
Received June 5, 2015, accepted June 18, 2015, date of publication June 30, 2015, date of current version July 17, 2015.

Digital Object Identifier 10.1109/ACCESS.2015.2450498

High-Performance Extreme Learning Machines:
A Complete Toolbox for Big Data Applications
ANTON AKUSOK1, KAJ-MIKAEL BJÖRK2, YOAN MICHE3, AND AMAURY LENDASSE1
1Department of Mechanical and Industrial Engineering and the Iowa Informatics Initiative, The University of Iowa, Iowa, IA 52242-1527, USA
2Department of Business Management and Analytics, Arcada University of Applied Sciences, Helsinki 00550, Finland
3Nokia Solutions and Networks Group, Espoo 02022, Finland

Corresponding author: A. Lendasse (amaury-lendasse@uiowa.edu)

ABSTRACT This paper presents a complete approach to a successful utilization of a high-performance
extreme learning machines (ELMs) Toolbox1 for Big Data. It summarizes recent advantages in algorithmic
performance; gives a fresh view on the ELM solution in relation to the traditional linear algebraic
performance; and reaps the latest software and hardware performance achievements. The results are
applicable to a wide range of machine learning problems and thus provide a solid ground for tackling
numerous Big Data challenges. The included toolbox is targeted at enabling the full potential of ELMs
to the widest range of users.

INDEX TERMS Learning systems, Supervised learning, Machine learning, Prediction methods, Predictive
models, Neural networks, Artificial neural networks, Feedforward neural networks, Radial basis function
networks, Computer applications, Scientific computing, Performance analysis, High performance computing
Software, Open source software, Utility programs.

I. INTRODUCTION
Extreme Learning Machines [1]–[4] (ELM) as
important emergent machine learning techniques, are
proposed for both ‘‘generalized’’ Single-Layer Feed-forward
Networks (SLFNs) [1], [3], [5]–[7] and multi layered
feedforward networks [6]. Unlike traditional learning
theories and learning algorithms, ELM theories show that
hidden neurons need not be tuned in learning and their
parameters can be independent of the training data, but
nevertheless ELMs have universal approximation and clas-
sification properties [5]–[7]. In most cases, the ELM hidden
neurons can be randomly generated, which means that all the
parameters of the hidden neurons (e.g., the input weights and
biases of additive neurons, the centres and the impact factors
of RBF nodes, frequencies and the shift of Fourier series, etc)
can be randomly generated and therefore also independent of
the training data. Some related efforts had been attempted
before [8]–[10] with parts of SLFN generated randomly or
taken from a subset of data samples [11], however, they either
lack proof of the universal approximation capability for fully
randomized hidden neurons, or can be considered as specific
cases of ELM [12].

ELM, consisting of a wide type of feed forward neural
networks, is the first method [6], [7], which can univer-
sally approximate any continuous function with almost any
nonlinear and piecewise continuous hidden neurons.

1Download from https://pypi.python.org/pypi/hpelm or install from termi-
nal: pip install hpelm

A distinct property of ELM is the non-iterative linear
solution for the output weights, which is possible because
there is no dependence between the input and output
weights like in the Back-propagation [13] training procedure.
A non-iterative solution of ELMs provides a speedup
of 5 orders of magnitude compared to Multilayer
Perceptron [14] (MLP) or 6 orders of magnitude compared
to Support Vector Machines [15] (SVM), as shown in the
experimental section.

ELM originally belongs to the set of regression
methods [1], [16]. The universal approximation property
implies that an ELM can solve any regression problem with a
desired accuracy, if it has enough hidden neurons and training
data to learn parameters for all the hidden neurons. ELMs
are also easily adapted for classification problems [3]. For
multiclass classification, the index of the output node with
the highest output indicates the predicted label of input. Then
the predicted class is assigned by the maximum output of
an ELM. Multi-label classification [17] is handled similarly,
but the predicted classes are assigned by all outputs, which
are greater than some threshold value.

Extreme Learning Machines are well suited for solving
Big Data [18] problems because their solution is so
rapidly obtained. Indeed, they are used for analyzing
Big Data [19]–[22]. But only two ELM toolboxes [23], [24]
of all2 available can process a dataset larger than a given

2http://www.ntu.edu.sg/home/egbhuang/elm_codes.html

VOLUME 3, 2015
2169-3536
 2015 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1011

A. Akusok et al.: High-Performance ELMs

computer memory, and they both implement a particular
method rather than focus on overall ELM performance.
A GPU acceleration [25], [26] speeds up the computation
significantly, but there is no ready to use implementation
before the current work in this article.

Extreme Learning Machines also benefit greatly from
model structure selection and regularization, which reduces
the negative effects of random initialization and over-fitting.
The methods include L1 [27], [28] and L2 [29] regulariza-
tion, as well as other methods [30] like handling imbalance
classification [31]. The problem is again the absence of ready
to use toolboxes, which are focused on particular existing
methods [28]. One reason for this is found in the fact that
these methods are challenging to implement since they are
typically computationally intensive and are not well suitable
for Big Data.

The goal of this work is to approach the vast field of
Extreme Learning Machines from a practical performance
point of view, and to provide an efficient and easy toolbox,
which saves time of researchers and data analysts desiring
to apply ELM to their existing problems. An analysis of
training methods is done in this piece of software, to select
the fastest, least bounded by memory, scalable and simplest
way of training ELMs. An efficient implementation is created
which suits even old machines of low performance, and the
software also handles Big Data on modern workstations with
accelerators. The proposed toolbox includes all major model
structure selection options and regularization methods, tools
for Big Data pre-processing and parallel computing. In the
next two sections we explain theoretical and practical aspects
of the ELMs methodology. Section IV explains the actual
ELM toolbox, and section V compares and discusses on the
toolbox performance on various datasets, including test sets
of Big Data.

II. EXTREME LEARNING MACHINES METHODOLOGY
A. ELM MODEL
An ELM is a fast training method for SLFN networks
(Figure 1). A SLFN has three layers of neurons, but the name
Single comes from the only layer of non-linear neurons in the
model: the hidden layer. Input layer provides data features
and performs no computations, while an output layer is linear
without a transformation function and without bias.

In the ELM method, input layer weights W and biases b
are set randomly and never adjusted (random distribution of
the weights is discussed in section III-A). Because the input
weights are fixed, the output weights β are independent of
them (unlike in Back-propagation [13] training method) and
have a direct solution without iteration. For a linear output
layer, such solution is also linear and very fast to compute.

Random input layer weights improve the generalization
properties of the solution of a linear output layer, because
they produce almost orthogonal (weakly correlated) hidden
layer features. The solution of a linear system is always in
a span of inputs. If the range of solution weights is limited,

FIGURE 1. Computing the output of an SLFN (ELM) model.

orthogonal inputs provide a larger solution space volumewith
these constrained weights. Small norms of the weights tend to
make the system more stable and noise resistant as errors in
input will not be amplified in the output of the linear system
with smaller coefficients. Thus random hidden layer gener-
ates weakly correlated hidden layer features, which allow
for a solution with a small norm and a good generalization
performance.

A formal description of an ELM is following. Consider a
set of N distinct training samples (xi, ti), i ∈ J1,N K with
xi ∈ Rd and ti ∈ Rc. Then a SLFN with L hidden neurons
has the following output equation:

L∑
j=1

β jφ(wjxi + bj), i ∈ J1,N K, (1)

with φ being the activation function (a sigmoid function is a
common choice, but other activation functions are possible
including linear) [3], [6], [7], wi the input weights, bi the
biases and β i the output weights.
The relation between inputs xi of the network, target

outputs ti and estimated outputs yi is:

yi =
L∑
j=1

β jφ(wjxi + bj) = ti + εi, i ∈ J1,N K, (2)

where ε is noise. Here the noise includes both random noise
and dependency on variables not presented in the inputs X.

B. HIDDEN NEURONS
Hidden neurons transform the input data into a different
representation. The transformation is done in two steps. First,
the data is projected into the hidden layer using the input layer
weights and biases. Second, the projected data is transformed.
A non-linear transformation function greatly increases the
learning capabilities of an ELM, because it is the only place
where a non-linear part can be added in ELM method. After
transformation, the data in the hidden layer representation h
(see Figure 1) is used for finding output layer weights.

1012 VOLUME 3, 2015

A. Akusok et al.: High-Performance ELMs

The hidden layer is not constrained to have only one
type of transformation function in neurons. Different
functions can be used (sigmoid, hyperbolic tangent,
threshold, etc.) [3], [6], [7]. Some neurons may have no
transformation function at all. They are linear neurons, and
learn linear dependencies between data features and targets
directly, without approximating them by a non-linear
function. Usually the number of linear neurons equals the
number of data features, and each of these neurons copy the
corresponding feature (by using an identity W and zero b).

