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ABSTRACT Indoor localization of smart hand-held devices is essential for location-based services of per-
vasive applications. The previous research mainly focuses on exploring wireless signal fingerprints for this
purpose, and several shortcomings need to be addressed first before real-world usage, e.g., demanding a large
number of access points or labor-intensive site survey. In this paper, through a systematic empirical study, we
first gain in-depth understandings of Bluetooth characteristics, i.e., the impact of various factors, such as dis-
tance, orientation, and obstacles on the Bluetooth received signal strength indicator (RSSI). Then, by mining
from historical data, a novel localization model is built to describe the relationship between the RSSI and the
device location. On this basis, we present an energy-efficient indoor localization scheme that leverages user
motions to iteratively shrink the search space to locate the target device. AnMotion-assisted Device Tracking
Algorithm has been prototyped and evaluated in several real-world scenarios. Extensive experiments show
that our algorithm is efficient in terms of localization accuracy, searching time and energy consumption.

INDEX TERMS Energy efficiency, indoor localization, data mining, bluetooth, IoT.

I. INTRODUCTION
With Internet of Things (IoT) fast approaching, nowadays
people in their daily lives are surrounded by more and more
smart devices such as laptops, phones and tablets that are
capable of sensing the environment and communicating with
each other [1]. While enjoying the numerous benefits of IoT,
new problems are also emerging. Among them, indoor
localization of smart devices plays a critical role in various
pervasive applications such as medicare [2], smart home [3],
and social networks [4].

During the last few decades, tremendous research efforts
have been dedicated to resolving this localization issue.
A majority of previous solutions rely on the wireless signal
fingerprints as an efficient way for location determination.
In general, wireless fingerprint-based localization consists
of two phases: training and serving. In the training phase,
it leverages existing wireless access points (APs) and uses
off-the-shelf equipments to collect signals from different
APs to form the training database, i.e., the location-related
fingerprints. In the serving phase, when it receives from a user
a query message including unknown wireless fingerprints, it
will launch the localization algorithm to obtain the matched
record within the database and return the corresponding
locations to the user.

For one location, one AP leaves one single entry in the
corresponding fingerprint. Thus, the root cause of the local-
ization error for fingerprint-based approaches is that different
locations may exhibit similar signatures [5]. More APs natu-
rally lead to more abundant fingerprint information, and thus
to more accurate localization results. Chandrasekaran et al.
reported that high accuracy (e.g., sub-meter median and 2m
maximum) can be achieved under hundreds of APs [6].

The localization accuracy also depends on the site survey
in the training phase, which is time-consuming and labor
intensive. The significantly raised cost caused by APs and
site survey poses a great challenge for these fingerprint-based
solutions and calls for in-depth studies.

To this end, by exploring Bluetooth RSSI and user
motions, we present Motion-assisted Device Tracking Algo-
rithm (MADT), a novel algorithm to fast localize target
devices without any APs or the laborious site survey process.
Instead of using signature entries from APs, MADT utilizes
the fundamental rules of RSSI and environmental factors
such as distance and direction, so as to guide a user with a
device receiving Bluetooth signal from the target to gradually
approach them.

More specifically, we first conduct a systematic
experimental study to gain in-depth understandings of

1450
2169-3536 
 2015 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 3, 2015



Y. Gu, F. Ren: Energy-Efficient Indoor Localization of Smart Hand-Held Devices

Bluetooth characteristics, .e.g., the impact of various factors
such as distance, orientation, obstacles and time of the day
on the Bluetooth RSSI. With the empirical experiences,
a novel localization model is built to describe the relationship
between RSSI and these factors.

In order to fast track down the target device, we explore
user motions where a user carrying another device moves
around and searches for the Bluetooth signal source, i.e., the
target device. We present a RSSI-based localization scheme
to online schedule the user movement based on the local-
ization model, which iteratively adjusts the search directions
according to RSSI changes.

We have prototyped and evaluated our scheme in several
real-world scenarios in our university campus. Experiments
confirm that the proposed scheme is efficient in terms of
localization accuracy, searching time as well as energy
consumption. Note that Bluetooth is chosen due to its low
energy consumption. Our proposed system is adaptive to
other wireless sources such as WiFi and ZigBee.

In summary, our work makes the following contributions,
• We present an extensive empirical study in real-world
scenarios, so as to understand the impact of various
factors such as distance, orientation, and obstacles on the
Bluetooth signals.

• We build a novel localization model that characterizes
the relationship between changes of RSSI values and the
target location.

• We propose MADT, a logarithmic complexity algorithm
that can quickly approach the target device by iteratively
shrinking the search space.

• We prototype our system and conduct extensive
real-world experiments. Results confirmed that the
proposed scheme is efficient in terms of localization
accuracy, searching time and energy consumption.
Moreover, important insights have been obtained and
valuable hand-on experiences are also provided.

