denotes the
‘‘location’’ or cartesian coordinates of a DN or SN. Each SN
s estimates the hazard intensity H (s, τ ) at time τ of the edge
where it is located:

H (s, τ ) =
{
1 if no hazard is present
k · 103 otherwise

where τ is the time at which the measurement is made and
k is an integer in the interval [1, 8] that indicates the level
or intensity of the hazard. For instance, this could be the
temperature (when there is a fire), or the amount of gas that
is detected.

Let L(s) be the phsyical length (say in meters) of the edge
where a sensor s is located. Its effective length Le(s, τ ) at
time τ will combine its real physical length with the hazards
detected by s plus the average value of the hazards in the
vicinity defined by the radius R:

Le(s, τ ) = L(s).[H (s, τ )+

∑
j: ||l(j)−l(s)||≤R H (j, τ )

|{j 6= s : ||l(j)− l(s)|| ≤ R}|
]

(2)

If R = 0, the effective length becomes Le(s, τ ) =
L(s).H (s, τ ).

A path exposed to fire (or another major hazard) can be
labelled as such, in addition to the distance metric. However
in our case, the multiplicative factor used to signal the hazard
is chosen so that hazardous paths will always have a distance
greater than the safe paths in the built environment.

We now introduce two quality of service goals or metrics
that the EMS will pursue to find the best paths for the
evacuees. The Time Metric (TM) is quite simple and it seeks
a fast evacuation path; it will be used by the EMS for the
Class 1 evacuees, who try to get out quickly but can afford to
try a different path if they discover a hazard along their path.
On the other hand, the SafetyMetric (SM) will be used for the
Class 2 or ‘‘weaker’’ evacuees who move more slowly and
who are less able to try alternate routes if their initial routes
turn out to be unsafe or clogged due to a hazard or congestion.

1) THE TIME METRIC (TM)
The Time Metric (TM) denoted by G(i, π, τ ) is used to
choose egress paths that minimise the time it takes to
evacuate the evacuees. A path π is a sequence of nodes
and edges starting at some node i, so that we may write
π = (i1, s1, i2, . . . , sn, in+1) where i1 = i is the first node
on the path, s1 is the sensor on the edge from node i to the
next node on the path, and so on until sn, which is the sensor
on the edge linking to the last node in+1 on the path.
Each node can be viewed a queue with a ‘‘server’’, where

the service time is the time the evacuee needs to determine
the next direction (by gaining suggestions from portable
devices) plus the time it needs to physically move through
the node. A recent study shows that Little’s formula can
be a useful approximation to estimate delays in emergency
evacuations [35] even when transients are being considered.

Assuming that this queue is stable (i.e. the arrival rate is
smaller than the service rate), the average total time through
a path can be estimated with Little’s formula applied to each
successive node in the path, including possible queueing
times, and evaluated at time τ :

GT (i, π, τ ) =
n∑
j=1

[
L(sj)
V
+
qij (τ )

aij (τ )
], (3)

where V is the estimated speed of the evacuee, where the
observed number of evacuees is qij at node ij (when this can be
measured), and aij (τ ) is the observed arrival rate of evacuees
at node ij. Note that in many cases sensors will not be able to
provide estimates of queue length and arrival rates, in which
case these terms will just be dropped.

The TM does not consider the spreading of the fire, it only
seeks to guide evacuees to exits as soon as possible. However,
the ‘‘virtual health’’ value introduced in Section I-C helps
evacuees that use the TM to adapt their strategy before they
may enter a hazardous area.

2) THE SAFETY METRIC (SM)
The Safety Metric (SM) for path π = (i1, s1, i2, . . . , sn, in+1)
on the other hand, denoted by GS (i, π, τ ), is used to seek
paths that help the evacuees avoid hazards:

GS (i, π, τ ) =
n∑
j=1

Le(sj, τ ) (4)

Since the effective length of a path exposed to fire is always
greater than any other safe path in the building, the SM will
help evacuees find the shortest among all the safe paths.

III. THE SIMULATION MODEL AND ITS ASSUMPTIONS
To evaluate the proposed routing scheme for evacuees, we
employ an existing Java based distributed simulation tool,
the Distributed Building Evacuation Simulator (DBES) [57],
and we use fire-related scenarios in the simulations.
DBES can simulate large scale environments (such as city
neighbourhoods) [58] and is used to evaluate different courses
of action in emergencies of varying danger and severity.
As a multi-agent simulator, each entity in DBES is
represented by a software agent that interacts with its
environment. Figure 2 shows an example of the graphical user
interface (GUI) of DBES with one ‘‘floor agent’’ in charge of
managing the state of a given building’s floor, and ten agents
representing evacuees.

