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ABSTRACT The spatial distribution of base stations (BSs) and traffic demands is essential for efficient
network planning and BS sleeping, which are key elements of green cellular networking. This paper
investigates their statistics, relation, and modeling, based on large-scale measurement data from commercial
cellular networks. The spatial distribution of BSs shows not only high nonuniformity over a region but also
diverse patterns in different regions, and thus the widely used homogeneous Poisson point process can only
approximate the BS patterns in a specific small area. Therefore, the inhomogeneous PPP (IPPP), in particular,
the Cox point process with spatially varying intensity is used to model the BS distribution over any spatial
scale. To model the intensity distribution of the IPPP, we exploit the relation, shown to be sublinear, between
the BS distribution and the peak hour (PH) traffic density, based on the finding that the PH traffic density can
be approximated by a log-normal distribution. Finally, we propose a spatial modeling framework for network
simulations, and discuss potential applications of the proposed spatial distribution model of the BS patterns
and the PH traffic density.

INDEX TERMS Spatial analysis and modeling, spatial pattern of base stations, traffic density,
inhomogeneous Poisson point process, Cox point process.

I. INTRODUCTION
The explosive development of wireless cellular networking
incurs ever increasing network deployment cost and energy
consumption [1], [2]. As a result, for the green paradigm
shift of cellular networks, efficient network planning [3] and
intelligent base station (BS) sleeping mechanisms [4], [5] are
in urgent need. The basic idea of either green network deploy-
ment or BS operation is matching the network resources to
the spatial and temporal variations of the traffic [3], which in
the first place requires the knowledge of the BS distribution
pattern and its relation to the traffic-demand fluctuations.

A. RELATED WORK
Models of spatial patterns and traffic load of BSs are sepa-
rately studied in various existing works [6]–[15]. The spatial
distribution of traffic load has been studied in the literature

for 2G [6], [7] and 3G cellular networks [8], [9], respectively.
Among the very first studies, ref. [6] proposes a general
model based on log-normal distribution to characterize the
spatial traffic variations on the cell level. More recently,
mixtures of log-normal distributions are shown to have better
model precision in [7]. For 3G data networks, ref. [8] relates
subscribe behaviors and the cell traffic variations, and the
authors also find small traffic load correlations among
adjacent cells. In [9], probabilistic models are further used
to estimate the loads on all the BSs based on actual measure-
ments only on a small subset of BSs.

Spatial processes for modeling spatial patterns of BSs
are studied in [10]–[15]. The homogeneous Poisson point
process (HPPP) [18], in which the intensity is constant over
space, is widely used for modeling and simulation of the
spatial structure of BS deployment [10] due to its simplicity
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and tractability. Based on real data sets of BS deployments
in many cities worldwide, a study [11] has shown that the
HPPP model is more accurate than hexagonal grid model in
terms of coverage analysis. Recently, there have been some
efforts to look for a realistic model of BS patterns based
on real measurements. Guo and Haenggi [12] show that
the Strauss process, the Poisson hard-core process, and the
perturbed triangular process can be used to accurately model
the spatial structure of BS deployments. In [13] and [15], it is
shown that the Geyer saturation process is capable of mod-
eling the spatial structure of a Wi-Fi network and macro-cell
BSs, respectively. In [14], it is shown that BS deployments
in an urban and a rural area can be fitted by Matern
cluster process and the Strauss hard-core process,
respectively. In [16], the authors use the Ginibre point
process to model random phenomena of BS positions
with repulsion, where repulsion means that the node
locations of a real deployment usually appear to form
a more regular (or more clustered) point pattern than
the HPPP.

However, the results of above works are divergent and
there does not exist a generally accepted model. In addition,
most studies of spatial traffic load and BS distribution are
performed independently, and there are few works revealing
the relation between the positions of BSs and the traffic
distribution. Note that Michalopoulou et al. [7] point out
that there are negative correlations between the traffic load
and the coverage area of a cell. In [17], a parameterized
statistical model is proposed to characterize the correlation
between user and BS locations, however the model has not
been validated with real world data. In summary, the realistic
modeling of the spatial distribution of both BS locations and
traffic demand, and the relation between them, remain largely
unknown.

B. CONTRIBUTIONS and METHODOLOGY
Based on large-scale measurement data from commercial
cellular networks, the main contribution of this paper is
characterizing the spatial distribution of BSs with Cox point
process, of which the parameters are obtained via the in depth
investigation on the relation between BS intensity and the
traffic demand distribution. Based on the statistical analysis,
a modeling framework is proposed to generate both the traffic
demand and BS locations, with extensive applications for
planning and operating cellular networks. The methodology
used in this paper and the paper organization are overviewed
as follows.