Another type of neurons commonly present in ELMs is
the Radial Basis Function (RBF) neurons [32]. They use
distances to centroids as inputs to the hidden layer, instead
of a linear projections. The non-linear projection function
is applied as usual. ELMs with RBF neurons compute
predictions based on similar training data samples, which
helps solving tasks with a complex dependency between
data features and targets. Any function (norm) of distances
between samples and centroids can be used, for instance L2,
L1 or L∞ norms.

C. MATRIX FORM OF ELMs
Practically, ELMs are often solved in a matrix form by a
closed form solution. An implementation with matrices is
easy to write and fast to run on computers. An ELM is written
in a matrix form by gathering outputs of all hidden neurons
into a matrix H as on equation 3. A graphical representation
is shown in Figure 2. The matrix form of ELMs is used in the
paper hereafter.

H =

φ(w1x1 + b1) · · · φ(wLx1 + bL)
...

. . .
...

φ(w1xN + b1) · · · φ(wLxN + bL)

, (3)

β =
(
βT1 · · ·β

T
L

)T
, T =

(
yT1 · · · y

T
N

)T
. (4)

FIGURE 2. A matrix form of an ELM.

Although the ELM procedure includes a training aspect,
like other neural networks, the network structure itself is not
noticeable in practice. Mathematically, there is only a matrix

describing the projection between the two linear spaces.
Thus an ELM is viewed as two projections: input XW and
output Hβ, with a (non-linear) transformation between them
H = φ(XW + b). The number of hidden neurons regulates
the size of matricesW,H and β; but the network neurons are
never treated separately.

With different types of hidden neurons, the first projection
and transformation are performed independently for each
type of neurons. Then the resulted sub-matrices H1 are
concatenated along the second dimension. For two types of
hidden neurons:

H = [H1 | H2] = [φ1(XW1 + b1) | φ2(XW2 + b2)]. (5)

Linear neurons are added into ELM by simply copying
inputs into the hidden layer outputs:

H = [H1 | H2 | X]

= [φ1(XW1 + b1) | φ2(XW2 + b2) | X]. (6)

D. ELM SOLUTION WITH PSEUDO-INVERSE
Most often, an ELM problem is over-determined (N > L),
with the number of training data samples larger than the
number of hidden neurons. For determined (N = L) and
under-determined (N < L) instances, ELM should use
regularization [3]. Otherwise it has a poor generalization
performance.

A unique solution for an over-determined system is given
by a minimum L2 norm of the training error. It may be
found using the Moore-Penrose generalized inverse [33]
(pseudoinverse) of the matrix H, denoted as H†. As the
matrix H has a full column rank, the pseudoinverse is
computed as in equation (9).

Hβ = T (7)

β = H†T (8)

H†
= (HTH)−1HT , (9)

The pseudoinverse is prone to numerical instabilities if the
matrixHTH is close to singular. Practically (in Matlab R© and
Python), the implementations of the pseudoinverse include
a small regularization term H†

= (HTH + αI)HT where
α = 50ε and ε is the machine precision for a used type of
floating point numbers. Adding a regularization term makes
matrix HTH non-singular, and the same solution applicable
also for determined and under-determined systems.

E. CLASSIFICATION WITH ELMs
An ELM is a regression model, but it is easily adapted for
classification. To classify a dataset with ELM, data targets
need to be set in a special encoding manner.

If the classes are categorical and independent, then one
target is created for each class. Targets for the correct classes
are set to one, and targets for irrelevant classes are set to
zero. This encoding creates a unit length vector for each class,
which is orthogonal to vectors of all other classes. Distances
between target vectors of different classes are the same, so the

VOLUME 3, 2015 1013

A. Akusok et al.: High-Performance ELMs

class independence is kept. The predicted class is assigned
according to the target with the largest ELM output.

If the classes are ordinal and have a ranking, then they are
translated into real numbers. Only one target is created for all
the classes, and a predicted class is the one with the closest
number to an ELM output.

In a multi-label problem, a sample can have multiple
correct classes. The targets are created similarly as in the
independent classes problem formulation. The predicted
classes are assigned for all ELM outputs greater than a
threshold value.

Using ELM for classification with independent classes
changes the way how the prediction error is calculated. The
classification error does not penalize (or encourage) small
changes in the ELM output values, which do not lead to
a different classification. This makes a difference in the
model structure selection (described in section II-F), where an
optimization w.r.t. the MSE regression error finds an
incorrect optimal number of hidden neurons, and creates
a model with a sub-optimal classification prediction
performance.

F. MODEL STRUCTURE SELECTION IN ELMs
Model structure selection prevents ELM from learning noise
from data and over-fitting. It does so by artificially limiting
the learning ability of an ELM.A training dataset hasmultiple
instances of inputs, and the corresponding targets, which are
generated by the projected data and an added noise. The noise
term includes both random noise and projection from features
not present in the inputs. Learning particular data samples
with the associated noise is called over-fitting. An over-fitted
ELM model has worse generalization performance
(prediction performance on new data), which can be
measured using a validation set of data. A model structure
selection process finds an optimal generalization perfor-
mance by changing the amount of model parameters or
applying regularization to the model.

A hyper-parameter of ELMs, which governs the amount of
effective parameters, is the number of hidden neurons. The
optimum number of neurons is found with a validation set,
a cross-validation procedure or a Leave-One-Out validation
procedure (which has an efficient solution in ELMs). Hidden
neurons can be added and removed randomly, or they can
be ranked by their relevance to the problem. This ranking
is called ‘‘Optimal Pruning’’ [28] and it achieves better
performance with a trade-off of a longer runtime. Neuron
pruning methods correspond to L1-regularization.
Another model structure selection technique available in

ELMs is the Tikhonov regularization [34]. It reduces an
effective number of model parameters by reducing the
influence of neuron outputs without removing neurons
by themselves. Tikhonov regularization is efficient for
achieving numerical stability in near-singular ELMs (and
linear problems in general). This regularization corresponds
to L2-regularization, and can be combined with L1 to achieve
the best results [29].

Model structure selection is less important in Big Data
tasks, because with a large number of samples a model learns
to ignore noise. Large tasks are often complex enough not to
overfit even at the limits of the hardware. Also, most model
structure selection methods significantly increase runtime,
which is a limiting factor for training large ELM models. For
the provided reasons, only one fast neuron pruning method
with a validation set is included in the toolbox part for large
data.

III. ELMs IN PRACTICE
A. DATA NORMALIZATION
Input data normalization is a critical preprocessing step for
manyMachine Learningmethods, including ELMs. Raw data
often has features of different scales, for example an age of
a man is at a scale 1-100, and his annual salary in dollars is
3 orders of magnitude larger. Without normalization, small
relative variations in the salary make large relative variations
in the age negligible. Normalization sets all features at the
same scale. Then all features have the same influence, and the
training method learns which ones to use for the prediction.

In the ELM toolbox, weights can be given explicitly or
generated automatically. Automatic weights generation
assumes that the data has zero mean and unit variance. The
generated weights keep the performance of neural network
with sigmoid neurons near the optimum, and compensate for
large number of inputs. The explanation and experimental
evaluation of the automatic random weights parameters are
given in the experimental Section V-B.

B. ELM SOLUTION WITH BEST LINEAR
UNBIASED ESTIMATOR
The best linear unbiased estimator gives the optimal least
squares solution to thematrix equationXβ = T for stochastic
vectors x and t combined into the corresponding matrices.
It uses two theoretical correlation matrices

E[xT x] = Cxx , E[xT t] = Cxt (10)

which are assumed to be known. The best linear unbiased
estimator of T, denoted by Y, is then

Y = C−1xx CxtX = βX. (11)

The inverse of Cxx exists because x is a stochastic variable
for which Cxx = E[xT x] has a full rank.
The ELM problem has a finite amount of projected data

samples H and corresponding targets T, so the correlation
matrices are replaced by their estimations

Cxx ≈ HTH = �h, Cxt ≈ HTT = �t , (12)

and the ELM output weights are computed from those
estimates

β = (HTH)−1(HTT) = �−1h �t . (13)

The inverse of �h = HTH matrix exists if it has full rank.
In ELM model, the nonlinear random projection produces

1014 VOLUME 3, 2015

A. Akusok et al.: High-Performance ELMs

almost orthogonal features which are linearly independent.
The number of hidden neurons (columns of H) is smaller
than the number of training samples (rows of H), otherwise
the liner model will learn training samples perfectly and
overfit. Under such constraints, the rank of matrix H equals
its number of columns, thus matrix HTH = �h is full rank
and its inverse exists.

