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ABSTRACT In large-dimensional wireless systems, such as cooperative multicell processing, millimeter-
wave, and massive multiple input multiple output systems, or cells having a high user density, such as
airports, train stations, and metropolitan areas, sufficiently accurate estimation of all the channel gains is
required for performing coherent detection. Therefore, they may impose an excessive complexity. As an
attractive design alternative, differential modulation relying on noncoherent detection may be invoked for
eliminating the requirement for channel estimation at the base station, although at the cost of some per-
formance degradation. In this treatise, we propose low-complexity hard-input hard-output, hard-input soft-
output, as well as soft-input soft-output quantum-assisted multiple symbol differential detectors (MSDDs)
that perform equivalently to the optimal, but highly complex maximum a posteriori probability MSDDs in
multiuser systems, where the users are separated both in the frequency domain and in the time domain.When
using an MSDD, the detection of a user’s symbols is performed over windows of differentially modulated
symbols; hence, they exhibit an increased complexity with respect to the conventional differential detector
while simultaneously improving the performance of the system, especially at high Doppler frequencies.

INDEX TERMS Computational complexity, differential modulation, Dürr-Høyer algorithm, EXIT chart,
Grover’s quantum search algorithm, multiple input multiple output, multiple-symbol differential detection,
non-coherent detection, orthogonal frequency division multiplexing, quantum computing.

LIST OF ABBREVIATIONS
AWGN Additive White Gaussian Noise
BBHT Boyer, Brassard, Høyer, Tapp
BER Bit Error Ratio
CD Classical Domain
CDD Conventional Differential Detector
CF Cost Function
CFE Cost Function Evaluation
CoMP Cooperative Multi-cell Processing
CSI Channel State Information
DAPSK Differential Amplitude and Phase Shift Keying
DEC Decoder
DFDD Decision-Feedback Differential Detectors
DHA Dürr-Høyer Algorithm
DPSK Differential Phase Shift Keying
DSS Direct Sequence Spreading
EPA Extended Pedestrian A

ES Early-Stopping
EXIT EXtrinsic Information Transfer
FBKT Forward and Backward Knowledge Transfer
FKT Forward Knowledge Transfer
HIHO Hard-Input Hard-Output
HISO Hard-Input Soft-Output
IFFT Inverse Fast Fourier Transform
IpS Iterations per Search
MAA MAximum Approximation
MAP Maximum A posteriori Probability
MBER Minimum Bit Error Ratio
ML Maximum Likelihood
MSDD Multiple Symbol Differential Detector
MSDSD Multiple Symbol Differential Sphere Detector
MUA MUlti-input Approximation
MUD Multi-User Detection
NE Neighbour Exploitation
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OFDM Orthogonal Frequency Domain
Multiplexing

PSAM Pilot Symbol Assisted Modulation
QCA Quantum Counting Algorithm
QCR Quantum Control Register
QD Quantum Domain
QMSDD Quantum-assisted Multiple Symbol

Differential Detection
QMUD Quantum-assisted Multi-User Detection
QSA Quantum Search Algorithm
QWSA Quantum Weighted Sum Algorithm
SDMA Spatial Division Multiple Access
SISO Soft-Input Soft-Output
SNR Signal to Noise Ratio
SSCH Slow SubCarrier Hopping
Star-QAM Star-Quadrature Amplitude Modulation
TC Turbo Coding
USSCH Uniform Slow SubCarrier Hopping

I. INTRODUCTION
When a fading channel’s state experiences small fluctuations
over several transmission periods, it is typically termed as a
quasi-static channel, which hence only has to be estimated
infrequently, hence imposing a moderate complexity. The
channel estimation may be based on training by transmit-
ting known pilot symbols to the receiver [1], [2]. Given the
knowledge of the transmitted pilot symbol, the channel state
may be estimated by comparing it to the noisy received pilot
signal. In practice, the channel estimation does not offer
perfect estimates of the channel states [3]–[5] due to a number
of reasons, such as the limited number of pilots used, the
dynamic nature of the channels and the noise. Semi-blind
channel estimation [6], [7], which uses a reduced number
of pilot signals, as well as totally blind channel estima-
tion dispensing with pilots [8]–[10] may also be used for
quasi-static channels.

When a fading channel’s state changes rapidly between
transmissions due to its high Doppler frequency, the
density of pilot symbols in a Pilot Symbol Assisted Mod-
ulation (PSAM) frame [33] should be increased. When the
density of the pilot symbols in a frame is increased, the
effective throughput of the system is reduced. If the Doppler
frequency of a fading channel is excessive, it may become
infeasible to try and estimate the channel states, whilst
simultaneously supporting an adequate throughput, since the
density of pilot symbols required for performing accurate
channel estimation will be too high.