A. BUILDING MODEL
As indicated earlier, the building model in our experiments
simulates the three lower floors of the EEE building at
Imperial College London. The ground floor has a dimension
of 24m by 45m while the other two floors have the same
dimension of 24m by 60m. The height between each floor
is approximately 3m. Figure 3 shows a graph representation
of the building model. The second and third floors of the
building being considered have more offices and rooms than
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FIGURE 2. The GUI of the DBES.

FIGURE 3. Graph representation of the building.

the first floor which is essentially an exit area and a coffee
shop; thus the second floor has 89 DNs or CPN nodes, the
third floor has 92 DNs, while the first floor has just 59 DNs.

The vertices (black round dots) in Figure 3 represent
locations where people can congregate such as rooms,
doorways and corridors while the two black stars on the first
floor depict the exits. There is a total of 240 vertices on the
graph, including the two exits, and at each vertex we assume
that a DN has been placed with SNs placed between each
pair of DNs. The spaced horizontal lines linking the vertices
are the graph edges representing the possible paths in the
building, and on each edge there will be at least one SN. The
edges connecting the two floors are the stairs in the building.

B. MODELING THE EVACUEES
The evacuees are assumed, for simplicity, to belong to two
categories based on their age:
• The Class 1 agents represent evacuees typically within
the age range of 12 - 50 years.

• The Class 2 agents represent evacuees who are still
individually mobile, but move more slowly such as
children, older individuals, or who may have been
weakened or hurt during the evacuation.

The health level of each evacuee is initialised to a value
of 100, and it is decreased over the course of the evacuation
simulation based on fatigue and exposure to the hazard. Each
category of evacuees is characterized by their speed and their
resistance to fatigue and to the hazard. Table 2 illustrates the
speeds of the two categories of evacuees.

TABLE 2. Speeds of the two categories of evacuees.

The mobility model of Class 1 agents uses the empirical
data found in the literature. For example, the average human
walking speed is 1.39m/s in general and is 1.19m/s in urban
areas [59]. We reduce this value to 1.05m/s because evacuees
need to obtain suggestions from portable devices. The walk-
ing speed for the ‘‘up stair’’ direction is 0.51±0.10m/s in [60]
for a narrow staircase, and is 0.56±0.14m/s for a wider stair,
while the down-stair motion speed is 0.72 ± 0.29m/s for a
narrow and 0.69± 0.15m/s for a wider stair.
The speeds for the Class 2 agents are obtained by multiply-

ing the correspondingClass 1 agent speed by a 0.8 factor. This
factor is determined by the ratio between the walking speed
of young adults and aged people [61]. During the simulation,
if the health level of an evacuee falls below 20%, its speeds
drop to half of the values indicated in the table. We model
the lower resistance of the Class 2 agents by multiplying the
effect fatigue and hazard have on the health level of Class 1
agents by a factor of 1.5. The simulations are initialised by
placing an evacuee in its initial location randomly at any of the
nodes, and also each evacuee is initialisedwith probability 0.5
as belonging to either of the Classes. We also assume that all
the evacuees are in possession of a wireless device that can
receive path information from its neighbouring DNs.

C. FIRE SOURCE LOCATION
The fire source location has a significant impact on the
performance of the emergency navigation algorithms in the
simulation. In the simulation (and perhaps also in a real
situation), a fire that breaks out at a strategic location such
as a staircase may result in all of the path finding algorithms
to operate equally poorly because of the potential for high
congestion to create a back pressure and further congestion
in the higher floor(s).

To alleviate this issue by taking adequate precautions,
we calculate the most ‘‘critical’’ nodes in the building by
using the following definition: the criticality rank of a node,
introduced in [35], is the number of shortest paths to the exit,
starting from any node in the graph, that traverse the node.
The highest ranked nodes by criticality for the graph used in
our simulations, are shown in Table 3. These top ranked nodes
form a path towards the exit that is located in the lobby on the
first floor as shown in Figure 4. To evaluate the adaptiveness

TABLE 3. Most critical nodes in the building.
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FIGURE 4. This shows the most critical nodes along the primary main
channel marked out by the thick green lines and the fire node is indicated
by the thick red ring.

of the proposed algorithm, we choose Node 210001 as the
fire source which is in an office on the first floor not far
from the eastern staircase. By choosing this location, the fire
will soon block this staircase, and this facilitates evaluating
if the decision algorithms can adapt to the highly dynamic
environment and discover the primary main channel marked
out by the thick green lines in Figure 4.

IV. EXPERIMENTS AND RESULTS
We have carried out two experiments to investigate the
potential improvements offered by routing two categories of
evacuees using different metrics, varying health threshold Ht
(which is defined in Table 1) and diverse spatial information.
The level of spatial information is determined by the oper-
ating communication range of the DNs, which is set by the
variable R. In the first experiment, we set Ht to 50 to study
the effect of customising metrics for different categories of
evacuees under different levels of spatial information.