C. NUMERICAL STABILITY OF AN ELM SOLUTION
WITH CORRELATION MATRICES
If numerical instabilities are faced in the inverse, a regulariza-
tion term is applied to the correlationmatrix�h = HTH+αI,
where α is a small positive constant. This approach is called
Ridge Regression [35] aka. Tikhonov regularization [34].
A greater than zero parameter α reduces the effective number
of variable in the model, increasing the inverse stability but
decreasing predictive power. The default Ridge regression
is used in all matrix inverse functions of Python (Numpy)
and Matlab R© with α = 50ε where ε is a machine precision
constant.

D. OUT-OF-MEMORY INCREMENTAL ELMs
ELMs easily run out of memory for storing the matrixHwith
large number of data samples and hidden neurons. Previously
this problem was tackled by iteratively updating the output
weights. However, these methods are computationally slower
because they perform updates of large matrices for each data
sample [24], or need to calculate a solution repeatedly [3].

An easier way of finding solution of a large ELM is
possible using the notations of estimated correlation matri-
ces. It addresses memory limitation by being invariant to
the number of training samples. The runtime is virtually the
same as for a pseudoinverse solution on a machine with
infinite memory. The comparison of computational complex-
ity and memory requirements for the pseudo-inverse versus
correlation matrices ELM solutions are presented in Table 1.

TABLE 1. ELM computation and memory requirements; computations
along the dimension Ñ can be performed incrementally
in L-size batches.

A memory requirement of a correlation ELM solution is
constant for any number of training samples, because the
correlation matrices �h and �t can be computed for batches
of training data. The batch computation replaces the
number of samples N in the memory requirements by a batch
size. A good trade-off in terms of memory requirement and
computational overhead is achieved with a batch size equal
to L. The final �h and �t are computed from batches by a
simple summation. The summation operation adds to runtime
overhead, because in software and hardware implementa-
tions, matrix multiplication and summation are performed in
a single operation3: gemm(A,B,C) = AB+ C.

E. WEIGHTED CLASSIFICATION WITH ELMs
In a classification task with highly uneven number of data
samples for different classes, ELM predictions are biased
towards the class with the most data. This behaviour is
improved by using a weighted linear system solution in the
output layer of an ELM [31]. A weighted linear system has
a Least Squares solution similar to the Best linear unbiased
estimator solution:

�h = HTAH, �t = HTAT, (14)

where A ∈ RN×N is an arbitrary weight matrix. If only
sample weights are used, the A matrix is diagonal; but these
weights are complicated to obtain if they are not given
explicitly. In a classification task, diagonal elements of A for
all samples of class j ∈ J1, cK are given the same weight aj

aj =
N∑N
i=1 Tij

, j ∈ J1, cK. (15)

The solution of ELM obtained this way is unbiased for
any class. An additional multiplication by A is avoided by
applying weights √aj directly to the rows of matrices H,T
which correspond to the data samples of a class j.

Alternatively, the correlation matrices can be computed
for each class separately �1

h,�
1
t , . . . ,�

c
h,�

c
t . Then the

weights are applied during the summation of the correlation
matrices �h and �t :

�h = α1�
1
h + . . .+ αc�

c
h, (16)

�t = α1�
1
t + . . .+ αc�

c
t . (17)

IV. TOOLBOX OVERVIEW
The HP-ELM toolbox implements the state-of-the-art knowl-
edge in ELMs and high-performance programming. It is
written to save the time of end users on creating yet another
implementation of ELM, which is better spent on their own
research or application area instead.

An ELM is a simple method which can be written in
three lines in Matlab R©. But performance of such ELMs is
sub-optimal. ELMs achieve best accuracy with parameter
selection, regularization and pruning for small datasets, and
best scalability with out-of-memory accelerated processing

3http://www.netlib.org/blas/#_level_3

VOLUME 3, 2015 1015

A. Akusok et al.: High-Performance ELMs

on Big Data. The toolbox is written to provide the best
performing ELM implementation to all interested researchers
and end users.

A. HOW TO GET THE TOOLBOX
The toolbox is a Python library, also available fromMatlab R©.
It is written in Python programming language using efficient
numerical libraries Numpy4 and Scipy.5

The toolbox requires Python and the following libraries:
Numpy, Scipy, Numexpr and pyTables.6 The easiest way to
get Python with all required libraries is to use the Anaconda7

Python distribution. It is a one-click install on Windows/
Linux/OSX, free and provides free MKL acceleration to all
university affiliates. Any other Python installation will work
as well.

To install the toolbox for CPU, open the console and type
pip install hpelm. This will download and install the
toolbox with all required libraries. Anaconda provides a
python console on Windows; Linux and OSX have built-in
ones.

To obtain an accelerated toolbox, first download and
install MAGMA8 math library for your accelerator:
Nvidia GPU with CUDA, AMD GPU with OpenCL or
Xeon Phi accelerator card (called MIC architecture). All ver-
sions of MAGMA are available from the website; it also has
a forum for installation support. To build MAGMA, rename
one of the make.inc.xxxx files as make.inc and edit
that file according to your system installation. Then install
MAGMA by running make, make shared and
make install in console from MAGMA directory.
Second, download the toolbox archive from its repository

https://pypi.python.org/pypi/hpelm or the latest version from
Github,9 extract it and go to a sub-folder ./hpelm/acc.
There is an accelerated code which must be compiled.
To get compilation flags, add your MAGMA library to
pkg-config path, or use the same flags as MAGMA
used to compile its tutorial files during an installation.
To compile an accelerated ELM library,
run python setup_gpu.py build_ext -inplace
replacing _gpu by _ocl for OpenCLMAGMA or_mic for
Xeon Phi MAGMA. You can test an acceleration by running
pyhton try_gpu.py from the same folder. After that,
go to the root directory of the toolbox and install the now-
accelerated toolbox with python setup.py install.

B. BIG DATA VERSUS SMALL DATA
Based on the number of training samples and underlying
model complexity, all machine learning tasks can be
separated into two categories: big data and small data. In the
big data, the number of samples is enough to learn the
model accurately without over-fitting, but the training time is

4http://www.numpy.org
5http://www.scipy.org
6http://www.pytables.org
7http://continuum.io/downloads
8http://icl.cs.utk.edu/magma/
9https://github.com/akusok/hpelm

a limiting factor. For the small data, there is not enough
samples for learning an underlying model exactly, thus a
model structure selection is necessary to find an optimal
model complexity.

Training a small data model is computationally intensive,
but the whole data is kept in the working memory for quick
access. The big data training algorithm relies on iterative
processing of small chunks of data (which normally does not
fit into memory), but with a huge amount of training samples
there is no need for a model structure selection process (larger
model provides better performance). Processing a small data
which does not fit into memory is not implemented, because a
typical server node has up to 256-512GB RAM, and anything
larger would certainly be limited by the computational speed.
A big data for an easy problem which fits into memory is
solved by either of the two first methods.

C. OUT-OF-MEMORY ACCELERATED BIG DATA ELM
The HP-ELM toolbox for big data is provided by the
hpelm.HPELM class. All data is stored in HDF510 format.
The toolbox takes names of HDF5 files as inputs and outputs.
Thus a size of processed data is limited only by disk capacity.

TheHDF5file format provides a fast and convenient access
to huge data matrices on a hard drive as if they are in memory:
data can be read from or written to any place of a matrix.
It also supports transparent data compression, and is native
to Matlab R©. A convention is used to store only one matrix
in one HDF5 file. Additional utility functions make_hdf5
and normalize_hdf5 create HDF5 files from text/csv or
matrix data, and normalize these files.

The HPELM class supports a GPU or Xeon Phi
acceleration. The accelerated functions are provided by
MAGMA library, an accelerated linear algebra library similar
to LAPACK. It must be compiled by a user to get the
acceleration, but it supports any brands of GPUs and
Xeon Phi accelerators. Accelerated parts are correlation
matrices computation from BLUE ELM solution, and the
calculation of β. These two operations take more than
95% of runtime for ELMs with very large numbers of hidden
neurons.