Since the real BS deployments are highly non-uniform
and different countries have different urban planning and
population distributions, we are not aiming at finding the
most adequate stationary spatial point process for modeling
BS locations. Rather, in this paper, we focus on providing
a flexible method to model BS locations based on a large-
scale measurement data set from commercial GPRS/EDGE
cellular networks deployed in a major east province of China,
as described in Section II.

In Section III, we first find that the intensity of BS deploy-
ments can only be approximated by a HPPP in a specific
small area, as the BS intensity is varying over a relatively
large area. We then show that an inhomogeneous PPP (IPPP),
whose intensity varies with locations, can be used for mod-
eling BS locations for the large area. In order to model the
spatial patterns of BSs, we employ the Cox point process [18],
which is a generalization of the IPPP where the intensity
function is random. Then, modeling the intensity function
of the Cox point process is a critical part. Since the network
planning, which locates BSs and adjusts their configurations,
is closely related to peak hour (PH) traffic demand, we exploit
the relation between BS intensity and PH traffic demand to
model the intensity function.

In Section IV, we measure the traffic density defined as
the traffic load per unit area. In our previous work [19],
only the distribution of the traffic density at 9 p.m. of a
week day is analyzed. We extract PH traffic load of every
cell during two weeks and calculated the PH traffic density
for representing PH traffic demand. We also find that the
distribution of PH traffic density can be approximated by a
log-normal distribution.

The relation between the BS deployment and the PH traffic
density is obtained through regression analysis in Section V.
In particular, we show that a sublinear model and a
linear model is proper for an urban and rural area, respec-
tively. By exploiting the findings previously mentioned,
in Section VI-A we propose a spatial modeling framework
which generates both the PH traffic density and BS locations
based on the Cox point process. Finally in Section VI-B we
discuss the potential applications of the proposed modeling
framework, especially for green cellular communications.

II. DATA SET
The locations of BSs are obtained from GPRS/EDGE net-
works deployed in one east province in China. The target area
of the measurement is a metropolitan area of 160km×180km
including urban, suburban, and rural areas. The population
of the city in the metropolitan area is more than 9 million.
In this paper, a dense urban area and a rural area depicted
in Fig. 1 and 2 are selected to investigate BS locations and
the PH traffic density. The locations of BSs are obtained by
converting from longitude, latitude geodetic coordinates to
X, Y cartesian coordinate (we assume the heights of BSs are
zero as we do not have the terrain information). There are
about 6297 cells in the target area.

In recent years, China has undergone rapid urbanization
and dramatic population growth in urban area and thus shows
a variety of spatial structures among various cities. Planning
of cellular networks is closely related to the structure of a
city and population. Hence, while the placement of BSs in an
urban area is highly dense where the radii of small size cells is
even several tens of meters, the radii of large cells in the rural
area reaches to a few kilometers as shown in Fig. 1 and 2.

We have also collected traffic records of packet-switched
data traffic from EDGE/GPRS networks in the same region
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FIGURE 1. Base station locations (dots) and corresponding Voronoi
cells (lines) in a urban area. The dashed rectangular area and the
whole area are denoted by ‘UA1’ and ‘UA2’, respectively.

FIGURE 2. Base station locations (dots) and corresponding Voronoi
cells (lines) in a rural area. The area in the blue rectangular and the
whole area are denoted by ‘RA1’ and ‘RA2’, respectively.

during May 1-14 in 2013. It is measured in the unit of
kilobyte (KB) that each BS actually transmitted during a
one-hour time interval. For the modeling of the spatial traffic
distribution, we introduce the traffic density (traffic load per
unit area) which can be easily calculated by using the infor-
mation from BSs. In our previous work [19], the distribution
of the traffic density at an instantaneous time t is analyzed,
while in this paper we consider the PH traffic load, which is
closely related to BS site planning.

III. SPATIAL DISTRIBUTION OF BS LOCATIONS
In this section, we check whether the spatial distribution of
BSs can be described by the most commonly used PPP [18].
After we find that fitting with HPPP only holds for small

areas, we turn to fit the general BS distribution with IPPP.
Let us consider a spatial point process X which is the set
of all points (the BS locations in a target area A ⊂ R2)
X = {x1, x2, . . . , xn}. In the PPP [18], [21], the number of
points N (A) in any region A is a Poisson random variable
with the non-negative intensity λ(x)|A|, ∀x ∈ A and |A| is the
area of the region A. When λ is a constant, the distribution is
generally called HPPP, otherwise it is called IPPP.