The rest of the paper is organized as follows. We analyze
the issue in the next section. Then, we present an empirical
study of various factors on bluetooth RSSI in Section III.
Section IV gives the details of our localization algorithm.
Then, we prototype the design and present real-world exper-
imental results in Section V. Related issues are introduced
in Section VI. Finally, Section VII concludes the paper.

II. RESEARCH OVERVIEW
A. OBJECTIVES AND THEORETICAL ANALYSIS
Consider the following scenarios that may happen in our
daily lives,
Scenario 1: Bob, living in a single-room apartment, has

one iPhone and one iPad. One morning when he is about
to work, he can not find his iPhone. He tries to call it on
the wired phone but there is no response due to the poor
3G/4G signal indoor. Or simply the phone is set to the silent
mode. How can Bob quickly locate his iPhone using iPad?
Scenario 2: Alice, wondering in an exhibition, brings one

tablet to record the exhibits. When she is about to leave,

she finds her tablet left somewhere within the exhibition
room. She has a smart phone, but she could not call the tablet
because it is not equipped with any phone module. How can
Alice quickly find her tablet using her phone?

The above scenarios have one simple objective:
• How to localize a smart device (target device) quickly
using another smart device (holding device) only?

Theoretically, the issue is easy to address under the ideal
case. The ideal case is defined as a scenario where a perfect
signal propagation model exists with parameters precisely
given. For instance, a simple propagation model for the free
space is presented in [7] as follows,

RSSI = PTX + G+ 20 log(
c

4π f
)− 10n log(d)

= P− 10n log(d) (1)

wherePTX is the transmit power (in dBm) of the target device,
G is the combined antenna gain (in dBi) of both transmitter
and receiver (holding device); c is the speed of light
(3.0 × 108m/s) and f is the central frequency (2.44 GHz);
n is the attenuation factor (ranging from 2 to 4; 2 in free space)
and d is the distance between transmitter and receiver (in m).
Therefore, d can be calculated as follows,

d = 10
P−RSSI
10n (2)

However, the deduction of d in the real-world case is much
more complicated. On one hand, hardware-related parameters
such as PTX and G are usually unknown. On the other hand,
there exist various factors that are ignored in the model but
could impact the RSSI, such as walls and furniture. Plus,
even if d is known, without an accurate direction of the target
device, it still takes time and efforts to find it. Therefore, due
to unexpected elements in realistic applications, it may not be
a good idea to count on the theoretical model to determine the
locations of target devices.

The distance and direction are the most fundamental
factors for localizing a target device. Between them,
direction is more important because once the user has the
right direction it is much easier to find the target using
bare-eyes. Therefore accurate distance measurements
become less significant.

In the next part, we analyze the unique challenges as well
as the countermeasures of this localization issue.

B. CHALLENGES AND COUNTERMEASURES
The theoretical method encounters near-insuperable
obstacles in real-world applications, since it demands
accurate information about both the propagation model and
the environmental factors. Thus it is nearly impossible to
present a pervasive model that is adaptive to all scenarios.

However, some general rules between RSSI and the
location of the target device may exist and help us design
the localization algorithm that locates the target under very
limited information.

To this end, let us revisit and analyze the issue,
• WhatWeHave:Wirelessmodules of the target device are
turned on (e.g., WiFi or Bluetooth) and the ID is known.
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A user is holding another device which is also embedded
with the wireless modules.

• What We Don’T Have: The target location information
including the direction and distance from the user. The
hardware related parameters such as transmit power,
antenna gain of both transmitter and receiver, etc.
Environmental factors such as the floor plan,
and APs.

In summary, the simple objective involvesmany challenges
from both design and implementation aspects:
• The suitable signal source. In short, Bluetooth or WiFi?
• The general rules between RSSI and location of the
signal source, i.e., the target device.

• A light-weight localization algorithm based on these
rules that can track down the signal source quickly.

Therefore, to address the challenges, we conduct extensive
real-world experiments in the next section to specifically
answer the following questions,
• Which source to use in terms of energy efficiency?
WiFi or Bluetooth?

• How to set experimental parameters such as sampling
rate, number of samples per measurement, and the time
of day when the experiments take place?

• What is the relationship between location and RSSI in
real-world scenarios?

• How does environmental factors such as obstacles
between two devices affect the RSSI?

In the next section, we present details about the empirical
study as well as several derived investigations.

III. EMPIRICAL STUDY
To gain in-depth understandings on the Bluetooth
characteristics, we conduct an empirical study on some
selected factors (e.g., distance, orientation, number of
samples, sampling rate, time of the day, obstacles, etc.)
in two typical indoor environments, i.e. a conference room
and an exhibition room with furniture, as shown in Fig. 1.

FIGURE 1. The layouts of experimental scenarios. (a) Conference room.
(b) Exhibition room.