The ELM solution is computed iteratively by reading
chunks of data from HDF5 files. Only the �h, �t and
β matrices are stored in memory. The largeHmatrix is never
obtained explicitly. Targets for new inputs are also predicted
iteratively and saved into an HDF5 file; and the error is
computed iteratively. This makes Big Data ELM independent
of the number of samples in the dataset, so even the largest
problems can be solved on a workstation with GPU.
HPELM has one model structure selection function that

tests different numbers of hidden neurons on a validation
set. It takes pre-computed �h, �t as an input, and creates
solutions βk for different k ∈ J3,LK spaced equally on
a logarithmic scale. Then the validation data is projected
iteratively, and errors for all values of k are computed from

10http://www.hdfgroup.org/HDF5/

1016 VOLUME 3, 2015

A. Akusok et al.: High-Performance ELMs

the same projected data. This function does the most time
consuming process of projecting the data (see section V-E)
only once. The optimal number of hidden neurons is chosen
by a minimum validation error.

D. MODEL STRUCTURE SELECTION FOR SMALL DATA ELM
The small data support in the HP-ELM toolbox is pro-
vided by the hpelm.ELM class. It has three types of model
structure selection alternatives: with a validation set, with
cross-validation and with a LOO validation error computed
by PRESS statistics. All model structure selection methods
find an optimal number of hidden neurons less or equal than
current L. Neurons are ordered randomly, except when the
L1 regularization is used. These methods remove the extra
neurons from the model and re-calculate the solution.

Both L1 and L2 regularization are available in ELM.
The L1 regularization is done by MRSR [36], a multi-
output version of LARS [37]. It ranks the neurons starting
from the most relevant to the problem. All model structure
selectionmethods work better with such ranked neurons, with
a trade-off of extra runtime.

The toolbox includes another method of performing
L1-regularization, based on an updated MRSR
algorithm [38]. The original MRSR includes a part with
O(2c) complexity w.r.t. number of outputs c. It takes
noticeable runtime with 10 outputs, and makes the method
impractically slow with more than 15 outputs. The complex-
ity of an updated version scales linearly with the number
of outputs. It allows L1 regularization for a larger set of
problems, including an auto-encoder for ELMs in image
processing [22].
L2 regularization is a class parameter of ELM called

alpha which can be changed freely. A notable benefit from
L2 regularization is making an ill-conditioned ELM solvable.
One can use any single-variable optimization method to find
an optimum value of L2 parameter. The resulted method will
be similar to TROP-ELM [29].

E. WHAT KIND OF DATA DOES HP-ELM SUPPORT?
The ELM supports matrices (second order tensors) as inputs,
and HPELM uses names of HDF5 files as inputs. The utility
function make_hdf5 creates an HDF5 file from a matrix, or
a text/csv file.

F. WHAT ABOUT CLASSIFICATION?
The HP-ELM toolbox supports three kinds of classification:
multi-class (one correct class for each sample), multi-label
(arbitrary number of correct classes for each sample) and
weighted multi-class (each class has a weight, it is indepen-
dent of the number of samples in a class). ELM targets must
have one feature per class (binary classification is a two-class
multi-class classification), where the true class(es) for
a sample are set to one and irrelevant classes are set to zero.
This convention is required for correct work of the classifica-
tion error and model structure selection. Classification is set
with an argument while training, see section IV-H below.

G. HOW TO CREATE AN ELM?
An ELM is an object of ELM or HPELM class. Twomandatory
parameters are numbers of input and output features. The
HPELM also accepts a batch size for iterative processing, and
a type of accelerator.

An ELM is created without any neurons. Neurons
are added with elm.add_neurons function. It has
two mandatory parameters: a number of neurons and their
type, and two optional ones: projection matrix W and bias
vector b. Types of neurons are the following: lin, sigm,
tanh, rbf_l1, rbf_l2, rbf_linf. For RBF neurons,
W are coordinates of RBF centers and b are corresponding
kernel widths. Multiple different types of neurons can be
added to a single ELM.

H. HOW TO TRAIN AN ELM?
The train function provides a universal wrapper for
training an ELM. Two mandatory parameters are data
samples X and targets T, and optional arguments and key-
word arguments specify the selected way of training:
• "V" — perform a model structure selection using
validation error; requires keyword arguments Xv and Tv
for validation dataset

• "CV" — perform a model structure selection using
cross-validation error; optional keyword argument k for
number of data splits (k ≥ 3)

• "LOO" — perform a model structure selection using
PRESS LOO error

• "OP" — perform L1 regularization that ranks neurons
starting from the most useful one; works with any model
structure selection

• "c", "mc", "wc" — use classification multi-class/
multi-label/weighted multi-class error instead of MSE,
see explanations above; "wc" requires keyword
argument w for class weights vector.

I. HOW TO TRAIN A LARGE ELM IN PARALLEL?
For an ELM with a large number of neurons trained on
a huge dataset, almost all the running time is spent on
computing �h. Hopefully, an operation of computing �h is
conveniently parallel: a large dataset can be split in n parts,
matrices �i

h,�
i
t , i ∈ J1, nK computed simultaneously for all

the parts of a dataset using the same ELMparameters (loading
the same ELM model). The results are combined together by
a simple summation �h =

∑n
i=1�

i
h, �t =

∑n
i=1�

i
t . The

output weights β will take seconds to compute.
To perform ELM training in parallel, first split the data into

multiple parts and store them in HDF5 format required by
HPELM. Then compute partial matrices�i

h,�
i
t using function

HPELM._project on each data part separately. This oper-
ation takes the most runtime, and is easy to run in parallel.
Save the outputs on a disk as they are computed. When
all partial matrices are ready, obtain the final correlation
matrices by a summation �h =

∑
i�

i
h, �t =

∑
i�

i
t .

The output weights β are computed from�h,�t by function
HPELM._solve_corr.

VOLUME 3, 2015 1017

A. Akusok et al.: High-Performance ELMs

To validate multiple different numbers of hidden
neurons efficiently, use function HPELM.train_hpv with
pre-computed �h,�t and a validation data set. It outputs
errors for each of the given numbers of neurons, and solves
β for an optimal number of neurons.

J. HOW TO USE A TRAINED ELM?
The predict function takes inputs X and returns corre-
sponding calculated outputs Y. Works only on a trained
ELM. For HPELM, the second input gives an HDF5 file name
forYwhere the predicted outputs arewritten, and the function
returns nothing. ELM predictionsY are always real numbers,
predicted classes are found by taking the maximum number
(multi-class) or a threshold Y > 0.5 (multi-label).

K. HOW TO GET AN ERROR OF AN ELM?
Error of model predictions is given by error function of
ELM, which takes true targets T and predicted targets Y as
inputs. It uses the same classification settings as the ones used
for training, if any. For HPELM, the error function takes file
names of HDF5 files containing T and Y matrices.

L. THREE EXAMPLES OF HP-ELM TOOLBOX
Below there are three examples of running the ELM and
HPELM toolboxes in Python, with the data obtained from
Matlab R©. The input data has 9 features and the output has
one. Example ELMs using 100 sigmoid and 9 linear neurons
are given. If the data is already in Python, one can skip the
import from Matlab R© section.

Matlab R© section for Examples 1 and 2. Here
four variables:x,y,xtest andytest are saved as a comma
separated values (.cvs files).
c s vw r i t e (‘ x . csv ’ , x)
c s vw r i t e (‘ t . csv ’ , y)
c s vw r i t e (‘ x t e s t . csv ’ , x t e s t)
c s vw r i t e (‘ t t e s t . csv ’ , y t e s t)

Example 1, Python part. Here the .csv files are converted
to HDF5 ones in Python, and an HPELM is trained with those
files. Training and test errors are printed.
impo r t hpelm

hpelm . make_hdf5 (‘ x . csv ’ , ‘ x . h5 ’ , d e l i m i t e r = ‘ , ’)
hpelm . make_hdf5 (‘ t . csv ’ , ‘ t . h5 ’ , d e l i m i t e r = ‘ , ’)
hpelm . make_hdf5 (‘ x t e s t . csv ’ , ‘ x t e s t . h5 ’ , d e l i m i t e r = ‘ , ’)
hpelm . make_hdf5 (‘ t t e s t . csv ’ , ‘ t t e s t . h5 ’ , d e l i m i t e r = ‘ , ’)

model=hpelm .HPELM(9 , 1)
model . add_neu rons (100 , ‘ sigm ’)
model . add_neu rons (9 , ‘ l i n ’)

model . t r a i n (‘ x . h5 ’ , ‘ t . h5 ’)
model . p r e d i c t (‘ x . h5 ’ , ‘ y . h5 ’)
p r i n t model . e r r o r (‘ y . h5 ’ , ‘ t . h5 ’)

model . p r e d i c t (‘ x t e s t . h5 ’ , ‘ y t e s t . h5 ’)
p r i n t model . e r r o r (‘ y t e s t . h5 ’ , ‘ t t e s t . h5 ’)