A. FITTING BS DEPLOYMENTS BY A HOMOGENEOUS PPP
Figure 3(a) illustrates the distribution of the number of BSs
in UAi (i = 1, 2) and the fitting by Poisson distributions
with parameter λUAi|AUAi| for UAi, where |AUAi| is the test
area randomly taken inside UAi. The number of BSs in
0.8km× 1km area of UA1 is 95 and thus λUA1 is 118.75.
The number of BSs in 2km× 2.5km area of UA2 is 267 and
thus λUA2 is 53.4, which are easily obtained by the maximum
likelihood estimator of the homogenous PPP. The test area
of 0.2km× 0.2km, where the number of BSs is counted,
is randomly chosen inside UAi in every experiment. The
empirical probability distribution function (PDF) obtained

FIGURE 3. Fit test of HPPPs: the distribution of the number of BSs

and the Poisson distribution with intensity (a) λ(U)
i |A(U)

i | in UAi and

(b) λ(R)
i |A(R)

i | in RAi .

1000 VOLUME 3, 2015



S. Zhou et al.: On the Spatial Distribution of BSs and Its Relation to the Traffic Density

from 500 times experiments and the Poisson distribution with
the intensity 118.75 × 0.22 and 53.4 × 0.22 for each region
are also depicted in Fig. 3(a).

The number of BSs in 20km × 18km area of RA1 is 143
and thus λRA1 is 0.3972. The number of BSs in 25km× 23km
area of RA2 is 300 and thus λRA2 is 0.5217. The test area of
2km× 2km is selected. Figure 3(b) shows the empirical PDFs
and the Poisson distributions with the intensity 0.3972 × 22

and 0.5217× 22 for each region.
In the selected areas of UA1 in Fig. 3(a) and RA1

in Fig. 3(b), where the spatial distribution is regarded as
stationary, we observed that the empirical PDF is well fitted
by a Poisson distribution. If a region is classified into several
small areas with the same characteristics, e.g., city center,
residential area, business district, parks and recreation, and
so on, then the spatial distribution of BS locations may be
stationary within each small area. However, the spatial dis-
tribution of BSs in UA2 and RA2 is highly non-uniform and
cannot be fitted by a single HPPP.

B. HOMOGENEOUS L-FUNCTION TEST
Ripley’s K (r) function can be used to precisely evaluate
whether a point pattern is fitted by a HPPP, and this function
is used to describe a point pattern, estimate statistical param-
eters, and fit models [22]. The K (r) function of a stationary
spatial point process is estimated by

K̂ (r) =
1
|A|λ2

∑
i

∑
i 6=j

I (dij ≤ r), (1)

where dij is the distance between point xi and xj and
I (·) is the indication function. If the point pattern is approx-
imately HPPP, i.e., also known as complete spatial random-
ness (CSR), K̂ (r) should be approximately πr2.
On the other hand, the L-function, which is widely

used instead of K-function in practice, is defined as
L(r) =

√
K (r)/π [18]. We used the software ‘‘R’’

and ‘‘spatstat’’ package [23] to calculate the L-function.
Figure 4 and 5 plot the empirical L-function with differ-
ent edge correction methods for each region respectively.
We see that the L-function of UA1 is overlapping with
the CSR’s L-function which is consistent with the results
in the previous section. However, the L-functions of UA2
lie above the CSR L-function, which means the spatial
distribution of BSs in UA2 is clustered (non-HPPP). The
L-function of RA1 is also almost matched with the
CSR curve, but that of RA2 is obviously deviated from
the CSR line.

From the previous discussions, we know that only the
spatial statistics of selected small areas with common char-
acteristics (e.g., business district, residential area) can be
regarded as stationary since spatial variations are gener-
ally severe across broad geographic regions. Therefore,
we conclude that the BS locations only in a relatively
small area with common characteristics can be modeled by
a homogeneous PPP.

FIGURE 4. L-function test for the urban areas: L̂iso, L̂trans, L̂bord , and
L̂pois indicate a L-function with edge correction of the Ripley’s isotropic
correction, the border method, the translation correction, and
of a HPPP (see the manual of the package ‘‘spatstat’’ at [23]).
(a) UA1. (b) UA2.

C. ESTIMATION OF INTENSITY FUNCTION FOR THE IPPP
So far, many spatial models for nodes of wireless networks,
such as mobile terminals, access points, and BSs, assume
spatial homogeneity. However, in reality, the distribution of
node locations is often inhomogeneous over space, i.e. they
can be described by an inhomogeneous point process with
non-constant intensity λ(x) for all x ∈ A. Since the intensity
function is rather irregular depending on various regions,
we investigate the probability distribution of the intensity
function.