A. EXPERIMENTAL SETUP
Two experimental sites at Hefei University of Technology are
selected to carry out the experiments, namely,
[Conference room, CR]: Room 205 in our facility. Its floor

plan is shown in Fig. 1(a). The floor size is 7.2m× 8m.
[Exhibition room, ER]: Room 206 in our facility. Its floor

plan is shown in Fig. 1(b). The floor size is 10m× 14m. It is
much bigger than the conference room. Except for several
robots placed inside, it is basically empty and therefore is the
closest environment similar to the free-space scenario.

We use two tablets as the test hand-held devices: one
is Samsung SM-P601 as the target device (Android 4.3);
the other one is Samsung GT-N5110 as the holding device
(Android 4.1). The Android system is selected due to
its customization capabilities. The defaults of factors are
highlighted in Table 1.

B. WiFi OR BLUETOOTH
WiFi and Bluetooth are two essential modules in modern
hand-held devices to enhance the ability of interacting with
others.

On one hand, in indoor scenarios, the distance between two
devices are often limited to a few meters. Therefore, both
WiFi and Bluetooth are adequate in coverage. On the other
hand, energy becomes one of the most critical considerations
for the smart devices since people want the battery to hold
as long as possible. Therefore, we compare them in terms
of energy efficiency. We write an app to record time and
battery level every 30minutes while performing the following
actions with screen on:
• Turn the tablet into flight mode.
• Turn only WiFi on and set the sampling rate to 1 sample
per second.

• Turn only Bluetooth on and set the sampling rate to
1 sample per second.

FIGURE 2. Energy consumption comparison of Bluetooth and WiFi
over N5110.

Both tablets show the same phenomenon and thus we only
discuss N5110 as an example. The results are shown in Fig. 2.
The battery can hold over 13 hours under the flight model,.

1452 VOLUME 3, 2015



Y. Gu, F. Ren: Energy-Efficient Indoor Localization of Smart Hand-Held Devices

TABLE 1. Factors under study (defaults are highlighted).

FIGURE 3. Bluetooth RSSI versus sampling rate and number of samples. (a) Number of samples, CR. (b) Number of samples, ER. (c) Sampling rate, CR.
(d) Sampling rate, ER.

Bluetooth will consume some energy and the lifetime drops
slightly (11.5 hours). While the number drops to 9 hours
for WiFi. Clearly, Bluetooth consumes much less energy than
WiFi (37.5%) and thus should be a better choice.

C. EXPERIMENTAL PARAMETERS
Before we conduct experiments to figure out the relationship
between RSSI and physical locations, we should determine
suitable experiment parameters such as number of samples
per measurement and time of the day.
[Number of Samples VS RSSI]: For each measurement,

more samples naturally lead to more accurate measurements,
but at the cost of higher energy and time overheads.
Therefore, to achieve a tradeoff between accuracy and
overheads, we conduct experiments with number of samples
ranging from 50 to 150. The results in terms of mean
RSSI values as well as the corresponding error bars (the error
bar represents the standard error in the mean here and
afterwards) are presented in Fig. 3. It turns out that the
number of samples has little impact on the RSSI data
(the biggest RSSI difference is within 1.1%), implying that
accurate measurement does not depend on the sampling
intervals (corresponding to the number of samples). Thus
we choose 50 samples as default to reduce overheads while
maintaining accuracy.
[Sampling Rate VS RSSI]: We vary sampling rate from

1 sample per second to 3 samples per second and record the
mean RSSI over distance with error bars in Fig. 3. Two inves-
tigations are obtained. First, for both scenarios, the differ-
ences between different sampling rates are quite limited: the
biggest difference for both cases are within 1%. Therefore,
we choose 3 samples per second as default in the following
experiments, since it will accelerate the localization process.

The other investigation is that the measurements turn
unstable with the increment of distance, suggested by the
error bars. The phenomenon has been spotted frequently in
the other experiments. The reason is straightforward: initially,
the signal is strong within the close range. When the distance
increases, the signal grows weak and is easily affected.
[Time of the Day VS RSSI]: We now study the impact

of time of the day on the Bluetooth RSSI. The measure-
ments are taken at three different time periods of a day,
i.e. morning (8:00-11:30), afternoon (14:00-17:00), and
evening (19:30-23:00). Fig. 4(b) presents the results in terms
of mean RSSI values with the corresponding error bars.
One interesting observation is that the time when samples
are taken only has insignificant affect the RSSI values,
i.e., within 1%. In other words, we should not pay much
attention to this time factor.

We also compare the measurements taken at both rooms
using the afternoon data, as shown in Fig. 4(c). Both
curves are very close to each other, but there still exists
measurements that exhibit differences to some extent at
certain distance, e.g., 1.5m. The phenomenon indicates that
sometimes the experimental sitesmay have limited influences
on the RSSI.