Example 2, Python part. Here the ELM model is trained
with different model structure selection. Previously created
.csv files are loaded into Python and normalized to zero
mean and unit variance. Then a basic ELM is trained printing
the training and test error. After that a 10-fold cross-validation

is used to reduce the number of neurons, showing an updated
test error and selected neurons in the model. Finally the
model is re-trained using an L1 regularization (OP parameter),
showing again re-calculated test error and model neurons.
impo r t hpelm
impo r t numpy

x=numpy . l o a d t x t (‘ x . csv ’ , d e l i m i t e r = ‘ , ’)
t =numpy . l o a d t x t (‘ t . csv ’ , d e l i m i t e r = ‘ , ’)
x t e s t =numpy . l o a d t x t (‘ x t e s t . csv ’ , d e l i m i t e r = ‘ , ’)
t t e s t =numpy . l o a d t x t (‘ t t e s t . csv ’ , d e l i m i t e r = ‘ , ’)

xx =(x−x . mean (0)) / x . s t d (0)
t t =(t−t . mean (0)) / t . s t d (0)
x x t e s t =(x t e s t−x . mean (0)) / x . s t d (0)
t t t e s t =(t t e s t −t . mean (0)) / t . s t d (0)

model=hpelm .ELM(9 , 1)
model . add_neu rons (100 , ‘ sigm ’)
model . add_neu rons (9 , ‘ l i n ’)

model . t r a i n (xx , t t)
t t h =model . p r e d i c t (xx)
p r i n t model . e r r o r (t t , t t h)
y y t e s t =model . p r e d i c t (x x t e s t)
p r i n t model . e r r o r (y y t e s t , t t t e s t)

model . t r a i n (xx , t t , ‘CV’ , k =10)
y y t e s t =model . p r e d i c t (x x t e s t)
p r i n t model . e r r o r (y y t e s t , t t t e s t)
p r i n t s t r (model)

model . t r a i n (xx , t t , ‘LOO’ , ‘OP ’)
y y t e s t =model . p r e d i c t (x x t e s t)
p r i n t model . e r r o r (y y t e s t , t t t e s t)
p r i n t s t r (model)

Matlab R© section for Example 3. The training data:
x and y is saved as HDF5 files using build-in Matlab R©

functions. Note the transpose operation, as Matlab R© uses
Fortran matrix ordering by default for HDF5 files.
h 5 c r e a t e (‘ x . h5 ’ , ‘ / da t a ’ , s i z e (x ’)) ;
h 5 c r e a t e (‘ t . h5 ’ , ‘ / da t a ’ , s i z e (y ’)) ;
h 5w r i t e (‘ x . h5 ’ , ‘ / da t a ’ , x ’) ;
h 5w r i t e (‘ t . h5 ’ , ‘ / da t a ’ , y ’) ;

Python part for Example 3. An HPELM is built and trained
using the HDF5 files created by Matlab R©.
impo r t hpelm
model=hpelm .HPELM(9 , 1)
model . add_neu rons (100 , ‘ sigm ’)
model . add_neu rons (9 , ‘ l i n ’)
model . t r a i n (‘ x . h5 ’ , ‘ t . h5 ’)
model . p r e d i c t (‘ x . h5 ’ , ‘ y . h5 ’)
p r i n t model . e r r o r (‘ y . h5 ’ , ‘ t . h5 ’)

M. HOW TO USE GAUSSIAN (RBF) NEURONS?
The ELM toolbox has Gaussian neurons. Centroids are given
instead of a projection matrix W and kernel widths in a
bias vector b. There are three kinds of distance functions:
L2 (Euclidean), L1 and L∞. They are chosen by a type of
neurons: rbf_l2, rbf_l1 or rbf_linf correspondingly. The RBF
neurons are about 10 times slower to compute than sigmoid
ones, even though the computation is parallelized.

N. MY ELM SOLUTION DOES NOT EXIST!
An ELM may not converge if there are a few input
features (2-3) with a large number of hidden neurons, if the
data features are strongly correlated and not independent, or if
the number of data samples is close to the number of hidden

1018 VOLUME 3, 2015

A. Akusok et al.: High-Performance ELMs

neurons. In these cases, matrix �h will be almost singular,
and it’s inverse is numerically unstable.

The numerical stability problem is solved by increasing
the value of the L2 regularization parameter α (an ELM
parameter called alpha). The default value of α = 10−9

can be increased up to 10−2 or higher. This reduces the
effective number of parameters in the model. The regulariza-
tion parameter α should be increased if the output matrix β
has elements with a large magnitude (larger than 102 . . . 103).
However, it is not worthwhile increasing the parameter
excessively, as this may reduce the accuracy of
ELM predictions.

V. EXPERIMENTAL RESULTS
A. DATASETS
The HP-ELM toolbox is tested in three scenarios: regular
datasets with regularization, large datasets and a Big Data
problem.

Small datasets are 11 regression and 4 classification
problems from the University of California at Irvine (UCI)
Machine Learning Repository [39]. Ten different permuta-
tions of the datasets are taken without replacements, and
for each of them 2/3 of the data is used for training
and 1/3 for testing. The data permutations are obtained
from the an author of the OP-ELM [28] paper exactly as
they are used there. Comparison results for Support Vector
Machines [40] (SVM), Multilayer Perceptron [41] (MLP),
Gaussian Processes [42] (GP) are taken from the same
article [28]. Small datasets are tested on ELMs with model
structure selection and without.

Large datasets are 6 relatively large datasets, available
from UCI Machine Learning repository with clear prediction
targets. They are Banana dataset of two banana species, Adult
dataset of people with annual income below/above $50,000,
MNIST handwritten digits dataset for classification of
10 digits based on their image representation, Record
Linkage dataset for detecting duplicate person records with
5.5 millions samples, and HIGGS dataset for detecting pro-
cesses which produce a Higgs boson or not, with 11 million
samples (one of the largest UCI datasets available). Each
dataset is split into training and test parts (respecting the
guidelines where applicable), stored in HDF5 file format and
normalized to zero mean and unit variance for all features.
Categorical features from Adult dataset are encoded as binary
inputs (one per each category); these are not normalized.
Large datasets are tested without model structure selection,
but multiple ELMs are built with different numbers of hidden
neurons.

The Big Data is obtained from a Face/Skin Detection
dataset [43]. It consists of 4000 photos of people with
hand-made masks for skin and faces, under various lightning
conditions, surrounding and human skin colors. Skin
occupies roughly 20% of the pixels in all images. The
dataset is separated into 2000 training and 2000 test images.
The problem is to classify each image pixel to be a
skin or a non-skin. Dataset inputs are RGB color values

of 7 × 7 pixel mask centered on a classified pixel. The
3-pixel wide boundaries of images are omitted. There are
7 × 7 × 3(RGB) = 147 features and 109 (one billion) data
samples in total. It gives a 1.1 TB dataset in HDF5 format
when stored in double precision. Two separate datasets for
all training and all test samples are created from training/test
images. Data features (color values of pixels) are normalized
to zero mean and unit variance. A single ELM is trained
with 19,000 neurons, limited by the available GPU memory.
Performance is tested on differently sized subsets of these
19,000 neurons, as explained in section IV-I.

B. PARAMETERS OF AUTOMATICALLY GENERATED
RANDOM WEIGHTS
Sigmoid function is a common choice of a non-linear trans-
formation function for hidden nodes of ELM. However, it is
sensitive to the range of input weights, which are XW + b.
If inputs to the sigmoid function have small magnitude,
it performs similarly to linear function. If these inputs have
very large magnitude, it performs as a cutoff value. The effect
can be seen by checking the difference between predictions of
SLFNs with the same weights and sigmoid/linear/threshold
transformation functions. If the input data has zero mean
and unit variance, the range of inputs to SLFN is governed
by the range of weights W generated from W = N (0, s)
with different values of standard deviation s. The effect is
shown on Figure 3. The range of weights W also affects the
performance, as on Figure 4.

FIGURE 3. Mean squared error difference of predictions of SLFNs with
5 hidden neurons for Iris dataset (average over 100 runs), for different
values of s in W =N (0, s). For small s, outputs of sigmoid SLFN are
similar to linear SLFN, and for large s they are similar
threshold SLFN.

Another issue is an increase in standard deviation of
inputs to the transformation function, if the dataset has high
dimensionality. For a single additive hidden layer neuron, an
input to the transformation function ak =

∑d
i=1 xiwi,k is a

sum of d components. If a single component has standard
deviation s, then that sum has a larger standard deviation

√
ds.