The classic approach to estimate the intensity function is
based on kernel methods. For the sake of simplicity, we use
the box kernel function [18] for the estimator, where the
side of square box has length h. The bandwidth h deter-
mines the smoothness of surfaces, i.e., a larger h leads to
smoother surfaces. The bandwidth h for UA2 and RA2 is set
to 0.24 and 1.5, respectively.

Figure 6 and 7 show estimates of the intensity function
and its probability distribution in UA2 and RA2, respectively.
In Fig. 6(a), we can see that the value of the intensity
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FIGURE 5. L-function test for the rural areas: L̂iso, L̂trans, L̂bord , and L̂pois
indicate a L-function with edge correction of the Ripley’s isotropic
correction, the border method, the translation correction, and of a HPPP
(see the manual of the package ‘‘spatstat’’ at [23]). (a) RA1. (b) RA2.

function gradually decreases from right to left across the
region. The distribution of the estimates λ(x) is positively
skewed: skewness is 1.0567 and Kurtosis is 3.3985. The
log-normal, gamma,Weibull, and exponential distribution are
examined to fit the empirical distribution of the estimates.
The cumulative distribution function (CDF) of the estimates
and the distribution fittings for UA2 are depicted in Fig. 6(b).
The Kolmogorov-Smirnov test (K-S test) is employed to
check for goodness-of-fit of the empirical data. The K-S test
results show that all the distributions cannot be rejected at
the 5% significance level. The measured K-S test statistic,
which is the maximum distance between the reference dis-
tribution and the empirical distribution, for the log-normal,
gamma, Weibull, and exponential distribution are 0.0901,
0.0714, 0.0609, and 0.1334, respectively. Hence, the Weibull
distribution shows the best fit for the intensity function of
urban areas. The estimated value of the scale and the shape
parameter of theWeibull distribution are 56.9756 and 1.3599,
respectively.

In Fig. 7, there is a sudden variation in the intensity func-
tion at the left side of the figure. This causes that the K-S test

FIGURE 6. The estimation of intensity function with bandwidth
h = 0.24km: (a) contour plot and (b) the CDF of intensity estimates
in UA2 (dense urban area).

rejects all the distributions. The mixture distribution should
be required to accurately fit the significantly varying intensity
function. The skewness and the Kurtosis of the values of
the intensity function is 3.5953 and 16.6841, respectively.
The K-S statistic of the log-normal distribution (0.1345)
shows the best fit. The estimated value of the location and
the scale parameter (the mean and standard deviation of the
variable’s natural logarithm) of the log-normal distribution
is −0.8928 and 0.6890, respectively.
In our experiments, other distributions (the gamma and

exponential distribution) also occasionally show better fit
for the intensity functions in other regions. However, the
Weibull and log-normal distributions are seen to be more
flexible to fit many types of spatial patterns. Both theWeibull
and log-normal distribution are widely used to describe the
skewed data. In our tests, the Weibull distribution tends to
overestimate the head part of the empirical distribution while
the log-normal distribution does in the tail part on the same
empirical data. This is the reasonwhy theWeibull distribution
is better for fitting the smoothly varying surfaces (the gentle
slope in the CDF curve), whereas the log-normal distribution
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FIGURE 7. The estimation of intensity function with bandwidth
h = 1.5km: (a) contour plot and (b) the CDF of intensity
estimates in RA2 (rural area).

is better for fitting the significantly varying surfaces (the steep
slope in the CDF curve).

D. INHOMOGENEOUS L-FUNCTION TEST
The inhomogeneous K-function Kinhom(r) is the general-
ization of the K-function introduced in Section III-A [26].
Analogously, if X is an IPPP with intensity function λ(x),
then Kinhom(r) = πr2. The inhomogeneous K-function is
computed by

K̂inhom(r) =
1
|A|

∑
i

∑
j 6=i

I (dij ≤ r)
λ(xi)λ(xj)

, (2)

This calculation requires the intensity function estimates
λ̂(x) for λ(xi) and λ(xj). Figure 8 and 9 show the computed
inhomogeneous L-functions Linhom(r) =

√
Kinhom(r)/π of

BS locations in UA2 and RA2, respectively, based
on the intensity estimates obtained in the previous
section. The envelopes in Fig. 8 and 9 are obtained

FIGURE 8. Empirical inhomogeneous L-function obtained from
BS locations in UA2 and envelops (the shadowed area between
L̂hi

inhom and L̂lo
inhom) of Linhom(r ) computed from 600 realizations

of an IPPP. The dashed line L̄inhom(r ) is the average value of the
L-functions of 600 realizations of the fitted IPPP.