D. RELATIONSHIP BETWEEN LOCATION AND RSSI
As stated above, there are two essential elements about
locating the target device: distance and orientation.
Therefore, in this part, we conduct experiments to gain
the empirical understandings about the two elements and
Bluetooth RSSI.
[Distance VS RSSI]: Experiments are conducted in both

CR and ER. The location of AP is fixed while the laptop is
moved gradually away from the AP (0.5 meters per step).
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FIGURE 4. WiFi RSSI versus time of the day. (a) CR. (b) ER. (c) Room comparison, Time: afternoon.

FIGURE 5. WiFi RSSI versus distance-CR and ER. (a) Boxplot, CR. (b) Boxplot, ER. (c) Fitted curves, CR. (d) Fitted curves, ER.

We use the boxplot to summarize the results
in Fig. 5(a) and Fig. 5(b), which contains five quantities:
lower quartile 25%, median, upper quartile (75%), and the
two extreme observations [8].

Eqn.1 theoretically characterizes the relationship between
RSSI and distance. To very this equation, we useMatlab 2012
to generate fitted curves with different attenuation factors
(ranging from 2 to 4) for both scenarios. The results are shown
in Fig. 5(c) and Fig. 5(d).

TABLE 2. Coefficients for the CR and ER.

Table 2 shows the details about the fitting curves, where
R-square stands for the coefficients of multiple determi-
nations. This statistic measures how successful the fit is
in explaining the variation of the data. A value closer
to 1 indicates a better fit. For both cases, the highest value
is achieved at n = 2, as we highlight in the table. Also,
we notice that the fitted values of the hardware related
parameter P for both scenarios are very close: the difference

is about 0.42%, verifying that indeed the same hardware is
used for both cases.

In summary, two interesting observations can be derived
via experiments from both scenarios. First, Bluetooth RSSI
fades with distance. The relationship between them can be
briefly described by Eqn.1. Second, we notice that as the
distance increases, measurements at one location becomes
unstable. This phenomenon can be captured by the
SD (Standard Deviation, σ ) of the data group at the location.
The reason lies in that when the distance increases the signal
interferences caused by the shadow fading and multi-path
fading become more significant.
[Orientation VS RSSI]: With the stationary target device

whose antenna points to the west, we change the orientation
of the holding device and take measurements. As shown
in Fig. 6, RSSI differences among different orientations are
quite notable for both CR and ER. In all cases, when the
receiver antenna points to the west, i.e., the same direction of
the transmitter, RSSI readings are the weakest. The average
differences between west and other orientations are listed
in Table 3.

TABLE 3. RSSI differences between west and other orientations.
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FIGURE 6. WiFi RSSI versus orientation. (a) CR. (b) ER. (c) Room comparison, Orientation: cm.

FIGURE 7. Bluetooth RSSI VS Obstacles. (a) Conference room. (b) Exhibition room. (c) Room comparison: books.

For other three orientations, due to signal reflections
caused by multi-path or shadow fading, the differences
among them are not so obvious. The relationship is hard to
be characterized by simple rules. But in general, when the
transmitter points to the east, i.e., the opposite direction of
the transmitter, the signal is the strongest. The reasons are
two-folders. First, when the receiver antenna points to the
same direction of the transmitter, signal needs to penetrate
the device to reach the receiver antenna. Second, the length
of the device needs to be considered since signal has to travel
an extra distance to reach the antenna.

E. OTHER FACTORS THAT MAY AFFECT LOCALIZATION
The most typical and common factor that may affect the fast
localization is the obstacles covering the target device, such
as books, clothes and bags.
[RSSI VS Obstacles]: The experimental results are shown

in Fig. 7. For both CR and ER, the signal is stronger if there
exists no obstacles. That means that obstacles do block the
signal.

However, the influences of different kinds of obstacles
are different. In general, books degenerate the signal more
significantly than others, since it is much harder to penetrate.

Another interesting observation is that though the
signal has been affected the fading pattern remains, i.e., RSSI
always decreases with distance. To confirm the observation,
Fig. 7(c) shows the fitted curves for both scenarios where the

book is selected as the obstacle since it has the most severe
interferences on the signal. We set n = 2 since it is still the
most suitable parameter.

As shown in the Table 4, P slightly decreases compared to
the none obstacle case, i.e. 1.61 dBm on average. That means
the obstacle, i.e., the book, blocks the signal and leads to a
reduced the antenna gain. We also notice that judging by the
R-square values both curves fit well with measurements.

TABLE 4. Coefficients for both CR and ER when the book is the obstacle.

F. SUMMARIES AND DISCUSSIONS
Via the above empirical studies, following fundamental rules
are derived, namely,
• Rule 1: Bluetooth RSSI fades with the distance and the
fading pattern can be characterized by Eqn.1 to some
extent. The SD of measurements taken at one location
can be explored to determine the range of distance.