This leads to larger magnitudes of inputs to a transfor-
mation function and sub-optimal performance for large d ,
for example in MNIST dataset (see Figure 5). The effect
of large input dimensionality is fixed by dividing the

VOLUME 3, 2015 1019

A. Akusok et al.: High-Performance ELMs

FIGURE 4. Test error of SLFNs with 25 hidden neurons on Iris dataset
(averaged over 100 runs), for different values of s in W =N (0, s). The
data has 100 training and 50 test samples, balanced over the 3 classes.

FIGURE 5. MSE difference (top) of predictions, and test error (bottom)
of SLFNs with 500 hidden neurons on MNIST dataset (averaged over
10 runs), for different values of s in W =N (0, s). The data has
60000 training and 10000 test samples. Due to high dimensionality of
inputs, the optimal value of s differs from 1.

standard deviation s by
√
d , and generating weights as

W = N (0, s/
√
d) (see Figure 6).

In the following experiments, ELM is used with automat-
ically generated weights from W = N (0, s/

√
d). The input

data is normalized to zero mean and unit variance. Biases are
initialized from N (0, 1).

C. PERFORMANCE ON SMALL DATASETS
The performance results and runtime for regular size datasets
are presented on Tables 2 and 3. Three ELM setups are
tested using the toolbox: a basic ELM (ELM), an ELM with
pruning of hidden neurons (P-ELM) using a Leave-One-Out

FIGURE 6. MSE difference (top) of predictions, and test error (bottom)
of SLFNs with 500 hidden neurons on MNIST dataset (averaged over
10 runs), for different values of s. With input dimensionality fix
W =N (0, s/

√
d), the optimal value of s is around 1 even for

high dimensional data.

error, and an OP-ELM (OP-ELM) which is an L1 regularized
P-ELM. The three ELMs are initialized with 100 hidden neu-
rons and sigmoid activation function. The actual number of
neurons in P-ELM and OP-ELM is smaller after pruning. In
three regression problems the pruning algorithm has selected
> 95% of neurons, pointing to an insufficient model com-
plexity. For these tasks (denoted by an asterisk), the number
of neurons is increased to 500 where the pruning algorithm
selects < 90% of neurons on average; the accuracy and
runtime for L = 500 are reported. Experiments are run on
a single 2.6GHz core on a cluster for comparable runtimes.

The MSE and classification performance of the proposed
HP-ELM toolbox is consistent with the results of other
methods. The basic ELM performs worse in some cases
(Auto Price), but P-ELM and OP-ELM results are compa-
rable to the best result between the other three methods.

Considering runtime, ELM is much faster than other
methods, and this speedup does not decrease the
performance. A basic ELM is 6 orders of magnitude faster
than SVM in Computer regression problem and 5 orders of
magnitude faster in Wisconsin Breast Cancer classification
problem, and it has better performance in both cases.

D. PERFORMANCE ON LARGE DATASETS
Large datasets are classified with the toolbox on a worksta-
tion with 4-core 4GHz CPU and GTX Titan Black GPU.
Additional experiments show runtime comparison with a

1020 VOLUME 3, 2015

A. Akusok et al.: High-Performance ELMs

TABLE 2. Meas Squared Error (bold) and runtime in seconds for the regression datasets. Results denoted by ∗ are computed with
500 hidden neurons, as suggested by pruning.

TABLE 3. Accuracy in % (bold) and runtime in seconds
for the classification datasets.

cluster node having two 8-core 2.6GHz CPUs, and with a
Macbook Air laptop having a 2-core 1.4GHz CPU.

Dataset is split into training and test sets, stored in
HDF5 format. They are processed by HPELM toolbox
class on both CPU (up to 4096 hidden neurons) and GPU
(up to 19,000 hidden neurons, limited by the GPU memory).
The classification is done by a basic ELM model with
sigmoid hidden neurons. Multiple models are trained for
different numbers of hidden neurons. Prediction performance
on a test set and training time are shown on Figure 7.

The results show fast training times even for the largest
datasets with moderate numbers of neurons. Only the largest
ELM models surpass the 1 hour training time. With low
number of neurons, even HIGGS datasets is processed in a
few seconds on any hardware including the laptop.

High computational power devices like GPU on
multi-processor nodes speedup ELM training with more than
1000 hidden neurons. This happens because operations with
small matrices cannot fully utilize those devices, thus the
sequential performance and disk access become limiting
factors. With very high L, a speedup provided by the GPU
is roughly 5 times, which is consistent with the relative
theoretical CPU:GPU= 1:5 performance in double precision.
A low-power laptop performs surprisinglywell in compari-

son with other hardware. The maximum difference in runtime
(vs. a GPU at L = 4096) is only 10 times. For smaller

numbers of neurons the runtime difference is even less. Thus
a medium size ELM model can be trained fast even on a
common laptop with a low-power CPU.

E. RUNTIME ANALYSIS OF HPELM WITH MNIST DATASET
The runtime analysis of the HPELM implementation from
the toolbox is done on MNIST classification dataset. It has
60,000 training samples with 784 features, and 10 target
classes. The training and test data is stored in HDF5 file
format. Experiments are performed using a basic ELM with
small (64) and large (4096) numbers of sigmoid hidden neu-
rons. First, an ELM model is trained for each number of
neurons. Second, classes are predicted for the training data
and a mis-classification error is computed. The training data
is used for prediction to obtain a comparable runtime.

The runtime for 3 different hardware setups is shown on
Figure 8 (64 neurons) and Figure 9 (4096 neurons). The run-
time is obtained with a Python line profiler11 tool. Processing
steps with insignificant runtime are omitted; altogether they
take less than 1% of runtime.

For a small number of hidden neurons, the training takes
only 0.2 seconds on 4-core CPU. The runtime is spent on
loading, projecting the data and applying a non-linear func-
tion. The largest overhead is reading data from an HDF5 file,
where a laptop with a slow CPU spends half of the runtime.
Applying a function has a larger overhead on 4-core CPU
because it starts in parallel on all cores. Also, there is a small
overhead for using a GPU to computeHTH. The useful work
(XW, HTH and f ()) takes about a half of the runtime, which
is normal for such short runtimes with a universal toolbox.

With 4096 hidden neurons, > 98% of runtime is spent on
actual computations. File access time and other overheads
are negligible. Computing the covariance matrix HTH = �h
takes the most of runtime during training. The time to com-
pute �h is reduced significantly by GPU acceleration. The
prediction runtime on all devices is completely dominated by
the cost of projecting the input data into hidden layer, which
is not accelerated by the GPU.

Interestingly, computing weights β has an insignificant

11https://pypi.python.org/pypi/line_profiler

VOLUME 3, 2015 1021

A. Akusok et al.: High-Performance ELMs

FIGURE 7. Test errors (a) and runtimes (b) on different hardware (c) for
large datasets, on logarithmic scale. Runtime on different hardware is
shown for two datasets only for image clarity. The 4-core CPU runs
at 4 GHz, 2x8-core CPU run at 2.6 GHz, a 2-core laptop CPU runs an
1.4 GHz and the GPU is GTX Titan Black (similar to Tesla K40).

runtime when done from correlation matrices �h and �t .
Data read and write with HDF5 files is fast, thus the
HDF5 file format is used in HP-ELM. Also, an application
of a non-linear function takes little time, which is noticeable
only on slow hardware and small models.

The GPU in the current HP-ELM accelerates the
computation of �h, �t and β. It speeds up an ELM with
large number of neurons (see Figure 9) because ELM com-
putational complexity is cubic w.r.t. the number of neurons.

Overall, the runtime analysis shows high efficiency of
the proposed toolbox. The effective runtime starts at 50%
with a small ELM and goes over 98% for larger models.
These computations are done by calling extremely well

FIGURE 8. Training (a) and prediction (b) runtimes of a basic ELM for
MNIST dataset with 64 neurons. ELM predictions are obtained on the
same training dataset for comparable runtimes.

FIGURE 9. Training (a) and prediction (b) runtimes of a basic ELM for
MNIST dataset with 4096 neurons. ELM predictions are obtained on the
same training dataset for comparable runtimes.

optimized BLAS matrix subroutimes, which guarantee the
smallest possible runtime. BLAS subroutimes are called by
Numpy Python library, which can use various implementa-
tions of BLAS including open source ones.

Also the analysis clearly shows the part which requires
acceleration in large ELM mode: the computation of

1022 VOLUME 3, 2015

A. Akusok et al.: High-Performance ELMs

�h = HTH. It is combined with HTT and β in a simple
GPU-accelerated part, which however greatly benefits the
training time of larger ELMs (reducing it twice on Figure 9).

