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ABSTRACT In a traditional file search mechanism, such as flooding, a peer broadcasts a query to its
neighbors through an unstructured peer-to-peer (P2P) network until the time-to-live decreases to zero.
A major disadvantage of flooding is that, in a large-scale network, this blind-choice strategy usually incurs
an enormous traffic overhead. In this paper, we propose a method, called the statistical matrix form (SMF),
which improves the flooding mechanism by selecting neighbors according to their capabilities. The
SMF measures the following peer characteristics: 1) the number of shared files; 2) the content quality;
3) the query service; and 4) the transmission distance between neighbors. Based on these measurements,
appropriate peers can be selected, thereby reducing the traffic overhead significantly. Our experimental
results demonstrate that the SMF is effective and efficient. For example, compared with the flooding search
mechanism in dynamic unstructured P2P networks, the SMF reduces the traffic overhead by more than 80%.
Moreover, it achieves a good success rate and shorter response times.

INDEX TERMS Unstructured peer-to-peer networks, flooding search mechanism, traffic overhead,
statistical matrix form.

I. INTRODUCTION
Generally, Peer-to-Peer (P2P) networks can be classified
as: structured P2P networks, which are based on centralized
management (e.g., Chord [2], Pastry [8]), and unstructured
P2P networks, which are built on a distributed search mecha-
nism (e.g., Gnutella [5], FrostWire [4]). Although both types
allow users to participate in a fully distributed cooperative
network, unstructured P2P networks give participants more
freedom to exchange resources and services. The major
disadvantage of unstructured P2P networks is that their basic
search mechanism, ‘‘flooding,’’ incurs an enormous traffic
overhead. To resolve this issue, numerous searchmechanisms
have been proposed to replace or improve the flooding mech-
anism [10], [15], [21], [36], [46], [58]. In this paper, our
object is to improve the flooding mechanism by exploiting
the scalability of unstructured P2P networks.

In a real network environment, peers differ from each
other in a number of respects, such as the number of shared
files, the content quality, the query service and transmission
distance between neighbors. These characteristics are crucial
because they can be utilized to optimize the search perfor-
mance effectively. We propose a method that statistically

analyzes query messages in terms of the following
four characteristics: Processing Ability (PA), Effective
Sharing (ES), Index Power (IP), and Transmission
Efficiency (TE). The PA of peers is analyzed to determine
which peers leech the most resources without giving feed-
back [9], [29], [35], [68]. The ES refers to the number of
files that a peer shares, and can be used to classify a peer’s
sharing capability. It has been shown that, in a network, very
few peers share a large number files, so that the quality of the
files influences the sharing capability [54], [65], [70], [74].
The IP measures the number of files that a peer records in
the index cache, and can also be used to analyze the number
of responses in the cache content. Finally, the TE is utilized
to measure the distance between peers in order to prevent
inefficient routing. Xiao et al. [67] observe that only a small
number of links connect peers in the same Autonomous
System (AS).1 Most generated connections stray past
AS borders to produce more distant links [14], [49].

1An autonomous system is sometimes referred to as a routing domain,
which is a collection of IP networks and routers under the control of one
entity.
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We represent the four characteristics in a matrix form
called the Statistical Matrix Form (SMF). To adjust the values
of the matrix, we utilize a standard deviation technique to
determine an overall ranking of a query peer’s neighbors. As a
result, the performance of the flooding search mechanism can
be improved by only sending query messages to the
top-k ranked neighbors of a query peer for some k determined
by careful analysis, instead of sending messages to all the
peer’s neighbors. The performance evaluation demonstrates
that the response time and traffic overhead can be reduced
significantly, while the computation overhead is acceptable.

The remainder of this paper is organized as follows.
Section II contains a review of related work. In Section III,
we introduce the proposed SMF search mechanism; and
in Section IV, we evaluate the mechanism’s performance.
Then, in Section V, we summarize our conclusions.

II. RELATED WORK
Numerous search mechanisms have been proposed to
reduce the large amount of unnecessary traffic generated by
flooding-based search mechanisms in unstructured
P2P networks. The flooding technique sends query messages
to all the logical neighbors of a query peer, except the
incoming peer, until the Time-To-Live2 (TTL) decreases to
zero or the query receives a response. It has been shown
that the Random Walk (RW) approach reduces the exponen-
tially increasing flood traffic caused by randomly choosing a
neighbor to send a query message until sufficient responses
are generated [22], [46]. Although the amount of traffic
can be reduced, the RW search mechanism suffers from
two fundamental problems. First, it is essentially a blind
search because, in each step, a query is forwarded to a
random peer. Second, if the query arrives at a peer that is
already overloaded with traffic, the queried peer may be
queued for an excessive amount of time before it can be
handled. The random k-walker algorithm [69] improves RW
by sending a query to k neighbors, called ‘‘k-walkers,’’ of
the source peer. Each walker randomly selects one neighbor
and delivers the query to that neighbor. The walkers’ queries
are processed sequentially. The Multiple Random
Walk (MRW) [19], [36], [66] improves the RW and the
k-walker approaches by enabling a query peer to
select k different neighbors arbitrarily in each step. The larger
the number of peers that the query is delivered to, the more
opportunities the query peer will have to find hits. As the
search mechanism increases the search scope, the query
success rate can be improved. The above search mechanisms
select neighbors without any strategies, so their performance
may not be satisfactory. To address the problem, three other
types of search mechanisms have been proposed.

The first type utilizes an index-based strategy, which
records the query strings and outcomes that flow through
queried peers from each response peer. Under this strategy,

2A value in an Internet Protocol (IP) packet that tells a network router
whether or not the packet has been in the network too long and should be
discarded.

a peer receives a query from its neighbor and forwards the
message to the mapping peer directly based on its routing
table (index). For structured P2P networks, the Distributed
Hash Table (DHT) technique [20], [52], [53], [57], [71] has
been proposed to improve the search performance of index-
based search mechanisms. However, under this technique,
it is difficult to control the traffic overhead and maintain
indices correctly in highly dynamic P2P networks.
Meanwhile, for unstructured P2P networks, the Uniform
Index Caching (UIC) technique [48] generates a large number
of redundant records in each index [55]. As a result,
improvements of UIC are proposed in [25], [26],
[59], and [64].

The second type of search mechanism attempts to
construct an optimized overlay topology. In unstructured
P2P systems, peers join and leave the network in a random
fashion, which induces the so-called topology mismatch
problem [23], [31], [45] between the physical and
logical networks. To reduce the traffic overhead in an inef-
ficient topology, several algorithms have been developed to
transform the original topology into a minimum spanning
tree (MST) [33], [43], [67]. Alternatively, analysis of the
index content or user query history can be used to con-
struct a tree-based logical topology under some mathematical
model [11], [30]–[32], [34].