FIGURE 9. Empirical inhomogeneous L-function obtained from
BS locations in RA2 and envelops (the shadowed area between
L̂hi

inhom and L̂lo
inhom) of Linhom(r ) obtained from 600 realizations

of an IPPP. The dashed line L̄inhom(r ) is the average value of the
L-functions of 600 realizations of the fitted IPPP.

from 600 simulated realizations of the IPPP, taking the
30-th highest and 30-th lowest values of simulated
L-functions, with intensity estimates λ̂(x) the same as the
intensity estimates depicted in Fig. 6 and 7. Since the
observed inhomogeneous L-functions of UA2 and RA2 lies
almost inside the envelope, we conclude that BS locations
over a relatively large area can be modeled by an IPPP.

IV. THE DISTRIBUTION OF PEAK HOUR
TRAFFIC DENSITY
Denote cell traffic for the ith cell at time t by ψi,t . Cell
traffic is the aggregate traffic volume which the BS of the
cell actually transmitted to all the users in the cell during the
one-hour time period between t and t + 1. Peak hours, which
are the time when traffic volume is at its peak during a certain
period in each cell, are different depending on the region in
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which a cell is located [8], [25]. Hence, we extract PH cell
traffic which is the highest volume of the cell traffic during
the consecutive 14 days of each cell: 9i = maxt {ψi,t } for all
i = 1, . . . , n, where t = 1, . . . , 24× 14.
The PH traffic density is measured in a grid basis.

Assume that the target area is the two-dimensional J × K
grid of equally-spaced points. The pixel pj,k , where
j = 1, . . . , J and k = 1, . . . ,K , contains the PH traffic
density Z = {Z [ j, k]), j = 1, . . . , J , k = 1, . . . ,K }.
We first calculate cell traffic per cell area, Ri = 9i/Di,
where Di indicates the area of the ith Voronoi cell. Then
each pixel is assigned to Ri of the nearest cell i and thus
the PH traffic density is finally obtained. The size of each
pixel in the grid is set to 0.01 km and 0.1 km for urban
and rural areas, respectively, which is much smaller than the
average cell radius. The map of the PH traffic density (ln(Z))
of UA2 and RA2 are depicted in Fig. 10.

FIGURE 10. The logarithm of peak hour traffic density. (a) UA2. (b) RA2.

FIGURE 11. The distribution of the PH traffic density in urban areas.
(a) Downlink, UA1. (b) Downlink, UA2.

A. DISTRIBUTION FITTING
Figure 11 shows the empirical CDFs of the downlink
PH traffic density Z and its fitting with log-normal, Weibull,
gamma, and exponential distributions. The K-S test results
show that all the distributions should be rejected at the 5%
significance level. However, in terms of the K-S statistics, the
log-normal distribution shows the best fitting performance
(0.0425, 0.0468 for uplink, downlink in UA1, and 0.0419,
0.0772 for uplink, downlink in UA2). The CDFs of the
PH traffic density of RA1 and RA2 are depicted in Fig. 12.
In the same manner like urban areas, the K-S statistics of
log-normal distribution shows the least value (0.0422, 0.0514
for uplink, downlink in RA1, and 0.0270, 0.0454 for uplink,
downlink in RA2). Therefore, we conclude that the peak
hour traffic density can be approximated by a log-normal
distribution. This fact can be exploited to develop the spa-
tial modeling framework of the PH traffic density, which is
discussed in more details in Section VI-A1.

The location (µ) and the scale (σ ) parameters of
log-normal distributions for each region obtained by the
maximum likelihood estimation are listed in Table 1.
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FIGURE 12. The distribution of the PH traffic density in rural areas.
(a) Downlink, RA1. (b) Downlink, RA2.

TABLE 1. Parameters of the log-normal distribution fitting.

B. SPATIAL CORRELATION MODELING
BY VARIOGRAM MODEL
Another important observation is that PH traffic density maps
in Fig. 10 represent some degree of correlations between
adjacent cells. Cell traffic collected at BS locations is actu-
ally related to the value of an underlying continuous spatial
traffic demand. Cell traffics of neighboring BSs at the same
time have correlations and thus the traffic density has also
spatially auto-correlated distribution. In spatial modeling of
the PH traffic density, it is important to include spatial corre-
lations of the traffic density.

In geostatistics, the varigoram model is used for obtain-
ing the second moments of spatial data [20], [21].