F. BIG DATA PROCESSING AND PERFORMANCE
An example Big Data problem has 0.5 billion training
samples in 147-dimensional space. It is solved by training
an ELM with 19,000 sigmoid hidden neurons. A weighted
classification is used to counter imbalance between the
two target classes. The computations are done by splitting
the data into small parts with about 1 hour of processing
time each. This prevents the loss of data in case of computer
failure, and allows for parallelization.

The skin detection Big Data dataset sets two additional
challenges to the ELM model compared to large datasets.
It requires a balanced classification as the amount of data
in the two classes is uneven (17% of skin and 83% of
non-skin). It also requires testing different numbers of
neurons to find out whether 19,000 hidden neurons is enough
and if there is any over-fitting. The two aforementioned
requirements become challenges, because the training time
with 0.5 billion training data samples is so long that an ELM
can be trained only once. More specifically, the matrix �h
can be computed once as it takes more than 99% of the
runtime. The model structure selection and class balancing
must rely on one particular computed �h. Same holds true
for the matrix �t , but with only two outputs it’s much faster
to compute.

An ELM is trained using one workstation with
4-core 4GHz CPU with GTX Titian Black GPU (similar to
Tesla K40). Due to GPU acceleration, it took 135 hours in
total which is less than a week. Runtimes for other hardware
are estimated in Table 4. Without GPU acceleration, the
processing time of Big Data problem becomes prohibitively
large — almost 2 months using a laptop.

TABLE 4. Training time of an ELM with 19,000 hidden neurons on
0,5 billion samples with 147 features.

The final test accuracy with 19,000 hidden neurons is
86,46%, and the confusion matrix is presented on Table 5.

TABLE 5. Test confusion matrix for ELM with 19,000 neurons.

Test accuracy for different numbers of neurons is com-
puted from a single matrix �h, as explained in section IV-I.
100 different numbers of neurons are tested, spaced equally
on a logarithmic scale from 3 to 19,000. For each number,

FIGURE 10. Test classification accuracy for skin and non-skin pixels.
Model does not overfit with 19,000 neurons. Note the logarithmic x axis.
(a) Test classification accuracy. (b) Zoom on skin accuracy. (c) Zoom on
non-skin accuracy.

ELM output weights β are solved and a separate confu-
sion matrix is computed. The classification results for skin
and non-skin from these confusion matrices are shown on
Figure 10. Getting this test accuracy plot took 60 hours:
13 hours to obtain hidden layer output H, and 47 hours to
compute confusion matrices for all the 100 different numbers
on hidden neurons.

The test accuracy plot shows very good results for skin
pixels classification, owing to a balanced classification
method used. An ELM without class balancing would be
heavily biased towards predicting non-skin pixels, which are
83% of samples in the dataset. The improvement of skin
classification accuracy slows down past 128 hidden neurons,
so a smaller ELM can be used for detecting skin. However,
the non-skin classification accuracy grows steadily up to
the maximum number of neurons. This can be explained
by a higher variety of non-skin pixel masks than skin ones.
ELM does not overfit even with 19,000 neurons,
although the performance gain decreases at large numbers
of hidden neurons.

VOLUME 3, 2015 1023

A. Akusok et al.: High-Performance ELMs

VI. CONCLUSION
The paper presents a methodology and a toolbox for highly
scalable Extreme Learning Machines. This toolkit creates
generalized SLFNs and trains them using ELM methods, but
can be a building block for future works on multi-layered
ELMs. It is fast, easy to install and easy to use. It solves clas-
sification and regression problems on all kinds of datasets —
small ones with model structure selection and regularization,
and large ones with accelerated computations.

The toolbox is optimized to reduce overheads, including
a fast file storage and efficient matrix algebra libraries.
It includes an accelerated part for which any accelerator
can be used: CUDA-based GPU, OpenCL-based GPU, or a
Xeon Phi card.

Big Data problems are the ultimate target of this
toolbox. Efficient file storage and an easily parallelized solu-
tion method are the necessary parts of the toolbox dealing
with Big Data. The GPU acceleration is a key feature which
allows solving the largest problems on modest hardware, like
a personal workstation with a powerful video card.

REFERENCES
[1] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘‘Extreme learning machine:

A new learning scheme of feedforward neural networks,’’ in Proc. IEEE
Int. Joint Conf. Neural Netw., vol. 2. Jul. 2004, pp. 985–990.

[2] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘‘Extreme learning machine:
Theory and applications,’’ Neurocomputing, vol. 70, nos. 1–3,
pp. 489–501, 2006. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0925231206000385

[3] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, ‘‘Extreme learningmachine
for regression and multiclass classification,’’ IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2012. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/21984515

[4] E. Cambria et al., ‘‘Extreme learning machines [trends & controversies],’’
IEEE Intell. Syst., vol. 28, no. 6, pp. 30–59, Nov./Dec. 2013. [Online].
Available: http://sentic.net/extreme-learning-machines.pdf

[5] G.-B. Huang, L. Chen, and C.-K. Siew, ‘‘Universal approximation
using incremental constructive feedforward networks with random
hidden nodes,’’ IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892,
Jul. 2006. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs
_all.jsp?arnumber=1650244

[6] G.-B. Huang, ‘‘What are extreme learning machines? Filling the gap
between frank Rosenblatt’s dream and John von Neumann’s puzzle,’’
Cognit. Comput., vol. 7, no. 3, pp. 263–278, 2015.

[7] G.-B. Huang, ‘‘An insight into extreme learning machines: Random
neurons, random features and kernels,’’ Cognit. Comput., vol. 6, no. 3,
pp. 376–390, 2014.

[8] H. White, ‘‘An additional hidden unit test for neglected nonlinearity
in multilayer feedforward networks,’’ in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), vol. 2. 1989, pp. 451–455.

[9] H. White, Approximate Nonlinear Forecasting Methods (Handbook of
Economic Forecasting), vol. 1, G. Elliott, C. W. J. Granger, and
A. Timmermann, Eds. Amsterdam, The Netherlands: Elsevier, 2006,
ch. 9, pp. 459–512. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1574070605010098

[10] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, ‘‘Learning and generalization
characteristics of the random vector functional-link net,’’Neurocomputing,
vol. 6, no. 2, pp. 163–180, 1994. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/0925231294900531

[11] W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin, ‘‘Feedforward neural
networks with random weights,’’ in Proc. 11th IAPR Int. Conf. Pattern
Recognit., vol. 2. Aug./Sep. 1992, pp. 1–4.

[12] B. Igelnik and Y.-H. Pao, ‘‘Stochastic choice of basis functions in adaptive
function approximation and the functional-link net,’’ IEEE Trans. Neural
Netw., vol. 6, no. 6, pp. 1320–1329, Nov. 1995.

[13] S. Haykin, Neural Networks: A Comprehensive Foundation.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2004.

[14] F. Rosenblatt, ‘‘The perceptron: A probabilistic model for informa-
tion storage and organization in the brain,’’ Psychol. Rev., vol. 65,
no. 6, pp. 386–408, Nov. 1958. [Online]. Available: http://www.ncbi.
nlm.nih.gov/pubmed/13602029

[15] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995. [Online]. Available: http://www.
springerlink.com/index/K238JX04HM87J80G.pdf

[16] G.-B. Huang, Q.-Y. Zhu, K. Z. Mao, C.-K. Siew, P. Saratchandran,
and N. Sundararajan, ‘‘Can threshold networks be trained directly?’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 3, pp. 187–191,
Mar. 2006. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1605431

[17] G. Tsoumakas and I. Katakis, ‘‘Multi-label classification: An overview,’’
Int. J. Data Warehousing Mining, vol. 3, no. 3, pp. 1–13, 2007.

[18] Y. Zhai, Y.-S. Ong, and I. W. Tsang, ‘‘The emerging ‘big dimensionality,’’’
IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 14–26, Aug. 2014.

[19] A. Akusok, Y. Miche, J. Hegedus, R. Nian, and A. Lendasse, ‘‘A two-stage
methodology using K-NN and false-positive minimizing ELM for nominal
data classification,’’ Cognit. Comput., vol. 6, no. 3, pp. 432–445, 2014.

[20] A. Akusok, A. Grigorievskiy, A. Lendasse, and Y. Miche, ‘‘Image-based
classification of websites,’’ in Machine Learning Reports, vol. 18,
T. Villmann and F.-M. Schleif, Eds. Saarbrücken, Germany: GCPR,
Sep. 2013, pp. 25–34. [Online]. Available: http://www.techfak.uni
-bielefeld.de/~fschleif/mlr/mlr_02_2013.pdf

[21] A. Akusok, Y.Miche, J. Karhunen, K.-M. Bjork, R. Nian, and A. Lendasse,
‘‘Arbitrary category classification of websites based on image content,’’
IEEE Comput. Intell. Mag., vol. 10, no. 2, pp. 30–41, May 2015.