The third type of search mechanism is called the
Adaptive Probabilistic Search (APS) approach [63] in which
a query peer only sends a query to a proper subset of
appropriate neighbors rather than all of its neighbors.
In this mechanism, choosing a subset of influential neigh-
bors without a high overhead is the most important
factor [16], [21], [37], [62]. In [11], [47], and [50], each
peer records the results received from its neighbors and each
link’s transmission time in its routing table. The algorithms
proposed in [25], [55], [59], [64], and [72] construct filters by
designing hash functions to compute the capability of a query
peer’s neighbors. In addition, Chen et al. [15] exploit users’
common interest patterns captured by a probability-theoretic
framework to select a subset of neighbors. The forwarding-
based algorithm is another method used to improve the search
performance [21], [27], [40], [41]. Gkantsidis et al. [22]
determine the number of neighbors in query process based
on the value of TTL. By utilizing the search mechanism, the
traffic cost can be reduced and the same flooding scope can
be maintained [40], [62].

Among the above search mechanisms, APS is the most
influential and most suitable approach for unstructured
P2P networks. However, like the other approaches, APS only
considers a few features in the flooding-based query process.
This observation motivated us to design the SMF, which
includes more useful features, to optimize the search
performance.

III. THE SEARCH MECHANISM BASED ON THE SMF
The SMF of query peer u is comprised of two matrixes:
the left-hand matrix and the right-hand matrix.
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The left-hand matrix, called the feature matrix (FM ), is an
n × 4 matrix, where n is the number of neighbors of u.
To derive the entries for the four columns of the FM , we com-
pute the PA,ES, IP, and TE scores for n neighbors of u by
the method described in Subsections III-A–III-E; then, we
record the computed scores in the first, second, third, and
fourth columns respectively. The right-hand matrix, called
the weight matrix (WM ), is a 4×1 matrix in which each peer
can set the proper weights according to the derivation degree
of each feature. The method is described in Section III-F.
Finally, each query peer u computes a scoring matrix (SM ),
which is an n×1 matrix obtained by the matrix multiplication
FM × WM . To deliver queries for u, we obtain the score of
each of u’s neighbors in the SM and then select the neighbors
with the top-k scores to send query messages. Figure 1
illustrates the structure of SMF. Since the query peer u has
five neighbors, v,w, x, y, and z, its feature matrix is a
5 × 4 matrix; the weight matrix is a 4 × 1 matrix; and the
score matrix is computed by the formula SM = FM ×WM ,
which is a 5× 1 matrix.

FIGURE 1. An example of the SMF for a query peer u.

A. FEATURE COLLECTION SCOPE
We define the d-collected scope of a query peer u as the set
of peers that are at most d hop(s) away from u. In the con-
struction of the FM presented in the following subsections,
we collect relative information about the d-collected scope
of a query peer. For example, the information about the
2-collected scope of a query peer u contains the information
about each neighbor v of u, as well as that of v’s neighbors.
We could improve the search performance by increasing
the value of d ; however, it may increase the computational
overhead because of the extra cost of collecting information.
Therefore, the problem is how to choose appropriate
values of d to improve the performance by determining
the acceptable extra-overhead incurred by the collection and
exchange of information. The experimental results reported
in Section IV-D2 demonstrate that d = 2 or d = 3 are the
optimal values; hence, we adopt d = 2 in the remainder of
this paper.

B. PROCESSING ABILITY (PA)
In P2P networks, there are usually free loaders3 [9], [35], [68]
who download files without sharing any of their resources,

3Peers who use resources without contributing anything reduce a
network’s overall service capacity.

which impacts the search performance of coadjutant
communities. To prevent free loaders, we utilize the PA to
differentiate between leeching and enthusiastic peers. The
PA score is computed in terms of the peers’ query frequency
and response frequency, which we discuss in the next
two subsections.

1) QUERY FREQUENCY (QF)
In a P2P network, a query peer that generates a lot of
queries may be a free loader. Let N (u) be the neighbors of
a query peer u; that is, N (u) are peers that are one hop away
from u. In addition, let NQ(v) be the number of queries sent
by v.

Each query peer u computes SQ1(u), which is the total
number of queries (SQ) sent from the peers that are one hop
away from u. Formally,

SQ1(u) =
∑
vεN (u)

NQ(v). (1)

The Query-Minus-Score (QMS) of a neighbor v of u is
defined as

QMS(u, v) = SQ1(u)− NQ(v). (2)

When NQ(v) increases, the possibility of v being regarded as
a free loader also increases and peer vwill be assigned a lower
score.

Next, each query peer u computes SQMS1(u)
(resp. SQMS2(u)), which is the sum of the query-minus-
scores (SQMS) of all peers that are one (resp. two) hop(s)
away from u:

SQMS1(u) =
∑
vεN(u)

QMS(u, v) (3)

and

SQMS2(u) =
∑
vεN(u)

SQMS1(v). (4)

Then, the query frequency of a neighbor v of u is defined as

QF(u, v) = w1 ∗
QMS(u, v)
SQMS1(u)

+ w2 ∗
SQMS1(v)
SQMS2(u)

, (5)

where w1 and w2 are two parameters used to adjust the
influence of peers that are one hop away and two hops away
from u respectively. Based on Eq. (5), a peer can determine
the amount of resources that their neighbors leech from the
network.
Example 1: Consider the P2P network shown

in Figure 2. Based on Eq. (1), SQ1(u) = NQ(a) + NQ(b) +
NQ(c) + NQ(d) = 3 + 6 + 5 + 4 = 18; SQ1(a) = NQ(e) +
NQ(f )+NQ(g) = 4+2+5 = 11; SQ1(b) = NQ(h)+NQ(i) =
3+1 = 4; SQ1(c) = NQ(j)+NQ(k)+NQ(l) = 3+7+2 = 12;
and SQ1(d) = NQ(m) + NQ(n) = 1 + 6 = 7. Next, we
compute the query-minus-score of each peer asQMS(u, a) =
SQ1(u) − NQ(a) = 18 − 3 = 15,QMS(u, b) = SQ1(u) −
NQ(b) = 18−6 = 12,QMS(u, c) = SQ1(u)−NQ(c) = 18−
5 = 13, and QMS(u, d) = SQ1(u)− NQ(d) = 18− 4 = 14.
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FIGURE 2. Illustration of Example 1: (a) A P2P network. (b) The values of the four features of the peers that are at most two hops away from u.