In the first two scenarios of this experiment, we use a single
metric (time metric or safety metric with R = 300) in routing
all the evacuees, while in the remaining four scenarios, we
use one specific metric for each category of evacuees. In the
second experiment, we set R to 300 to investigate the impact
of using different health threshold Ht . For each scenario,
we run 10 simulations with random distribution of evacuees
under four different levels of occupancy (30, 60, 90 and 120)
in the aforementioned building model. Table 4 below gives a
summary of the experiments that have been performed in the
first experiment.

TABLE 4. Metrics used for class-based emergency evacuation.

FIGURE 5. The average percentage of survivors for each scenario. The
results are the average of 10 randomized simulation runs, and error
bars show the min/max result in any of the 10 simulation runs.

We use the ‘‘average percentage of survivors’’ as the
performance metric to evaluate the effectiveness of different
algorithms and for each level of occupancy. An evacuee is
considered to be a ‘‘survivor’’ if it has a health level strictly
greater than zero at the end of a simulation.

A. AVERAGE PERCENTAGE OF SURVIVORS
Figure 5 shows the percentage of survivors in the first exper-
iment, which employs time metric (TM), safety metric (SM)
and combined metrics with diverse R (CM). TM gives
the worst performance especially at low levels of
occupancy (30 and 60 evacuees). This is because unlike
safety metric (SM), which tends to guide all the evacuees
to the safest path, evacuees using TM may take the risk
to traverse potential hazard areas in order to reduce the
evacuation time. Hence, some evacuees may get injured or
perish owing to the impact of hazard. However, with the
increase of occupancy rate, TM can reach the performance of
SM because it can effectively ease congestion which occurs
frequently in high population densities (90 and 120 evacuees).
On the other hand, SM performs best at low occupancy
rates because it is sensitive to the hazard and can choose
safest paths for evacuees. However, the performance of SM
degrades considerably in densely-populated environments
because some paths with acceptable safety level are excluded.
Hence, evacuees tend to congregate along several safest paths
and generate high level of congestion. In comparison with
using one singlemetric, CMobtains overall best survival rates
because it can tailor paths to evacuees with respect to their
specific requirements. Furthermore, the concurrent use of two
routing metrics can naturally distribute evacuees and alleviate
congestion. The results also indicate that CM with R = 300,
400 and 500 achieve better performance than CMwith R = 0.
This reflects that the use of spatial hazard information (R)
has a positive impact on the performance of the algorithm.
The reason is because the use of spatial information can
generate a safe distance between evacuees and the spreading
hazard.
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B. THE EFFECT OF DYNAMIC GROUPING
In the first experiment where we consider CM, a Class 1
evacuee whose health level falls below Ht = 50 will be
immediately considered as a member of the second Class.
To evaluate the effect of Ht , in the second experiment, as
shown in Table 5, we concentrate on CM with Ht = 0, 30,
50, 70 and 90, respectively. When Ht = 0, two categories
of evacuees will be guided with SM and TM separately and
avoid changing of Classes. This means that Class 1 evacuees
will use TM throughout each simulation. Figure 6 shows
the comparisons of average percentage of survivors
with R = 300.

TABLE 5. The summary of experiments performed in the second
experiment. Term R represents the level of spatial information
and Ht denotes the health threshold for Class-switching.

FIGURE 6. The average percentage of survivors for different Ht . The
results are the average of 10 randomized simulation runs, and error
bars show the min/max result in any of the 10 simulation runs.

These results indicate that the dynamic changing of Classes
generally has a positive impact on the system performance.
In comparison with not changing Classes (Ht = 0), dynamic
grouping mechanism can achieve improved survival rates
especially in high population densities. At low occupancy
rates, CMs with different Ht achieve comparable results
because when certain distant evacuees are re-directed to a
safe detour path, the spreading hazard may have blocked
both staircases between floor 1 and floor 2. Hence, these
evacuees have to traverse hazardous areas and suffer injuries
and fatalities. On the other hand, at high occupancy rates, the
survival rate increases with the increase ofHt . This is because
CM with a larger Ht is more sensitive to the potential hazard

and can direct evacuees away from hazardous zones earlier.
On the contrary, if Ht is too small, evacuees may not switch
Classes in time and may suffer serious injury and reduced
mobility before being re-routed.

Figure 7 shows the average number of evacuees that use
the dynamic grouping mechanism. It clearly shows that, with
the increase ofHt , more evacuees use dynamic grouping, and
change from Class 1 to Class 2 during an evacuation. Figure 8
presents the survival rate Sc, of the number of Class-switching
survivors and the evacuees that employ dynamic grouping,
which is defined in 5.