The (semi-)variogram γ (h) of a stochastic process Y is the
variances of differences: 2γ (h) = E[{Y (X )−Y (X+h)}2] for
all lags h, which describes how the spatial correlation decays
as a function of the lag h. The sample variogram of the PH cell
traffic per cell area R(xi) is computed by

γ̂ (h) =
1

2|N (h)|

∑
N (h)

{R(X )− R(X ′)}2, (3)

where the set of all pairs of points separated by lag vector h is
denoted by N (h) = {(X ,X ′), ‖X − X ′‖ = h}.

We have tested several variogram models but select the
exponential variogram model, which is simple and shows
a good agreement empirically. The exponential variogram
model is defined as γ (h) = v(1 − exp(−h/r)), where the
parameter v is the variance of the process and r decides the
decay rate of correlation. The parameter r is estimated by
using the weighted least squares estimator [21]. Figure 13
shows the obtained sample variogram from the logarithm of
the PH traffic density (ln(Ri)) of UA2 and the fitted exponen-
tial variogram as an example.

FIGURE 13. The sample varigoram of the PH traffic density of UA2 and
the fitted exponential semi-variogram.

Note that γ (h) = 0 means that the correlation is 1,
otherwise, the larger its value is, the less spatial correlation is
observed. In Fig. 13, the variogram reaches its upper bounds
known as the sill: it is same with the variance v of the stochas-
tic process. The finite lag distance at which a variogram
reaches its sill is called range. It also means that beyond this
range, the PH traffic of the two positions becomes almost
irrelevant. The measured range of UA1, UA2, RA1, and RA2
are 0.0154, 0.0870, 1.7139, and 5.3722 km, respectively. The
parameter r for the exponential variogram model is typically
given by one third of the range.

V. THE RELATION BETWEEN BS DEPLOYMENTS
AND TRAFFIC DENSITY
The PH traffic density can be exploited to determine the inten-
sity function of the spatial BS distribution, since BSs tend to
be more densely deployed at a place where traffic demand is
high, and vice versa. In order to model a spatial pattern of BSs
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with an intensity function estimated by the PH traffic density,
it is essential to know their relation quantitatively beforehand.

A. PEAK HOUR TRAFFIC DENSITY AND CELL AREA
The number of deployed BSs and BS locations are closely
related to the traffic density of a target area. Many small cells
are likely to be deployed in the area of high traffic density as
it can be observed in Fig. 10.

Traffic per cell (cell traffic) and cell area exhibit some
degree of negative correlations in countrywide scale [7].
It means that the higher the traffic load, the smaller cell sizes.
We investigate the correlation between the PH traffic density
and cell area as shown in Fig. 14. We check correlations
between the traffic density and cell area and observe strong
negative correlations, which shows the Spearmans’s corre-
lation coefficient of −0.6099 and the Pearson’s correlation
coefficient of −0.2200.

FIGURE 14. A scatter diagram of traffic density versus cell area in UA2.

B. THE INTENSITY OF BS DEPLOYMENTS AND
PEAK HOUR TRAFFIC DENSITY
The relation between the PH traffic density and the number
of BSs in UA1 is depicted in Fig. 15. We take a square sliding
window W of 0.35 km × 0.35 km in UA2 and calculate
the aggregate traffic load T (W ) = d

∑
j
∑

k Z [ j, k], where
j and k are the index of pixels inside the window W , and
d is the area of a pixel. Denote the intensity by λ(W ) inside
the window W . Regression analysis is used to model the
relation between the BS distribution intensity estimates and
the aggregate traffic load. Since the intensity function cannot
increase to infinity at high values of traffic load, we model
the regression function as a sublinear function as follows:

λ(W ) = a exp (−b/T (W )), (4)

where the fitting parameters a and b are obtained by the sim-
plex search method. The obtained parameters are provided
in Table 2. The relation model (4) is obtained from estimating
the relation between the intensity estimates and the mean
values of traffic load (circles in Fig. 15) for each intensity
values.

FIGURE 15. The relation between the intensity function and the average
traffic load per window W in UA2.

TABLE 2. Parameters of the relation model for modeling.

FIGURE 16. The relation between the intensity function and the average
traffic load per the window W in RA2.

Figure 16 shows the relation graph for RA2. Since
the distribution of BS locations and traffic density varies
significantly at the left side in RA2 (there is actually a small
town), there is a clear discontinuity around 0.7 of intensity
estimates. In addition, the results of modeling performance,
e.g., K-function graph comparison, show that the proposed
modeling fails to successfully replicate the significantly
varying surface. Hence, we select RA1 to investigate the
relation for a rural area. The relation graph for RA1 is
depicted in Fig. 17. We select a linear regression model
λ(W ) = cT (W )+d for spatial modeling of the rural area and
estimate the relation from the points in Fig. 17 by using the
iterative re-weighted least squares algorithm. The parameters
c and d are also given in Table 2.
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FIGURE 17. The relation between the intensity function and the average
traffic load per window W in RA1.