Then, based on Eq. (3), SQMS1(u) = QMS(u, a) +
QMS(u, b) + QMS(u, c) + QMS(u, d) = 15 + 12 +
13 + 14 = 54; and based on Eq. (4), SQMS2(u) =
SQMS1(a) + SQMS1(b) + SQMS1(c) + SQMS1(d) =
(QMS(a, e) + QMS(a, f ) + QMS(a, g)) + (QMS(b, h) +
QMS(b, i)) + (QMS(c, j) + QMS(c, k) + QMS(c, l)) +
(QMS(d,m)+QMS(d, n)) = ((SQ1(a)−NQ(e))+(SQ1(a) −
NQ(f )) + (SQ1(a) − NQ(g))) + ((SQ1(b) − NQ(h)) +
(SQ1(b)−NQ(i)))+ ((SQ1(c)−NQ(j))+ (SQ1(c)−NQ(k)) +
(SQ1(c) − NQ(l))) + ((SQ1(d) − NQ(m)) + (SQ1(d) −
NQ(n))) = ((11 − 4) + (11 − 2) + (11 − 5)) + ((4 − 3) +
(4−1))+((12−3)+(12−7)+(12−2))+((7−1)+(7−6)) =
(7+ 9+ 6)+ (1+ 3)+ (9+ 5+ 10)+ (6+ 1) = 57. If we
set w1 = 1 and w2 = 2, then, according to Eq. (5),

QF(u, a) = 1 ∗
15
54
+ 2 ∗

7+ 9+ 6
57

= 1.0498,

QF(u, b) = 1 ∗
12
54
+ 2 ∗

1+ 3
57
= 0.3626,

QF(u, c) = 1 ∗
13
54
+ 2 ∗

9+ 5+ 10
57

= 1.0829, and

QF(u, d) = 1 ∗
14
54
+ 2 ∗

6+ 1
57
= 0.5049.

2) RESPONSE FREQUENCY (RF)
If a peer responds to a large number of queries, we define it
as an ‘‘eager’’ peer. The term ‘‘response frequency’’ refers to
a peer’s ability to respond to queries.

Each peer u computes SR1(u) (resp. SR2(u)), which is the
sum of the response times (SR) of peers that are
one (resp. two) hop(s) away from u. Formally,

SR1(u) =
∑
vεN (u)

NR(v), (6)

where NR(v) is the number of responses sent by peer v, and

SR2(u) =
∑
vεN (u)

SR1(v). (7)

Based on the above two equations, the response frequency of a
neighbor v of u, denoted by RF(u, v), is computed as follows:

RF(u, v) = w1 ∗
NR(v)
SR1(u)

+ w2 ∗
SR1(v)
SR2(u)

. (8)

From RF(u, v), we can determine the response ability of a
neighbor v.
Example 2: Let us consider Figure 2 again. First, peer

u computes SR1(u) = NR(a) + NR(b) + NR(c)+
NR(d) = 21 + 12 + 16 + 33 = 82 (by Eq. (6)), and
SR2(u) = SR1(a) + SR1(b) + SR1(c) + SR1(d) =
(NR(e)+ NR(f )+ NR(g)) + (NR(h) + NR(i)) + (NR(j) +
NR(k) + NR(l)) + (NR(m) + NR(n)) = (34 + 22 + 5) +
(37 + 3) + (41 + 22 + 33) + (11 + 26) = 234 (by Eq. (7))
to realize the response status of each of its neighbors. Then,
based on Eq. (8), we can compute the response frequency of
each neighbor of u as follows:

RF(u, a) = 1 ∗
21
82
+ 2 ∗

34+ 22+ 5
234

= 0.7775,

RF(u, b) = 1 ∗
12
82
+ 2 ∗

37+ 3
234

= 0.4882,

RF(u, c) = 1 ∗
16
82
+ 2 ∗

41+ 22+ 33
234

= 1.0156, and

RF(u, d) = 1 ∗
33
82
+ 2 ∗

11+ 26
234

= 0.7186.

Since the response frequency of peer c is much greater than
that of peers a, b, and d , we regard c as an eager peer.

We represent the processing ability of a neighbor v of u,
denoted by PA(u, v), in terms of the query frequency and the
response frequency as

PA(u, v) = QF(u, v)+ RF(u, v). (9)
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Example 3: Based on the values derived in Example 1 and
Example 2, we can compute the processing ability of each
neighbor of peer u in Figure 2 as follows:

PA(u, a) = QF(u, a)+ RF(u, a)

= 1.0498+ 0.7775 = 1.8273,

PA(u, b) = QF(u, b)+ RF(u, b)

= 0.3626+ 0.4882 = 0.8508,

PA(u, c) = QF(u, c)+ RF(u, c)

= 1.0829+ 1.0156 = 2.0985, and

PA(u, d) = QF(u, d)+ RF(u, d)

= 0.5049+ 0.7186 = 1.2595.

C. EFFECTIVE SHARING (ES)
This feature is based on the observation
in [38], [54], [65], and [74] that the file-sharing among peers
is extremely unbalanced. For example, it has been shown
that 7 percent of peers in a P2P network share more files
than all the other peers can provide, and the top-1 percent
of peers respond to 47 percent of the queries. Instead of
all peers participating in file-sharing, only a small number
of volunteer peers provide most of the resource sharing
services in a P2P network. Moreover, peers’ query response
capabilities vary because of the heterogeneity of their file-
sharing resources. The trace analysis in [59] showed that a
small number of peers share a large number of files. Because
query answering involves matching keywords with the names
of all shared files, we posit that, as the number of shared files
increases, the probability of successful matching should also
increase. Based on the above observations, we propose the
concept of effective sharing (ES), which is used to determine
the number of files shared among peers in a P2P network.
The ES is comprised of two sub-features: the sharing
count (SC), described in the next subsection III-C1; and the
quality of sharing (QS), described in Subsection III-C2.

1) SHARING COUNT (SC)
When choosing influential neighbors to send queries from
a query peer, it is necessary to consider the number of files
shared by the peers. In a real environment, if a peer shares
a large number of files, it should have a higher probability
of matching queries than a peer that only shares a few files.
Each query peer u computes SF1(u) (resp. SF2(u)) which is
the total number of shared files (SF) by peers that are one
(resp. two) hop(s) away from u. Formally,

SF1(u) =
∑
vεN (u)

NF(v), (10)

where NF(v) is the number of shared files, and

SF2(u) =
∑
vεN (u)

SF1(v). (11)

The sharing count of a neighbor v of u is defined as

SC(u, v) = w1 ∗
NF(v)
SF1(u)

+ w2 ∗
SF1(v)
SF2(u)

. (12)

Based on Eq. (12), if the SC score of some neighbor v of a
query peer u is the largest among all the neighbors, then it is
regarded as the most influential neighbor. The reason
is that v shares more files than the other neighbors, so there
is a much higher probability that u will get responses from v.
Example 4: In Figure 2, to determine the file sharing status

of its neighbors, peer u computes SF1(u) = NF(a)+NF(b)+
NF(c) + NF(d) = 30 + 38 + 27 + 42 = 137 by Eq. (10),
and SF2(u) = SF1(a) + SF1(b) + SF1(c) + SF1(d) =
(NF(e) + NF(f ) + NF(g)) + (NF(h) + NF(i)) + (NF(j) +
NF(k) + NF(l)) + (NF(m) + NF(n)) = (49 + 43 + 22) +
(25+ 21)+ (28+ 40+ 58)+ (45+ 32) = 363 by Eq. (11).
Moreover, according to Eq. (12), we have

SC(u, a) = 1 ∗
30
137
+ 2 ∗

49+ 43+ 22
363

= 0.8471,

SC(u, b) = 1 ∗
38
137
+ 2 ∗

25+ 21
363

= 0.5308,

SC(u, c) = 1 ∗
27
137
+ 2 ∗

28+ 40+ 58
363

= 0.8913, and

SC(u, d) = 1 ∗
42
137
+ 2 ∗

45+ 32
363

= 0.7308.