• Rule 2:At a fixed location, set the average RSSI readings
to RSSIt and RSSIb when the receiver antennas is aligned
towards and backwards to the transmitter, respectively.
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FIGURE 8. Statistic results of the SD over all measurements. (a) Distance interval: 0.5m. (b) CDF of σ . (c) Overall statistics.

FIGURE 9. Experiments to confirm Rule 2. (a) Transmitter antenna orientation: East. (b) Transmitter antenna orientation: West. (c) Transmitter antenna
orientation: South. (d) Transmitter antenna orientation: North.

Then, RSSIt > RSSIb no matter where the transmitter
antenna points to.

• Rule 3:Other factors such as obstacles may impact RSSI
values but have limited influences.

The relationship between SD and distance should be
further studied. To this end, the statistical results of the SD
over all the measurements (1892 groups of data in total)
are shown in Fig. 8. Fig. 8(a) shows the CDF (Cumulated
Distribution Function) of distance over different ranges of
the SD. Fig. 8(b) describes the CDF of SD over different
ranges of distance. Both figures have clearly confirmed the
connections between distance and SD: a smaller SD leads to
a shorter distance.

To fasciate the following experiments, we record the
mean σ of all measurements in Fig. 8(c), which provides
empirical values to quickly map SDs to the distances.

For Rule 2, we conduct a new experiment in the ER tomake
a further confirmation, where the transmitter and receiver are
placed in the east and west, respectively. Then, the receiver
antenna only has two orientation choices: east (towards the
transmitter) and west (backwards to the transmitter) while
changing the orientation of the transmitter antenna in four
directions, i.e,. east, west, south and north.

Fig. 9 shows the experimental results. No matter which
direction the transmitter antenna points to, we see that signal
is always stronger when receiver antenna is aligned towards
the transmitter: 4.87, 7.21, 7.94, and 3.96 dBm differences on
average for east, west, south and north, respectively.

Considering that under normal circumstances we have no
control of the target device, Rule 2 seems to be particularly
useful for determining the search direction.

Based on these rules derived from the empirical study, we
will introduce the MADT algorithm in the next section.

IV. MADT ALGORITHM
In this section, first we will give a brief overview of
the MADT algorithm. Then, details are given for a better
understanding. Lastly, the complexity of MADT will be
analyzed.

A. BASIC IDEA
The intuition underlying the MADT algorithm is to treat the
target device as a signal source, which emits signals and
draws the user to approach it iteratively. The user movements
obey certain patterns by the rules derived in the empirical
study.

The basic idea is to cut the floor plain into smaller ones
until the target has been located. To do so, two essential
factors need to be considered: direction and distance during
the localization. We use Rule 2 to determine the search
direction and use Rule 1 to decide whether the target is at
close range.

The MADT algorithm works as follows: when a user
holding the receiver tries to locate the target device, it
searches for the Bluetooth signal emitted from the receiver
by cutting the floor plan into smaller pieces iteratively until
approaching the target. To do so, the user first manually
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chooses a start point within the room, e.g., the centrepoint
of the room, and constructs a logical coordinate plan where
the start point serves as the origin and the floor is divided
into four quadrants by X and Y axes. Then the user
collects RSSI readings by pointing the receiver antenna to
four directions: north(Y+), south(Y−), west(X+) and
east(X−). Based on Rule 2, these readings will show us the
most possible quadrant where the target lies in. Then, Rule 1
is used to determine whether the target is at close range. If so,
the user stops and searches for the targetmanually. Otherwise,
the process continues until the target is located.

In general, MADT iteratively narrows the search area by
exploring both Rule 1 and 2 to determine the potential
quadrant where the target may resident. By this cutting plain
idea, we gradually eliminate areas that the target is not likely
to present, leading to the final position of the target.

In the next part, we will present more details about the
MADT algorithm.

B. ALGORITHM DETAILS
The Pseduocode of MADT is shown in Algorithm 1.
It consists of four main parts: (a) choose the start point:
manually choose the origin of the current search area. A good
start point will accelerate the search process. (b) take the
RSSI readings: point the receiver to four directions and take
measurements. (c) outline the search direction: choose the
right quadrant by the average RSSI values of the measure-
ments taken at different directions. (d) judge whether the
target is at close range by the SDs of the measurements.
Step 1 (Choose the Start Point): Since the floor plain

remains unknown, it is quite difficult and time-consuming to
construct a logic one instead. Therefore, here we let the user
to choose the start point manually and only give some advice
on how to select a suitable start point. Note that though a good
start point certainly will accelerate the search process,
MADT does not depend on it, i.e, it will eventually locate
the target regardless of the start point.
Step 2 (Take RSSI Readings):We could use the embedded

compass to determine the directions and take 50 samples per
measurement. We could achieve the input data: −→µ (mean
RSSI) and −→σ (S.D.) by performing simple calculations on
the samples as follows,