VI. APPLICATIONS OF THE PROPOSED MODELS
In this section, we illustrate potential applications of the
proposed modeling on the BS location distribution and the
PH traffic density. Firstly a spatial modeling framework is
introduced as an effective way of providing close-to-real
BS locations and traffic densities, for simulating the mobile
network performance. Then we will briefly introduce how to
apply the proposed models for BS planning optimization and
dynamic BS sleeping control.

A. SPATIAL MODELING FRAMEWORK FOR
NETWORK SIMULATIONS
The spatial modeling framework proposed here provides
a simulation method to generate both inhomogeneous
BS deployments and the PH traffic density by using the
variogram and the spatial Gaussianmodel [27] as widely used
in geostatistics. The framework exploits findings presented
in the previous sections, i.e., the possibility of the use of a
homogeneous PPP for a specific small area, the log-normally
distributed traffic density, and the relation between the inten-
sity function and the traffic density.

The framework is based on Cox point process [28] which
consists of the first step of intensity function generation and
the second step of IPPP construction. The details are as
follows.

1) GENERATE THE MAP OF THE PH TRAFFIC DENSITY
BY A GAUSSIAN SPATIAL PROCESS
Let Z = {Z [ j, k], j = 1, . . . , J , k = 1, . . . ,K } denote the
PH traffic density generated on a two-dimensional J×K grid
like the same manner in Section IV.

As mentioned, the PH traffic density can be approximated
by a log-normal distribution. Hence, we can represent the
PH traffic density Z by

Z [ j, k] = e(µ+S[ j,k]), (5)

where the stationary Gaussian spatial process
S = {S[i, j], j = 1, . . . , J , k = 1, . . . ,K )} follows a
zero-meanmultivariate Gaussian distributionwith covariance

FIGURE 18. The PH traffic density modeling: (a) a sample of the
generated PH traffic density; (b) the distribution of the empirical
data and a sample generated by modeling.

function ρ(h) = Cov[S[ j, k]S[ j′, k ′])], where h is the dis-
tance between pixel [ j, k] and [ j′, k ′]. The Gaussian spatial
process S[ j, k] should be scaled by using µ and σ given in
Table 1 so that it has the same distribution with the empirical
data. The specification of the covariance function ρ(h) for all
lags h determines the smoothness of the resulting Gaussian
spatial process S and is given by

ρ(h) = exp{−(h/r)}, (6)

where v is set to 1 since the variance can be adjusted in (5).
In Fig. 18(a), a generated sample of the log-transformed

PH traffic density, i.e., S, is depicted by the color map.

2) GENERATING BS LOCATIONS
After generating the grid map of the PH traffic density
(Kbytes/km2) by (5), the number of BSs can be obtained
by using the relation model (4). The traffic density map is
partitioned into Js ×Ks disjoint square segments of the same
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FIGURE 19. The relation between the intensity function and the
aggregate traffic load.

size s× s, where Js = bJ/sc and Ks = bK/sc. The segments
are denoted by W = {Wu,v, u = 1, . . . , Js, v = 1, . . . ,Ks}
and the aggregate traffic load (Kbyte) in each segment Wu,v
is given by

T (Wu,v) = d
s∑
j=1

s∑
k=1

Z [m1 + j,m2 + k], (7)

where m1 = (u − 1)s, m2 = (v − 1)s, and d is the area of
a pixel. After calculating the aggregate traffic load T (Wu,v),
the intensity λ(Wu,v) is directly obtained from the saturation
relation model for urban areas and the linear relation model
for rural areas. From the result of Section III, the spatial
distribution of BS deployments of a specific region can be
modeled by an IPPP. Hence, we generate spatial points by a
thinning method of IPPP simulation [18] with the intensity
λ(Wu,v) for all segments W.