Since peer c has the highest value, it is the most influential
neighbor peer for file sharing.

2) QUALITY OF SHARING (QS)
It has been shown that some shared files are never used to
answer queries [9], [35]. If we only consider the number
of files used to answer queries, the number of files shared
with query peers has a strong correlation with the responding
peers. Motivated by this fact, we utilize the second ES sub-
feature, the ‘‘quality of sharing’’, to distinguish useful files
from useless files. Let NFH (v) be the number of v’s shared
files that match queries. Each query peer u computes SFH1(u)
(resp. SFH2(u)), which is the effectiveness of the neighbors
of a query peer u, by summing the NFH values of the peers
that are one (resp. two) hop(s) away from u. Formally,

SFH1(u) =
∑
vεN (u)

NFH (v) (13)

and

SFH2(u) =
∑
vεN (u)

SFH1(v). (14)

The quality of sharing (QS) of a neighbor v of u is defined as

QS(u, v) = w1 ∗
NFH (v)
SFH1(u)

+ w2 ∗
SFH1(v)
SFH2(u)

. (15)

Based on Eq. (15), if the QS score of some neighbor v
of a query peer u is the largest among all the neighbors,
then v is regarded as the most influential neighbor because
it has the most opportunities to share files with the query
peer u.
Example 5: In Figure 2, peer u computes

SFH1(u) = NFH (a) + NFH (b) + NFH (c) + NFH (d) =
18 + 22 + 16 + 25 = 81 by Eq. (13), and
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SFH2(u) = SFH1(a) + SFH1(b) + SFH1(c) + SFH1(d) =
(NFH (e) + NFH (f ) + NFH (g)) + (NFH (h) + NFH (i)) +
(NFH (j) + NFH (k) + NFH (l)) + (NFH (m) + NFH (n)) =
(29+25+13)+(15+12)+(16+24+34)+(27+19) = 214
by Eq. (14). According to Eq. (15), we have

QS(u, a) = 1 ∗
18
81
+ 2 ∗

29+ 25+ 13
214

= 0.8484,

QS(u, b) = 1 ∗
22
81
+ 2 ∗

15+ 12
214

= 0.5239,

QS(u, c) = 1 ∗
16
81
+ 2 ∗

16+ 24+ 34
214

= 0.8891, and

QS(u, d) = 1 ∗
25
81
+ 2 ∗

27+ 19
214

= 0.7385.

We then represent the effective sharing of a neighbor v of u,
denoted by ES(u, v), in terms of the sharing count and the
quality of sharing as follows:

ES(u, v) = SC(u, v)+ QS(u, v). (16)

Example 6: Based on Eq. (16) and the results derived
in Examples 4 and 5, we have

ES(u, a) = SC(u, a)+ QS(u, a)

= 0.8471+ 0.8484 = 1.6955,

ES(u, b) = SC(u, b)+ QS(u, b)

= 0.5308+ 0.5239 = 1.0547,

ES(u, c) = SC(u, c)+ QS(u, c)

= 0.8913+ 0.8891 = 1.7804, and

ES(u, d) = SC(u, d)+ QS(u, d)

= 0.7308+ 0.7385 = 1.4693.

D. INDEX POWER (IP)
In a P2P network, volunteers have different-sized indexes
to record historical information. However, if a peer records
a large number of file sharing messages in its index, many
of the messages may never be used by the mechanism. The
Index Power (IP) feature determines the amount of content in
a queried peer’s index and assesses its quality. The IP com-
prises two sub-features: Index Counting (IC) described in the
next subsection and Quality of the Index (QI ) described in
Subsection III-D2.

1) INDEX COUNT (IC)
The index count feature records the number of messages in a
peer’s index. We assume that if a peer records a large amount
of information in its index, it will have a higher probability of
matching queries. Each query peer u computes SI1(u)
(resp. SI2(u)) which is the number of indices of the peers that
are one (resp. two) hop(s) away from u. Formally,

SI1(u) =
∑
vεN (u)

NI (v), (17)

where NI (v) is the number of index records in peer v, and

SI2(u) =
∑
vεN (u)

SI1(v). (18)

Then, the index count of a neighbor v of u is calculated as
follows:

IC(u, v) = w1 ∗
NI (v)
SI1(u)

+ w2 ∗
SI1(v)
SI2(u)

. (19)

Based on Eq. (19), if the IC score of some neighbor v of a
query peer u is the largest among all the other neighbors, then
v can be regarded as the most influential neighbor because it
has the largest possibility to reply the query sent from the
query peer u via v’s index.
Example 7: Returning to Figure 2, to determine its

neighbors’ index sharing status, peer u first computes
SI1(u) = NI (a) + NI (b) + NI (c) + NI (d) = 20 + 28 +
17 + 32 = 97 by Eq. (17), and then computes SI2(u) =
SI1(a)+SI1(b)+SI1(c)+SI1(d) = (NI (e)+NI (f )+NI (g))+
(NI (h)+NI (i))+(NI (j)+NI (k)+NI (l))+(NI (m)+NI (n)) =
(39+33+12)+(15+11)+(18+30+48)+(35+22) = 263
by Eq. (18). Then, based on Eq. (19), we have

IC(u, a) = 1 ∗
20
97
+ 2 ∗

39+ 33+ 12
263

= 0.8450,

IC(u, b) = 1 ∗
28
97
+ 2 ∗

15+ 11
263

= 0.4864,

IC(u, c) = 1 ∗
17
97
+ 2 ∗

18+ 30+ 48
263

= 0.9053, and

IC(u, d) = 1 ∗
32
97
+ 2 ∗

35+ 22
263

= 0.7634.

Since peer c has the highest value, it has the largest possibility
to reply the query sent from the query peer u via c’s index.

2) QUALITY OF THE INDEX (QI)
The second sub-feature analyzes the quality of an index’s
content and the characteristics of the files. Since the prob-
ability of index hits may be influenced by the index counts as
well as the quality of the index’s content, we count the number
of index hits to analyze the quality of the information in the
index. Each query peer u computes SIH1(u) (resp. SIH2(u))
which is the total number of index hits of peers that are one
(resp. two) hop(s) away from u. Formally,

SIH1(u) =
∑
vεN (u)

NIH (v), (20)

where NIH (v) is the number of index hits of a neighbor v of u,
and

SIH2(u) =
∑
vεN (u)

SIH1(v). (21)

Based on Eq. (20) and Eq. (21), QI (u, v) can be computed as
follows:

QI (u, v) = w1 ∗
NIH (v)
SIH1(u)

+ w2 ∗
SIH1(v)
SIH2(u)

. (22)

Based on Eq. (22), if the QI score of some neighbor v of a
query peer u is the largest score, then v is regarded as the
most influential neighbor for index hits, i.e., it has the highest
probability of responding to the query sent by u.
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Example 8: In Figure 2, to obtain the number of its
neighbors’ index hits, peer u first computes
SIH1(u) = NIH (a) + NIH (b) + NIH (c) + NIH (d) =
12 + 16 + 10 + 19 = 57 by Eq. (20), and then computes
SIH2(u) = SIH1(a) + SIH1(b) + SIH1(c) + SIH1(d) =
(NIH (e)+NIH (f )+NIH (g))+(NIH (h)+NIH (i))+(NIH (j)+
NIH (k)+NIH (l))+ (NIH (m)+NIH (n)) = (23+ 19+ 7)+
(9 + 6) + (10 + 18 + 28) + (21 + 13) = 154 by Eq. (21).
Then, according to Eq. (22), we have

QI (u, a) = 1 ∗
12
57
+ 2 ∗

23+ 19+ 7
154

= 0.8469,

QI (u, b) = 1 ∗
16
57
+ 2 ∗

9+ 6
154

= 0.4755,

QI (u, c) = 1 ∗
10
57
+ 2 ∗

10+ 18+ 28
154

= 0.9027, and

QI (u, d) = 1 ∗
19
57
+ 2 ∗

21+ 13
154

= 0.7749.