Sc =
Ns
Nc

(5)

where Nc is the total number of Class 1 evacuees that convert
to Class 2 during an evacuation process as shown in Figure 7.
Term Ns represents the number of survivors that change
from Class 1 to Class 2. As expected, the results indicate
that the survival rates increase with the growth of Ht .
Figure 7 and Figure 8 imply that the growth ofHt can increase

FIGURE 7. The average number of evacuees that convert from
Class 1 to Class 2 during an evacuation process for each level of
occupancy. The results are the average of 10 randomized simulation runs,
and error bars show the min/max result in any of the 10 simulation runs.

FIGURE 8. The average survival rate of Class-switching evacuees during
an evacuation process for each level of occupancy. The results are the
average of 10 randomized simulations.

VOLUME 3, 2015 1067



O. J. Akinwande et al.: Managing Crowds in Hazards With Dynamic Grouping

the number of survivors that change from Class 1 to Class 2.
This is because if Ht is small, evacuees may get injured and
have no remaining time, mobility or possibility to change to
a safe path.

Figure 9 shows the average survival rate of evacuees that
should have converted from Class 1 to Class 2 in scenarios
without dynamic grouping. By comparing with Figure 8,
we clearly see that the dynamic grouping mechanism can
considerably improve the survival rate of these evacuees.

FIGURE 9. The average survival rate of tracked evacuees that should have
converted from Class 1 to Class 2 in scenarios without dynamic grouping
for the different values of Ht . For example, ‘‘tracked evacuees using
Ht = 30’’ shows the survival rate of evacuees that should have changed
Class when Ht = 30. The results are the average of 10 randomized
simulation runs.

Figure 10 shows that the survival rates of original Class 2
evacuees remain steady regardless of the variation of Ht .
This indicates that the original Class 2 evacuees are not
remarkably affectedwhenmore Class 1 evacuees join Class 2.
In other word, although dynamic grouping mechanism
converts a number of Class 1 evacuees to Class 2, the newly-
assigned Class 2 evacuees do not influence the evacuation
process of original Class 2 civilians.

FIGURE 10. The average percentage of survivors of the original Class 2
evacuees for each level of occupancy. The results are the average of
10 randomized simulation runs, and error bars show the min/max
result in any of the 10 simulation runs.

In summary, the first experiment indicates that tailoring
different QoS requirements to different Classes of evacuees
and dynamically assigning evacuees among Classes with
respect to the on-going situation can improve the survival
rates. Furthermore, the use of spatial information level R can
improve the sensitivity of safety metric and also increase
the survival rate. In the second experiment, we investigate
the effect of varying Ht . The results show that a properly
selected Ht can significantly improve the survival rate of
Class 1 evacuees. Meanwhile, Ht does not have an obvious
impact on the original Class 2 evacuees. Furthermore, the
average percentage of survivors for diverse Ht (shown in
Figure 6) is not very obvious at low occupancy rates because
few evacuees will encounter the spreading hazard and switch
their Classes.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a multi-path routing algorithm to
direct different types of evacuees with respect to their on
going requirements. The approach we propose is based on a
situation where hazards, such as a fire, may move or change
over time. Based on the CPN network routing algorithm, our
proposed algorithm combines spatial hazard information into
the routing metrics used by CPN to prevent evacuees from
being guided into hazards and to offer a better prediction
of the spread and location of the hazard. Specifically, the
approach we use in this paper groups the evacuees dynam-
ically based both on their physical condition and the hazards
in their surroundings.

A dynamic grouping mechanism is studied and evalu-
ated via simulations, to adjust both the type of evacuee and
the associated decision algorithm with regard to evacuees’
physical conditions and surroundings. The simulation results
indicate that this QoS driven dynamic grouping algorithm
provides improved performance to achieve higher evacuee
survival rates. The simulation results also show that the
appropriate setting of parameters, such as the range of the
spatial hazard information, can significantly improve the per-
formance of the evacuation algorithm. Hence, future research
will focus on establishing a cloud-based faster-than-real-time
simulator to select optimal parameters or choose appropriate
emergency navigation algorithms, as a function of initial and
ongoing conditions during an evacuation.

Additionally, to increase the reality of the simulation
model, further research is needed to improve the accuracy
of mobility models by using the empirical relation between
the density and speed of evacuees [62], [63]. Further vali-
dation of the algorithms that we propose with the empirical
collective behaviour of human beings from actual crowd
measurements [64], [65] will be useful, and the 3D effects of
interacting evacuees can also be studied through augmented
reality technologies [19].
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