µ =

∑50
1 RSSIi
50

(3)

σ =

√∑50
i=1(RSSIi − µ)2

50
. (4)

Step 3 (Find the Target Orientation): With −→σ , we could
choose the potential quadrant as follows,
Case 1: If µX+ ≥ µX− and µY+ > µY− , Rule 2 indicates

that target is in the FIRST quadrant;
Case 2: If µX+ < µX− and µY+ ≥ µY− , target is in the

SECOND quadrant;
Case 3: If µX+ ≤ µX− and µY+ < µY− , target is in the

THIRD quadrant;

Algorithm 1 Pseudocode for the MADT Algorithm

Input: −→µ = {µX+ , µX− , µY+ , µY−};
−→σ = {σX+ , σX− , σY+ , σY−}; σTH ;

Output: Location of the target device: (X ,Y )
1 begin
2 while TRUE do
3 Choose_Start_Point();
4 Take_RSSI_Readings(−→µ ,−→σ );
5 Find_Target_Orientation(−→µ );
6 if Is_Close_Range(−→σ )==TRUE then
7 Target is in the close area;
8 return;

9 Function Choose_Start_Point()
10 Scan the target terrain;
11 Select the centrepoint manually;

12 Function Take_RSSI_Readings(−→µ ,−→σ )
13 Point the receiver antenna to the NORTH (X+) and

take 50 RSSI samples;
14 Point the receiver antenna to the South (X−) and

take 50 RSSI samples;
15 Point the receiver antenna to the EAST (Y+) and

take 50 RSSI samples;
16 Point the receiver antenna to the WEST (Y−) and

take 50 RSSI samples;
17 Calculate µ and σ for each data group;
18 Update −→µ ,−→σ ;

19 Function Find_Target_Orientation(−→µ )
20 if µX+ ≥ µX− and µY+ > µY− then
21 Target is in the FIRST quadrant;
22 return;

23 if µX+ < µX− and µY+ ≥ µY− then
24 Target is in the SECOND quadrant;
25 return;

26 if µX+ ≤ µX− and µY+ < µY− then
27 Target is in the THIRD quadrant;
28 return;
29 else
30 Target is in the Fourth quadrant;
31 return;

32 Function Is_Close_Range(−→σ )
33 L=Length(−→σ );

34 σm =
∑L

1 σi
L ;

35 if σm ≤ σTH then
36 return TRUE;
37 else
38 return FALSE;

Otherwise: Target is in the Fourth quadrant;
Step 4 (Range Estimation): Calculate average S.D. of

data sampled from four directions: L = Length(−→σ ) and
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σm =
∑L

1 σi
L . If σm ≤ σTH , the target is at close range and

should be identified easily. Otherwise, jump back to Step 1
and start the process again. σTH is the threshold and can be
obtained via Fig. 8(c).

Extensive real-world experiments show that MADT could
iteratively narrow down the search space and gradually
approach the target. Moreover, only under rare cases, our
Rules will fail and lead to a detour, e.g., the distance range is
misjudged or the search direction is misinterpreted. However,
even under these cases, MADTwill quickly adjust to the right
course and locate the target eventually.

C. ALGORITHM ANALYSIS
For MADT, we have the following conclusion,
Theorem 1: Assuming the area of the room is D, MADT can

locate the target in O(log4 D) steps.
Proof: MADT terminates until the target is found,

i.e., very close to the user (within 1m). At each step MADT
shrinks the search area to one-quarter of the current area.
Assuming that at the last step, the target area is a square.
So the longest distance between the target and the user is the
diagonal. If the length of that diagonal is 1m, the area of the
square is 1

2m
2. Therefore, at nth step, we have,

D
4n
≤

1
2
⇒ n ' O(log4 D) (5)

Therefore, the target is located in O(log4 D) steps.
�End�

We now compare the search time between MADT and
manual search. We assume that it takes t1 and t2 seconds to
search 1m2 manually for the uncovered and covered target,
respectively. Fig. 10 gives such a comparison where
t1 and t2 are set to 5 and 10 seconds. For MADT, we take
200 samples in total, corresponding to 66.7s. We see that
for a small room, e.g. D < 50m2, it will cost almost the
same time for both MADT and the manual search to find
the target. However, since MADT is a logarithmic algorithm,
it significantly outperforms the manual search for
a bigger room. The superiority grows even larger with the
increment of D.

FIGURE 10. Search time comparison: an illustration.

V. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
MADT has been prototyped and evaluated via real-world
experiments. We use the same experimental setup as
in Section III-A. Three metrics are used to evaluate MADT,
namely,
• Accuracy: Once MADT makes a judgement that the
target is at close range R, we will manually measure
the physical distance between the target and the user,
i.e., r . If the r ≤ R , there exists no localization error.
Otherwise, we take r − R as the localization error.

• Search Time: It is the time MADT needs to find the
target.