Since peer c has the highest value, it has the highest proba-
bility of responding to the query sent by u.

We then represent the index power of a neighbor v of u,
denoted by IP(u, v), in terms of the index count and the
quality of the index as follows:

IP(u, v) = IC(u, v)+ QI (u, v). (23)

Example 9: According to Eq. (23) and the results derived
in Examples 7 and 8, we have

IP(u, a) = IC(u, a)+ QI (u, a)

= 0.8450+ 0.8469 = 1.6919,

IP(u, b) = IC(u, b)+ QI (u, b)

= 0.4864+ 0.4755 = 0.9619,

IP(u, c) = IC(u, c)+ QI (u, c)

= 0.9053+ 0.9027 = 1.8080, and

IP(u, d) = IC(u, d)+ QI (u, d)

= 0.7634+ 0.7749 = 1.5383.

FIGURE 3. Illustration of an autonomous system and the transmission
efficiency.

E. TRANSMISSION EFFICIENCY (TE)
This feature considers the transmission distances in a
P2P network, as shown in Figure 3. In the figure, peer S
must choose a neighbor to dispatch a query to neighbor A
or neighbor C. Peers A and S are in the same autonomous
system, but peerC belongs to another system.We assume that
the transmission path between S and C is much longer than
that between S and A. Hence, S will choose the path to A.
The TE feature calculates the distances between a peer and

its neighbors so that the peer can choose the closest neighbors

to deliver a message. Each query peer u computes SLD1(u),
which is the sum of the link-distances of peers that are
one hop away from u. Formally,

SLD1(u) =
∑
vεN (u)

LD(u, v), (24)

where LD(u, v) is the link-distance between u and v.
The Link-Minus-Score (LMS) of a neighbor v of u is

defined as

LMS(u, v) = SLD1(u)− LD(u, v). (25)

According to the above equality, when LD(u, v) increases, the
distance between peers u and v also increases; thus, peer vwill
be assigned a lower score.

Next, we compute SLMS1(u) (resp. SLMS2(u)), which is
the sum of the link-minus-scores of peers that are one
(resp. two) hop(s) away from peer u. Formally,

SLMS1(u) =
∑
vεN (u)

LMS(u, v) (26)

and

SLMS2(u) =
∑
vεN (u)

SLMS1(v). (27)

The transmission efficiency of a neighbor v of peer u is
defined as

TE(u, v) = w1 ∗
LMS(u, v)
SLMS1(u)

+ w2 ∗
SLMS1(v)
SLMS2(u)

. (28)

Based on Eq. (26) and Eq. (27), the scores of peers that
are at most two hops away from u are computed. Then, the
transmission efficiency of the neighbors of u can be measured
and we can determine the quality of each link (u, v).
Example 10: In Figure 2, based on Eq. (24), SLD1(u) =

LD(u, a) + LD(u, b) + LD(u, c) + LD(u, d) = 103 + 208 +
287 + 50 = 648; SLD1(a) = LD(a, e) + LD(a, f ) +
LD(a, g) = 141 + 112 + 58 = 311; SLD1(b) =
LD(b, h) + LD(b, i) = 211 + 151 = 362; SLD1(c) =
LD(c, j) + LD(c, k) + LD(c, l) = 78 + 22 + 106 = 206;
and SLD1(d) = LD(d,m) + LD(d, n) = 77 + 28 = 105.
Next, according to Eq. (25), we have LMS(u, a) =

SLD1(u) − LD(u, a) = 648 − 103 = 545;LMS(u, b) =
SLD1(u) − LD(u, b) = 648 − 208 = 440;
LMS(u, c) = SLD1(u) − LD(u, c) = 648 − 287 = 361;
and LMS(u, d) = SLD1(u) − LD(u, d) = 648 −
50 = 598. In addition, peer u computes SLMS1(u) =
LMS(u, a) + LMS(u, b) + LMS(u, c) + LMS(u, d) =
545 + 440 + 361 + 598 = 1, 944 by Eq. (26), and
SLMS2(u) = SLMS1(a) + SLMS1(b) + SLMS1(c) +
SLMS1(d) = (LMS(a, e) + LMS(a, f ) + LMS(a, g)) +
(LMS(b, h) + LMS(b, i)) + (LMS(c, j) + LMS(c, k) +
LMS(c, l)) + (LMS(d,m) + LMS(d, n)) = ((SLD1(a) −
LD(a, e))+ (SLD1(a)−LD(a, f ))+ (SLD1(a)−LD(a, g)))+
((SLD1(b)−LD(b, h))+ (SLD1(b)−LD(b, i)))+ ((SLD1(c)−
LD(c, j))+ (SLD1(c)− LD(c, k))+ (SLD1(c)− LD(c, l)))+
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((SLD1(d)− LD(d,m))+ (SLD1(d)− LD(d, n))) = ((311−
141)+ (311− 112)+ (311− 58))+ ((362− 211)+ (362−
151)) + ((206 − 78) + (206 − 22) + (206 − 106))+
((105 − 77) + (105 − 28)) = (170 + 199 + 253) + (151 +
211)+ (128+ 184+ 100)+ (28+ 77) = 1, 501 by Eq. (27).
Then, based on Eq. (28), we have

TE(u, a) = 1 ∗
545
1, 944

+ 2 ∗
170+ 199+ 253

1, 501
= 1.1091,

TE(u, b) = 1 ∗
440
1, 944

+ 2 ∗
151+ 211
1, 501

= 0.7087,

TE(u, c) = 1 ∗
361
1, 944

+ 2 ∗
128+ 184+ 100

1, 501
= 0.7374,

and

TE(u, d) = 1 ∗
598
1, 944

+ 2 ∗
28+ 77
1, 501

= 0.4476.

From the results derived in Examples 3, 6, 9, and 10, we
obtain the scores of the PA,ES, IP,TE features for
peers a, b, c, d in Figure 2(a). They serve as the four columns
of the feature matrix of peer u shown in Figure 4.

FIGURE 4. Illustration of Example 10.