The performance of the proposed spatial modeling method
is carried out by comparing the distribution of the PH traffic
density, the intensity function of BS deployments with those
of empirical data of UA2. The model simulation of an urban
area has been implemented by choosing d = 0.01km, s = 20.
It reproduces both BS deployments and the PH traffic density
which are statistically the same with those of UA2. The
parameter r for the exponential variogram given in Table 2
is adjusted to r ′ = 6r for UA2, which is optimized through
extensive simulations. A generated random sample of the
Gaussian spatial process (the logarithm of the PH traffic den-
sity) andBSs are depicted in Fig. 18(a). As can be seen, higher
intensity function is estimated at higher traffic density areas.
Figure 18(b) shows that the CDF of a sample of PH traffic
density matches that of the empirical PH traffic density of
UA2 very well. Figure 19 shows the intensity estimates ver-
sus the aggregate traffic load per segment obtained from
600 realizations of PH traffic density and BS locations. From
Fig.18–20, the observed curve lies within the modeling enve-
lope and themean of the sublinear regression functions shows
a good agreement with that of the empirical data.

FIGURE 20. An inhomogeneous distribution of BS deployments:
(a) the contour graph of the intensity estimates and
(b) the distribution comparison.

B. BS PLANNING AND DYNAMIC BS SLEEPING
The basic idea of applying the proposed model is to check
whether the BS density of a given area deviates severely from
the relation to the traffic density, as predicted by (4). For
network planning, it generally indicates that some new sites
should be deployed, while for dynamic BS sleeping, it can
trigger the actions to put some BSs into sleep or to wake
up some sleeping BSs. Note that the performance of these
mechanisms can in turn be simulated based on the spatial
modeling framework previously introduced.

1) BS PLANNING
The operator can train the proposed model by determining
the parameters a and b given in (4) periodically for every
roughly septated regions, e.g., similar size as UA2 for dense
urban areas and as RA2 for rural areas. At the beginning of
each planning period, the operator can further divide every
region with finer spatial granularity into small segments of
the same size. Denote each segment as Wu,v. By counting
the number of BSs, one gets the measured BS density in the
segment λ(Wu,v). The operator can also measure the average
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aggregated PH traffic in this segment, denoted by T̄ (Wu,v).
The deviation of the BS density to the measured traffic PH is
then given by

1u,v = λ(Wu,v)− a exp (−b/T (Wu,v)), (8)

With all 1u,v on hand, the operator is able to select those
negative 1u,v with large absolute values |1u,v|. Candidate
mechanisms include: Sort 1u,v, and then choose X segments
with smallest1u,v (should be negative); Comparing1u,v with
certain threshold, i.e., if 1u,v < ξ , for a given ξ > 0, the
segment is chosen. For those selected segments, the operator
can further put efforts on deciding the number of new BSs
to deploy and the best sites of the new BSs, via conventional
BS planning methods. The size of the segments will tradeoff
the BS deployment efforts by conventional methods with the
model prediction precision, and thus should be optimized,
which serves as a valuable future research direction.

2) DYNAMIC BS SLEEPING
When the traffic load in certain areas of the network is low,
some BSs serving those areas can be put into sleep mode
in order to save energy [3]–[5]. Most existing approaches
perform in a centralized way to coordinate the sleeping and
waking up actions of BSs. However, for densely deployed
network, this may put heavy overhead to the net-
work controller, and thus distributed sleeping decision,
e.g., probability-based BS sleeping mechanisms [29] are
preferable in dense networks. By using the proposed model,
similar to the BS planning case, the operator should track
the deviation in a finer time granularity, denoted by 1t

u,v at
time t . Then the operator can assign a BS sleeping/waking
up probability for each segment, denoted by Ps(1t

u,v) as a
function of 1t

u,v. Designing appropriate Ps(1t
u,v) also serves

as a promising future research topic.

VII. CONCLUSION
In this paper, a new spatial modeling framework is proposed
for the BS patterns and the PH traffic density based on a spa-
tial analysis on real measurement data of commercial cellular
networks. Our findings show that HPPP is only capable of
modeling BS patterns in a specific small area, but IPPP is
required to model diverse spatial patterns of BS deployments
for a relatively large area in general. In order to model the
intensity function of IPPP, we analyze the spatial distribution
of the PH traffic density and its relation with the intensity
function of BS locations. It is shown that the PH traffic
density can be accurately fitted by a log-normal distribution.
In addition, we find that it exhibits spatial correlations which
can be evaluated by an exponential variogrammodel. We also
observe that the sublinear model and the linear model are
appropriate for the relation in an urban area and a rural
area, respectively. This framework can be used to reproduce
various inhomogeneous distributions of BS patterns and the
corresponding PH traffic density together, which can
be applied to realistic simulations of cellular networks.
Moreover, applications for BS planning and dynamic

BS sleeping can be developed based on the modeling
framework and are worth future research efforts. Another
direction of future research is to apply the proposed method-
ology to analyze the spatial patterns of heterogeneous net-
works, consisting of small cells with different radio access
technologies.
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