• Energy Consumption: Since measuring the energy
consumption is difficult, we use the same idea
in Section III-B and record the drop of the battery level
as the energy consumption.

Two subjects are involved in the experiments. Subject A
is responsible for hiding the target device in the CR and ER.
He can choose to cover the target device with books or not.
While subject B will localize the target using the holding
device. If MADT reports the target is at very close range,
subject B can manually select the most possible place where
the target device may reside (Note that if the target is not
covered by books, it would be much easier to be identified).
σTH is set to 2dBm, corresponding to 2m.

B. CASE STUDY
A case study is conducted in the CR to demonstrate the
procedure of theMADT algorthm. Subject A places the target
device on a chair located at the top-left corner and covers it
with books. Subject B chooses a start point close to the center
of the room, which is occupied by a big conference table.
It takes three steps for MADT to locate the target device.
Fig. 11 shows the user trace as well as the corresponding
RSSI data.

FIGURE 11. Case study: trace along the measurements.

At the first step, based on RSSI readings: −→µ = {−75.67,
−80.97,−73.51,−73.82}, MADT points out that the
target may resident in the first quadrant, i.e., the
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FIGURE 12. Performance evaluation on the prototype system. (a) Localization accuracy. (b) Search time. (c) Energy consumption.

north-east direction. According to −→σ = {4.17, 2.81,
1.81, 2.81} and σm = 2.9 > 2, the target is not at close range
(the actual distance is 4.2m). So the localization goes on.
At the second step, the user chooses the new start point
and collects the data again: −→µ = {−61.62,−67.85,
−69.79,−63.97}, indicating that the target should be in the
third quadrant. Moreover, considering −→σ = {1.67, 1.51,
1.6, 1.69} and σm = 1.62 < 2, the target is close, i.e.,
within 2m (the actual distance is 1.9m). Actually, at this stage
the user is almost certain about the target location since there
is nothing within that quadrant but the chair. However, to
make sure, an extra step is taken to get closer to the target.
At the third step, −→µ = {−59.18,−70.18,−62.54,−66.64},
indicating that the target is within the first quadrant while
σm = 1.15 < 1.62 < 2 suggests that the target is very close,
i.e., within 1m (based on Fig. 8(c)). The actual distance we
measured is exactly 1m.

We evaluate the case study via the three metrics as follows,
• Accuracy:As stated above, MADT accurately estimated
the distance range for all three steps. So for the case
study, the mean localization error is 0m.

• Search Time: It takes three steps to find the target. Each
step needs 200 samples, corresponding to 66.7s. So the
overall search time is 200s.

• Energy Consumption: The battery level drops from
51% to 50% during the localization. So the overall batter
consumption is only 1%.

In the next part, we will conduct extensive real-world
experiments to systematically evaluate the proposed scheme.

C. PROTOTYPE PERFORMANCE
The experiment has been repeated 20 times in both
CR and ER. Subject A is required to cover the target with
books for half of the experiments.

Fig. 12 shows the experimental results. We still use error
bars to show the standard errors in the mean. We now analyze
the prototype system via the three metrics,
[Accuracy]: As shown in Fig. 12(a), the average localiza-

tion errors in CR and ER are 0.38m and 0.57m, respectively.
The result indicates that our range estimation method works
very well in both scenarios.

However, we notice that once the target is covered by
books the overall localization error will be slightly increased,
i.e., less than 0.2m for both CR and ER. The reason is simple:
books will absorb signals and decrease the signal strength,
leading to an unstable propagation environment. Meanwhile,
our range estimation method uses SD as a metric to evaluate
the distance. Therefore, the localization accuracy decreases.

We also notice that the localization error in the ER is larger
than the CR. Since ER is much bigger and has less furniture,
it provides a stable environment for the Bluetooth signal.
Thus, the group of samples collected at the same distance in
ER tends to be more stable than the CR. For the same reason
illustrated above, the localization accuracy decreases.
[Search Time]: Fig. 12(b) describes the average search

time. On average, it takes 153s for subject B to locate the
target in the CR. While the number increases to 194s for
the ER. This result seems to natural and predictable, since
ER is much larger than the CR, i.e. 149.8m2 versus 57.6m2.
We also notice that the obstacles on the target leaves trivial
impact on the search time, confirming the efficiency of the
proposed scheme again.
[Energy Consumption]: The energy consumption is

closely related to the search time, since we have to keep the
screen and Bluetooth on during the localization. As shown
in Fig. 12(c), MADT is energy efficient since it only
consumes 1.3% and 1.9% of the battery for CR and ER,
respectively. Another interesting observation is that obstacles
on the target have insignificant impact on the energy
consumption. It is consistent with Fig. 12(b).

In summary, MADTmanages to quickly localize the target
device no matter whether it is covered by obstacles or not.
Also, it is efficient in terms of the localization accuracy,
search time and energy consumption.