The procedure for constructing the feature matrix FM is
presented in Algorithm Constructing_Feature_Matrix.

F. WEIGHT MATRIX
In this section, we introduce the weight matrix, which is
incorporated into the feature matrix described in the previous
section. It is used to normalize the values of the feature
matrix. In the distribution of the data set in the feature matrix,
if the values of a feature are widely dispersed, we can set a
higher value in the weight matrix to represent the diversity of
the feature. Conversely, if the values of a feature are close to
each other, we set a lower value in the weight matrix to reduce
the influence of the feature. We adopt the mean and standard
deviation techniques to achieve this goal.

Let {x1, x2, x3, . . . , xN } be a data set. First we define the
terms.
Definition 1: Themean, which is the arithmetic average of

a set of values or distribution, is given by

x =
1
N
∗

∑
xi. (29)

Definition 2: The standard deviation is a quantity that
describes the spread of the data set from the mean. It is
given by

S =

√
1

N − 1
∗

∑
(xi − x)2. (30)

Before computing the standard deviation of each column
in the feature matrix, we compute the mean value of each

Algorithm 1 Constructing_Feature_Matrix(u,w1,w2)
1: for each peer v ∈ N (u) do
2: Collect the following information NQ, NR, NF ,
NFH , NI , NIH , LD from v

3: Compute the following terms:
4: SQ1(u) :=

∑
vεN(u) NQ(v)

5: SR1(u) :=
∑

vεN(u) NR(v)
6: SF1(u) :=

∑
vεN(u) NF(v)

7: SFH1(u) :=
∑

vεN(u) NFH(v)
8: SI1(u) :=

∑
vεN(u) NI(v)

9: SIH1(u) :=
∑

vεN(u) NIH(v)
10: SLD1(u) :=

∑
vεN(u) LD(u, v)

11: for each peer v ∈ N (u) do
12: Collect the following information: SQ1, SR1, SF1,

SFH1, SI1, SIH1, SLD1 from the neighbors of u
13: Compute the following terms:
14: SR2(u) :=

∑
vεN(u) SR1(v)

15: SF2(u) :=
∑

vεN(u) SF1(v)
16: SFH2(u) :=

∑
vεN(u) SFH1(v)

17: SI2(u) :=
∑

vεN(u) SI1(v)
18: SIH2(u) :=

∑
vεN(u) SIH1(v)

19: for each peer v ∈ N (u) do
20: Compute the query-minus-score (QMS) and link-

minus-score (LMS):
21: QMS(u, v) := SQ1(u)− NQ(v)
22: LMS(u, v) := SLD1(u)− LD(u, v)
23: Sum the query-minus-scores of the neighbors of u as

follows: SQMS1(u) := SQMS1(u)+
∑

vεN(u) QMS(u, v)
24: Sum the link-minus-scores of the neighbors of u as

follows: SLMS1(u) := SLMS1(u)+
∑

vεN(u) LMS(u, v)
25: Sum the query-minus-scores of those peers which

are two hops away from u as follows: SQMS2(u) :=
SQMS1(u)+

∑
vεN(u) SQMS1(v)

26: Sum the link-minus-scores of those peers which
are two hops away from u as follows: SLMS2(u) :=
SLMS1(u)+

∑
vεN(u) SLMS1(v)

27: for each peer v ∈ N (u) do
28: Compute the following terms:
29: QF(u, v) := w1 ∗

QMS(u,v)
SQMS1(u)

+ w2 ∗
SQMS1(v)
SQMS2(u)

30: RF(u, v) := w1 ∗
NR(v)
SR1(u)

+ w2 ∗
SR1(v)
SR2(u)

31: SC(u, v) := w1 ∗
NF(v)
SF1(u)

+ w2 ∗
SF1(v)
SF2(u)

32: QS(u, v) := w1 ∗
NFH (v)
SFH1(u)

+ w2 ∗
SFH1(v)
SFH2(u)

33: IC(u, v) := w1 ∗
NI (v)
SI1(u)

+ w2 ∗
SI1(v)
SI2(u)

34: QI (u, v) := w1 ∗
NIH (v)
SIH1(u)

+ w2 ∗
SIH1(v)
SIH2(u)

35: for each peer v ∈ N (u) do
36: Construct the following four columns for the feature

matrix FM as follows:
37: PA(u, v) := QF(u, v)+ RF(u, v)
38: ES(u, v) := SC(u, v)+ QS(u, v)
39: IP(u, v) := IC(u, v)+ QI (u, v)
40: TE(u, v) := w1 ∗

LMS(u,v)
SLMS1(u)

+ w2 ∗
SLMS1(v)
SLMS2(u)

41: Output the feature matrix FM

column as follows:

cm =
1
n
∗

n∑
j=1

FM (j,m), (31)
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where n is the number of neighbors of peer u; and
FM (j,m) is the value of the entry in the jth row and
mth column, i.e., (j,m)-entry, of the feature matrix FM .
We compute the standard deviation Sm for 1 ≤ m ≤ 4 as
follows:

Sm =


√

1
n−1 ∗

n∑
j=1

(FM (j,m)− cm)2 if n ≥ 2

0 if n= 1.

(32)

Then, we define the 4× 1 weight matrix WM as

WM (m, 1) =
Sm∑4
j=1 Sj

, (33)

where WM (m, 1) is the weight of the (m, 1)-entry.
Example 11: Based on Eq. (33) and the feature matrix

constructed in Example 10, the weight matrix is
[0.3662, 0.2111, 0.2450, 0.1777]T .

The procedure for constructing the weight matrix is
presented in Algorithm Constructing_Weight_Matrix.

Algorithm 2 Constructing_Weight_Matrix (FM )
1: for each column m: = 1 to 4 do /∗ Compute the mean

value cm and the standard deviation Sm for column m ∗/
2: Compute cm := 1

n ∗
∑n

j=1 FM (j,m)
3: if n: = 1 then
4: Sm: = 0
5: else
6: Sm :=

√
1

n−1 ∗
∑ n

j=1(FM (j,m)− cm)2

7: for each column m: = 1 to 4 do /∗ Compute the four
elements of the weight matrix ∗/

8: WM (m, 1) := Sm∑4
j=1 Sj

9: Output the weight matrixWM

G. SCORING MATRIX
After executing AlgorithmConstructing_Feature_Matrix and
Algorithm Constructing_Weight_Matrix, each query peer u
constructs an n×1 scoring matrix (SM ) by the multiplication
of the feature matrix and the weight matrix as follows:

SM (m, 1) =
4∑

k=1

(FM (m, k) ∗WM (k, 1)), (34)

where SM (m, 1) for 1 ≤ m ≤ n is the (m, 1)-entry of SM and
n is the number of neighbors of u.
Based on the scoring matrix, each query peer u can assess

the capability of each of its neighbors. To deliver query
messages, peer u selects k influential neighbors according to
the top-k values in the scoringmatrix. The proper value of k is
determined by the parameters of a P2P network e.g., the scale
of the network, the number of neighbors of a query peer, and
the requirement of a query peer. (We explain how the value
of k is determined in Section IV-D3.) Moreover, it has been
shown that, in a real P2P network, the number of neighbors
of a query peer is usually 6 at most [17], [25], [51], which

implies that the scoring matrix should not be too large. As a
result, the performance of the proposed search mechanism
can be optimized because the memory requirement is small.
Example 12: By multiplying the feature matrix and the

weight matrix derived in Example 10 and Example 11
respectively, we construct the scoring matrix shown
in Figure 5.