[22] G.-B. Huang, Z. Bai, L. L. C. Kasun, and C. M. Vong, ‘‘Local recep-
tive fields based extreme learning machine,’’ IEEE Comput. Intell. Mag.,
vol. 10, no. 2, pp. 18–29, May 2015.

[23] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan,
‘‘A fast and accurate online sequential learning algorithm for feedforward
networks,’’ IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411–1423,
Nov. 2006.

[24] A. van Schaik and J. Tapson, ‘‘Online and adaptive pseudoinverse
solutions for ELM weights,’’ Neurocomputing, vol. 149, pp. 233–238,
Feb. 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231214011485

[25] M. van Heeswijk et al., ‘‘Adaptive ensemble models of extreme
learning machines for time series prediction,’’ in Proc. 19th Int. Conf.
Artif. Neural Netw. (ICANN), 2009, pp. 305–314. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04277-5_31

[26] M. van Heeswijk, Y. Miche, E. Oja, and A. Lendasse, ‘‘GPU-accelerated
and parallelized ELM ensembles for large-scale regression,’’
Neurocomputing, vol. 74, no. 16, pp. 2430–2437, Sep. 2011.

[27] Y. Miche, P. Bas, C. Jutten, O. Simula, and A. Lendasse, ‘‘A method-
ology for building regression models using extreme learning machine:
OP-ELM,’’ in Proc. ESANN, 2008, pp. 247–252. [Online]. Available:
http://dblp.uni-trier.de/db/conf/esann/esann2008.html#MicheBJSL08

[28] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,
‘‘OP-ELM: Optimally pruned extreme learning machine,’’ IEEE Trans.
Neural Netw., vol. 21, no. 1, pp. 158–162, Jan. 2010. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/20007026

[29] Y. Miche, M. van Heeswijk, P. Bas, O. Simula, and A. Lendasse,
‘‘TROP-ELM: A double-regularized ELM using LARS and Tikhonov
regularization,’’ Neurocomputing, vol. 74, no. 16, pp. 2413–2421,
Sep. 2011. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S092523121100258X

[30] Q. Yu, Y. Miche, E. Eirola, M. van Heeswijk, E. Séverin, and A. Lendasse,
‘‘Regularized extreme learning machine for regression with missing
data,’’ Neurocomputing, vol. 102, pp. 45–51, Feb. 2013. [Online]. Avail-
able: http://www.scopus.com/inward/record.url?eid=2-s2.0-84870244730
&partnerID=40&md5=4bc9805ef198a3de44fd2c2a976834b5

[31] W. Zong, G.-B. Huang, and Y. Chen, ‘‘Weighted extreme learning
machine for imbalance learning,’’Neurocomputing, vol. 101, pp. 229–242,
Feb. 2013. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231212006479

[32] S. Chen, C. F. N. Cowan, and P. M. Grant, ‘‘Orthogonal least squares
learning algorithm for radial basis function networks,’’ IEEE Trans. Neural
Netw., vol. 2, no. 2, pp. 302–309, Mar. 1991.

1024 VOLUME 3, 2015

A. Akusok et al.: High-Performance ELMs

[33] C. R. Rao and S. K. Mitra, ‘‘Generalized inverse of a matrix and its
applications,’’ in Proceedings of the Sixth Berkeley Symposium on Math-
ematical Statistics and Probability: Theory of Statistics, vol. 1. Berkeley,
CA, USA: Univ. California Press, 1972, pp. 601–620. [Online]. Available:
http://projecteuclid.org/euclid.bsmsp/1200514113

[34] A. N. Tikhonov, ‘‘Solution of incorrectly formulated problems and the
regularization method,’’ Soviet Math. Doklady, vol. 4, pp. 1035–1038,
1963.

[35] A. E. Hoerl and R. W. Kennard, ‘‘Ridge regression: Applications to
nonorthogonal problems,’’ Technometrics, vol. 12, no. 1, pp. 69–82, 1970.

[36] T. Similä and J. Tikka, ‘‘Multiresponse sparse regression with application
to multidimensional scaling,’’ in Proc. 15th Int. Conf. Artif. Neural Netw.,
Formal Models Appl. (ICANN), 2005, pp. 97–102. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1986079.1986097

[37] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, ‘‘Least angle regres-
sion,’’ Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[38] T. Simila and J. Tikka, ‘‘Common subset selection of inputs in multire-
sponse regression,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2006,
pp. 1908–1915.

[39] M. Lichman. (2013). UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

[40] C.-C. Chang and C.-J. Lin, ‘‘LIBSVM: A library for support vec-
tor machines,’’ ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011,
Art. ID 27.

[41] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics), vol. 4, M. Jordan, J. Kleinberg, and
B. Schölkopf, Eds. New York, NY, USA: Springer-Verlag, 2006, no. 4.
[Online]. Available: http://www.library.wisc.edu/selectedtocs/bg0137.pdf

[42] C. E. Rasmussen, ‘‘Gaussian processes in machine learning,’’ in
Advanced Lectures on Machine Learning (Lecture Notes in Computer
Science), O. Bousquet, U. von Luxburg, and G. Rätsch, Eds. Berlin,
Germany: Springer-Verlag, 2004, pp. 63–71. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-28650-9_4

[43] S. L. Phung, A. Bouzerdoum, and D. Chai, ‘‘Skin segmentation using color
pixel classification: Analysis and comparison,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 1, pp. 148–154, Jan. 2005.

ANTON AKUSOK was born in Ukraine in 1988.
He received the B.Sc. degree in information tech-
nology from Moscow State Mining University,
Russia, and the M.Sc. degree in technology with
a major in machine learning, neural networks, and
image processing from Aalto University, Finland.
He is currently pursuing the Ph.D. degree with The
University of Iowa, USA. He has authored sev-
eral conference and journal papers on his research
topic. His research includes high-performance

computing and its application to machine learning, in particular, in extreme
learning machines.

KAJ-MIKAEL BJÖRK received the master’s and
Ph.D. degrees in chemical engineering from Åbo
Akademi University, in 1999 and 2002, respec-
tively, and the Ph.D. degree in business adminis-
tration (information systems) from Åbo Akademi
University, in 2006. He was a Visiting Researcher
with Carnegie Mellon University, Pittsburg, USA,
in 2000, the University of Linköping, Sweden, in
2001, and UC Berkeley, CA, USA, from 2005 to
2006. Before working as the Head of Department,

he was a Principal Lecturer with Logistics (Arcada) and an Assistant Pro-
fessor in Information Systems with Åbo Akademi University. He has held
approximately 15 different courses in the fields of logistics and management
science and engineering. Within the research projects, he has participated
in approximately 60 scientific peer-reviewed articles and has an h-index of
10 (according to a Google scholar). His research interests are in information
systems, analytics, supply chain management, machine learning, fuzzy logic,
and optimization.

YOAN MICHE was born in France in 1983.
He received the Engineering degree from TELE-
COM, Institut National Polytechnique de Greno-
ble (INPG), France, in 2006, the master’s degree in
signal, image and telecom from ENSERG, INPG,
in 2006, and the Ph.D. degree in computer science
and signal and image processing from the Aalto
University School of Science and Technology, Fin-
land, and INPG. His main research interests are
anomaly detection and machine learning for clas-

sification/regression.

AMAURY LENDASSE was born in Belgium in
1972. He received the M.S. degree in mechani-
cal engineering, the M.S. degree in control, and
the Ph.D. degree in applied mathematics from the
Universite Catholique de Louvain, Belgium, in
1996, 1997, and 2003, respectively. In 2003, he
was a Post-Doctoral Researcher with the Compu-
tational Neurodynamics Laboratory, University of
Memphis. From 2004 to 2014, he was a Senior
Researcher and an Adjunct Professor with the

Adaptive Informatics Research Centre, Aalto University School of Science
(better known as the Helsinki University of Technology), Finland. He has
created and led the environmental and industrial machine learning with Aalto
University.

He is currently an Associate Professor with The University of Iowa, USA,
and a Visiting Professor with the Arcada University of Applied Sciences,
Finland. He has authored or co-authored over 200 scientific papers in inter-
national journals, books or communications to conferences with reviewing
committee. His research includes big data, time series prediction, chemomet-
rics, variable selection, noise variance estimation, determination of missing
values in temporal databases, nonlinear approximation in financial problems,
functional neural networks, and classification. He was the Chairman of the
Annual European Symposium on Time Series Prediction conference and a
member of the Editorial Board and Program Committee of several journals
and conferences on machine learning.

VOLUME 3, 2015 1025