VI. RELATED WORKS
With the rapid development of IoT, the location-based
service (LBS) [9] becomes an essential part for various
pervasive applications to promote user experiences, such as
google maps [10] and Where To Eat [11].

Over the years, tremendous research efforts have been
devoted to this specific topic. On one hand, techniques of
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outdoor localization is well-developed since they benefit a lot
from exiting mature positioning techniques such as GPS [12].
On the other hand, indoor localization remains a great
challenge due to unique features such as the inoperative GPS,
irregular signal propagation and complex environments [13].

In general, current research on indoor localization can
be roughly divided into two categories by their localiza-
tion methods: model-based and fingerprint-based [14]. The
model-based approaches use sophisticated geometrical
models to estimate the physical locations of target devices.
While the fingerprint-based ones explores data mining
techniques to recover locations from the historical data.

Eqn.1 is the simplest version of the well-known
log-distance path loss model (LDPL). It can be used to esti-
mate the propagation distance using RSS values. However,
Eqn.1 itself is only suitable for the free space propagation.
To be of practical usage, modifications concerning real-world
environments are demanded. For instance, Stoyanova et al.
proposed a model, which takes free-space path loss, ground
reflection path loss, RSS uncertainty and antenna pattern
irregularity into consideration, specifically for wireless
sensor networks [15]. Lim et al. designed a complex model
forWLAN, considering factors such as RFmulti-path fading,
temperature and humidity variations, opening and closing of
doors, furniture relocation, and human mobility [16]. There
is a recent trend to develop more sophisticated models
for a better characterization of physical environments,
e.g., the ray-tracing models [17]–[19], Bayesian hierarchical
model [20], [21], and Hidden Markov models [22].

Though the model-based solutions inherit various advan-
tages such as low cost on the site survey and training data,
there exists one major concern: the ever-changing indoor
environment poses a heavy burden on both geometrical
models and computing powers, leading to unstable
performance, e.g., large localization errors.

The fingerprint-based approaches leverage site survey
and data mining techniques to estimate locations from
known reference data. The basic idea is to manually gather
RF RSSI values (signals could be from WLAN [23],
ZigBee [24], Bluetooth [25], FM [26], etc.) as the signatures
(fingerprints) at every location within the area of interest,
i.e, site survey. The collected fingerprint form the training
database and stored in the server. When a user wants to
know its current locations, it first samples the surround-
ing signatures and then sends the test data back to server,
which will use data mining techniques to figure out possible
locations with similar fingerprints. Such examples include
RADAR [27], ActiveCampus [28], UbiSpot [29], FIFS [30],
and SSD [31], etc.

Later, researchers realized that site survey not only is
time-consuming but also significantly raises cost. Therefore,
different methods are proposed to reduce the cost on
the labor-intensive site survey and data training. For
instance, EZ combines the propagation model with the
fingerprint-based approach for a configuration-free indoor
localization scheme [32]. However, it involves complex

computation and large localization errors caused by
inaccurate physical constraints. WiGEM adopted the
Expectation Maximization (EM) method to estimate the
model parameters instead of site survey [33].

Very recently, motions are explored as a new way. WILL
explores user motions and RF signal characteristics to con-
struct the floor plan [14]. Abrupt signal changes is used for
discovering different rooms and thus constituting the floor
map. Though site survey is avoided, it is still a fingerprint-
based technique, and thus needs massive training processes.

Besides indoor localization, Bluetooth has also been
explored for the proximity estimation. Recently, Liu et al.
proposed a proximity estimation technique that sets empirical
Bluetooth RSSI values as multiple thresholds for classifying
different distance ranges [7].

Inspired by [7] and [14], our work pushes the research
one-step further by exploring not only empirical RSSI values
but also fundamental rules between locations and
RSSI readings, leading to more accurate and stable
localization solutions. Unlike previous research, our scheme
is light-weight by relieving the dependence on the data
training and site survey.

VII. CONCLUSION
This paper introduces a novel localization algorithm named
MADT to fast track down a target device in the indoor
environment via Bluetooth signals. Unlike previous wireless
fingerprint-based research, MADT has some unique features.
For instance, it needs neither APs nor detailed site survey that
are time-consuming and labor intensive.

To obtain the features, we explore Bluetooth
characteristics, .e.g., the impact of various factors such as
distance, orientation, and obstacles on the Bluetooth RSSI,
via a systematic experimental study. Several basic rules
about the relationship between the target location and the
RSSI readings are derived to guides the user movement.
More specifically, by interpreting RSSI readings using
the rules, MADT iteratively shrinks the search space by
highlighting the area where the target likely resides. To eval-
uate the proposed scheme, we prototype and test our system
in real-world environments. Experimental results confirm
that the proposed scheme is efficient in terms of localization
accuracy, searching time and energy consumption.
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