FIGURE 5. Illustration of Example 12.

IV. PERFORMANCE EVALUATION
In this section, we present the experimental results, which
demonstrate the effectiveness of the proposed search mech-
anism SMF. We construct two types of network topology,
a physical topology and a logical topology. The physical
topology is comprised of the real connections in a large-scale
network; and the logical topology is the P2P transmission
layer, which is built on top of the physical topology connec-
tions. All the peers in the logical network are chosen from the
physical network. We compare the search efficiency of SMF
with that of other search mechanisms, namely Flooding (FL),
Random Walk (RW), and Multiple Random Walk (MRW) in
terms of the following four criteria:
• Traffic Cost: the average number of messages sent per

query; it is used to measure the search efficiency.
• Response Time: the query response time is the interval

between the time a query is initiated and the time
the result is received when each query explores the
matching response in the P2P network.

• Query Success Rate: the percentage of queries that
receive at least one response during the search process.

• Searching Hop in Query Hit: the average number of
steps required to send a query if the query is responded
to in our experiment.

A. PARAMETER SETTINGS
In the experimental environment, we create five physical
topologies, each containing 50,000 peers. Logical topologies
built on top of the physical layer contains 5,000, 10,000, and
20,000 peers respectively. The experimental parameters are
the same as those in [25] and [51]: the average degree is
between 3 and 9 and the TTL is set at 7. By considering
the dynamic property of unstructured P2P systems, we also
develop a dynamic environment, which means that peers
join (leave) a P2P network in a random fashion. Queries are
produced by each peer with equal probability. In addition, to
compare different search mechanisms and different parame-
ters of SMF, the experiments are performed on networks with
1,000, 5,000, 10,000, and 20,000 peers.

At the beginning of the experiment, every peer in the
virtual network has a randomly initialized file sharing,
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FIGURE 6. Comparison of the following performance metrics in static environments: (a) traffic cost, (b) response
time, (c) success rate, and (d) average number of search hops.

peer connectivity topology, and index routing table. Initially,
all peers in the logical network generate query messages
randomly. The number of queried neighbors in each query
process of MRW and SMF is between 2 and 5. The experi-
ment stops when a preset number of queries (10,000, 50,000,
100,000, and 200,000 queries) have been sent. For ease of
presentation, we only consider the experimental results based
on the following settings: the number of peers in the logical
topology is 20,000; the average node degree in the P2P net-
work is 6; the number of query neighbors in both MRW and
SMF is 2; and the total number of queries sent is 100,000.

B. EXPERIMENTS IN A STATIC ENVIRONMENT
In this subsection, we discuss the effectiveness of SMF in
static environments, whichmeans the peers do not join (leave)
the network in a randommanner. The parameter k used in RW
and MRW is set at 2 because, if k is larger, the mechanism
would be similar to the flooding approach in which a query
peer sends each message to all of its neighbors. Compared
with FL andMRW, SMF reduces the traffic cost significantly,
as shown in Figure 6(a). Note that RW has the lowest traffic
cost because it only selects one neighbor at random to send

a message without considering the success rate. Compared
with FL, SMF reduces the traffic cost significantly. Thus, we
achieve the goal ofminimizing the traffic cost when searching
for files in a P2P network. Moreover, in contrast to MRW,
which chooses a fixed number of neighbors, k , at random
to send messages without any strategy, SMF only selects
influential neighbors and thereby optimizes the search perfor-
mance with respect to the traffic cost in static environments.

Figure 6(b) shows that FL achieves the shortest query
response time. The proposed SMF outperforms RW and
MRW in terms of the response time. In contrast to FL, which
sends a querymessage to all of a query peer’s neighbors, SMF
only sends a message to a small number of such neighbors.
Since FL uses a large amount of resources when searching
for matching responses, it achieves the best performance in
terms of the response time. However, it also incurs a high
traffic overhead. The SMF is effective because it only selects
influential neighbors to send messages, yet its performance is
still as good as that of FL.

Next, we analyze the success rates of the compared meth-
ods. Figure 6(c) shows that SMF obtains response for about
85 percent of query messages. Although FL gets responses
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FIGURE 7. Comparison of the following four performance metrics in dynamic environments: (a) traffic cost,
(b) success rate, (c) response time, and (d) number of search hops.

to about 90 percent of the queries, its traffic overhead is high
because the messages are sent to all of a peer’s neighbors.
Therefore, except for FL, the compared search mechanisms
reduce the traffic cost at the expense of a lower success rate.
However, the reduction in SMF’s success rate is smaller than
that of RW and MRW.

Figure 6(d) shows the average number of search hops. In a
static environment, SMF requires about three hops to obtain
responses. The performance is similar to that of FL, but SMF
does not need to send queries to all the neighbors of a query
peer. Moreover, as shown in the figure, SMF obtains query
responses in short hops. Overall, the experimental results
demonstrate that SMF performs well in static environments.

C. EXPERIMENTS IN DYNAMIC ENVIRONMENTS
As shown in Figures 7(a) and 7(b), SMF is more effective
than FL, which incurs an enormous traffic overhead in order
to increase the number of opportunities to match files during
the search process. Meanwhile, Figure 7(b) shows that SMF
also has a higher probability of obtaining responses. Thus,
SMF has the advantages of FL, but its traffic overhead ismuch
lower. Comparison of MRW and SMF shows that

SMF’s search cost is lower, even though it selects the same
number of neighbors to send a query. Finally, although RW
has the lowest traffic overhead, its success rate is the lowest.
Thus, overall, SMF achieves an effective search performance.

In Figure 7(c), the traditional search mechanism FL has the
shortest response time. This is because it delivers queries to
all of a peer’s neighbors. SMF’s response time is a little higher
than that of FL, but it reduces the traffic overhead signifi-
cantly. Although the number of neighbors selected by SMF
to send a query is the same as that of MRW in the experiment,
SMF performs better than MRW. Hence, SMF can achieve a
shorter query response time in dynamic environments.

Figure 7(d) shows that SMF’s performance is a little worse
than that of FL, but it outperforms the other two search
mechanisms. Although SMF does not send messages to
all the neighbors of a query peer, it can still get query
responses within an acceptable search scope. The experiment
results show that SMF can obtain matching files by setting
the d-collected scope at d = 4. We discuss this aspect
in Section IV-D2.

In addition to the features compared above, SMF achieves
a better performance through the warm-up phase avoiding.
As shown in Figures 7(a)–7(d), SMF’s performance is not
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FIGURE 8. Comparison of the following performance metrics under SMF with the construction overhead: (a) traffic
cost and (b) response time.

satisfactory in the initial stage; however, as the number of
queries increases, the search performance improves. The rea-
son is that the matrix form yields more precise computations
as the number of queries increases. Since communications in
a real P2P network are continuous, we can obtain accurate
information about each peer via the matrix.

D. ANALYSIS OF THE SMF
In this section, we discuss some critical issues related to
SMF, namely the matrix construction overhead, the proper
settings for the parameter values, and the search performance
in different-sized networks.

1) MATRIX CONSTRUCTION OVERHEAD
We add the construction overhead to SMF to compare its per-
formance with that of the other searchmechanisms. As shown
in Figure 8(a), SMF with the construction overhead reduces
the traffic cost of FL by about 85 percent, yet it still achieves
a good success rate in the query process. The experimental
results show that SMF trades a little of the success rate
to achieve a substantial improvement in the traffic cost.
Meanwhile, SMF reduces the traffic cost of MRW by about
45 percent, despite the matrix construction overhead. Hence,
the construction overhead incurred by collecting the feature
information in a whole P2P network is acceptable. It appears
that considering influential neighbors to send a query mes-
sage is more effective than choosing them at random.

As shown in Figure 8(b), SMF reduces the response time
of MRW by about 43 percent. In SMF, when a peer needs
to choose a neighbor to deliver a query, it computes the
distances of the peer’s neighbors in the TE of the feature
matrix. If the distance between a peer and a neighbor is too
great, the neighbor may not be able to deliver the query in
the shortest possible time, so it will not be selected. SMF
with the construction overhead improves the response time
by about 30 percent with the parameter settings and simula-
tion environment described in Subsection IV-C. Although FL

achieves a better performance than SMF in terms of the
response time, SMF’s traffic overhead is much lower than that
of FL. Unlike FL, which sends queries to all the neighbors of
a query peer, SMF only sends queries to specific neighbors to
exploit matching files. As a result, FL has manymore paths to
respond to the source peer than SMF. Therefore, although the
SMF is less efficient than FL, it reduces the traffic overhead
substantially.

2) SETTING PROPER VALUES FOR THE FEATURE
COLLECTION SCOPE
In this subsection, we discuss the proper setting for the value d
of the feature collection scope mentioned in Section III-A.
Figures 9(a)–9(c) show that when d = 5, the construction
overhead increases. Moreover, when d = 4, both the success
rate and the average number of search hops are better than
when d = 1 or d = 2. However, if d = 5, the success rate and
the average number of search hops are not as good as those
under the other settings. To verify the above observation,
we refer to the results in Figure 7(d), which show that the
average number of search hops is set at 4. If the peers collect
information with d = 5, the scope may include many useless
messages, which will increase the computational overhead.
Hence, we only consider cases where d is between 1 and 4.
When d = 1, the success rate is only about 60 percent, so 1 is
not suitable for SMF. In contrast, under d = 2 and d = 4,
the success rates are about 75 percent, but the construction
overhead of d = 4 is higher than that of d = 2. Hence,
d = 2 is an appropriate setting for SMF. On the other hand,
when d = 3, SMF has the highest success rate, the lowest
number of search hops, and an acceptable matrix construction
overhead. Hence, we conclude that either d = 2 or d = 3 is
an appropriate value setting for the feature collection scope.

3) THE NUMBER OF QUERIED NEIGHBORS
Given the scoring matrix, how many neighbors should each
query peer choose to send messages in order to optimize
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FIGURE 9. The feature collection scope and construction overhead under the following performance metrics: (a) traffic cost, (b) success rate, and
(c) average number of search hops.

FIGURE 10. Comparison of the following performance metrics when choosing the number of query neighbors: (a) traffic cost, (b) success rate, and
(c) response time.

TABLE 1. Comparison of the search performance with different hop weight settings.

the search performance? As shown in Figure 10(a), when
the number of selected neighbors increases, the traffic cost
increases sharply. Hence, if a query peer chooses too many
neighbors to send messages, SMF will select too many pow-
erless neighbors to send the messages and thereby increase
the traffic overhead. In Figure 10(b), when the number of
neighbors selected is set at 1, SMF still achieves a higher suc-
cess rate than RW, as shown in Figure 7(b). When the number
of neighbors chosen is set at 1, the value is not good for the
number of neighbors chosen because the success rate is only
about 30 percent. When the number is set higher than 2, the
success rate is good, but at 4 or 5, SMF’s traffic overhead
is too high. On the other hand, as shown in Figure 10(c),
SMF achieves the best query response time if only 1 neighbor

is chosen. From the above observations, either 2 or 3 is an
appropriate setting for the number of neighbors chosen by a
query peer.

4) PROPER WEIGHT SETTING
In this subsection, we discuss the hop weight setting.
According to the construction of the feature matrix described
in Section III, if w1 > w2, one-hop collected informa-
tion is more important than two-hop collected information.
Conversely, if w1 < w2, two-hop information is more impor-
tant. Table 1 shows the search performance of SMF with
different hop weight settings. The results show that SMF’s
search performance is better whenw2 > w1.We can conclude
that the wider search scope of SMF, the larger will be the
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FIGURE 11. Comparison of the following performance metrics of SMF on different network scales: (a) success rate, (b) response time, and
(c) average number of search hops.

number of peers whose information and features need to be
collected and computed. As shown in the table, the search
performance is optimal when (w1,w2) = (1, 4); and it is the
least efficient when w1 is much higher than w2.

5) SEARCH PERFORMANCE IN DIFFERENT SIZED NETWORKS
In this subsection, we discuss the effectiveness of SMF in dif-
ferent sized networks. Figure 11(a) shows that SMF achieves
a good search performance in different network scales. As the
size of the network increases, the success rate (i.e., the file
matching rate) declines. Nevertheless, SMF’s success rate
is still about 80 percent. Figures 11(b) and 11(c) show the
response time and the average number of search hops respec-
tively. We observe that SMF achieves shorter response times
as the network scale increases. Hence, SMF can match files
successfully in a small search scope under different network
scales. The experimental results indicate that SMF is also
suitable for large-scale P2P networks.

V. CONCLUDING REMARKS
We have performed simulations of the proposed SMF search
mechanism in static and dynamic environments. The results
demonstrate that SMF can reduce the traffic overhead
significantly, achieve shorter query responded times, and
maintain a high success rate. Specifically, SMF performs
more than 80 percent better than the flooding approach in
terms of the traffic overhead. Compared to the multiple
random walk approach, SMF’s response times and success
rate are 40 percent and 20 percent better respectively. The
experimental results also show that each peer can determine
the capability of each neighbor peer and send messages to
the appropriate number of its neighbors to avoid redundant
messages. Therefore, SMF is an effective search mechanism
for P2P networks.

SMF can also be utilized in different applications,
e.g., to adjust the connections for clustering influen-
tial peers, such as the clustering approach proposed
in [18], [24], [39], [58], and [60], or to reconstruct a topology,

like the minimal spanning tree technique used
in [30], [31], and [61]. By utilizing the statistical matrix form,
we can obtain more precise information and further improve
the search performance in P2P networks.
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