Imperfect channel estimation in a multiple-access system
results in a degradation of the performance of the
Multi-User Detectors (MUD) [12], even though it gives a
more realistic view of a practical system. In the emerging
mm-Wave communication [34] and massive multiple input
multiple output [3], [35]–[37] eras the number of transmit
and receive antenna elements may be over 100 at each
terminal, hence the total number of channels invoked in a

single transmission may be over 104, essentially making the
accurate estimation of their channel states impractical.

The family of non-coherent data detection
schemes [3]–[5] relies on no channel estimation, for the sake
of avoiding the computational complexity imposed by the
channel estimation algorithms. Furthermore, since channel
estimation is not required, apart from a reference symbol for
each detection window, there is no need for pilot signals to
be transmitted for this purpose, hence actually resulting in a
higher system throughput and more efficient channel usage.
On the other hand, the performance of a system relying on a
non-coherent detector is worse than that of a system using a
coherent detector as detailed in [3].

In the multiple access systems considered in this paper,
the users’ transmissions are orthogonal to each other in
either the time domain, the frequency domain or the code
domain and hence they may be readily separated without
estimating their Channel State Information (CSI). Hence
in this treatise we will focus our attention on differential
modulation [3] and more specifically on Differential
Phase Shift Keying (DPSK) [38]–[41]. In DPSK, the
symbol transmitted in the tth time slot depends on
the symbol transmitted during the (t − 1)st time slot.
It should be noted that multi-level differential modulation
schemes, such as Differential Amplitude and Phase Shift
Keying (DAPSK)/Star-Quadrature Amplitude Modula-
tion (Star-QAM) [42]–[44], may also be employed for
achieving higher throughput and frequency efficiency.
At the receiver side, the non-coherent Conventional Differen-
tial Detector (CDD) [38]–[40] performs the inverse procedure
and extracts the transmitted symbol based on the previ-
ously detected, differentially modulated symbol. The Mul-
tiple Symbol Differential Detector (MSDD) [38], [45], [46]
makes a decision concerning all the most recent (Nw − 1)
differentially modulated and transmitted symbols, based
on the most recent Nw received signals, where Nw is the
decision window width. If we have Nw = 2, then the
MSDD becomes equivalent to the CDD. It is expected
that the higher the value of Nw, the more computationally
demanding the MSDD becomes, but at the same time the
BER performance of the system is improved. The classical
Maximum Likelihood (ML) MSDD [3] is considered as the
optimal but high-complexity non-coherent Hard-Input Hard-
Output (HIHO) MSDD. Both the Decision-Feedback Dif-
ferential Detector (DFDD) [39], [47]–[49] and the Multiple
Symbol Differential Sphere Detector (MSDSD) [50]–[52]
are attractive non-coherent detectors, since they offer a near-
optimal performancewith respect to theMSDDwhilst impos-
ing a reduced complexity. The Soft-Input Soft-Output (SISO)
versions of the MSDD [45], namely the DFDD [53]–[55]
and the MSDSD [56] may be integrated into an iterative
receiver, where extrinsic information is exchanged between
the channel decoders and the multiple symbol detectors as
detailed in [3]. In a severe multipath fading environment,
both the coherent and non-coherent data detection schemes
experience a degraded performance [3]. However, fast fading
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FIGURE 1. Selected contributions in the field of quantum search algorithms and applications of quantum computing in wireless systems.

has a more catastrophic impact on differentially encoded
systems with non-coherent signal detection, due to the
assumption engraved in the methodology of such systems
that the channel coefficients of two consecutive symbols are
identical [3].

The optimization procedures invoked by the MSDDs for
finding the most likely decision candidate for the transmitted
multi-level symbols may be successfully implemented at the
cost of a reduced number of Cost Function Evaluations (CFE)
with the aid of quantum computing [57]–[59]. More specifi-
cally, Grover’s Quantum Search Algorithm (QSA) [31], [32]
may be invoked, which successfully solves a specific search
problem by finding a specific entry in a database of
N candidates by requiring as few as O(

√
N ) queries, while

classically we have to perform O(N ) queries. The more
advanced Dürr-Høyer Algorithm (DHA) [21] finds the
particular index that corresponds to the minimum entry in
an N -element database by also requiring as few as O(

√
N )

queries, while the optimal classical algorithm needs N
queries. Fig. 1 summarizes the main contributions in quantum
search algorithms, including their applications in the
detection problems of wireless systems.

In the context of multiple-stream detection in wireless
communications, in their seminal paper Imre and Balazs
proposed a low-complexity HIHO Quantum-assisted
MUD (QMUD) [17] based on the Quantum Counting
Algorithm (QCA) [23], [24]. Furthermore, we have also
proposed a number of QMUDs [12]–[14], [60], which
achieve a HIHO and a SISO performance equivalent to
those of the ML MUD and of the Maximum A posteriori
Probability (MAP) MUD, respectively, while imposing
a substantially reduced number of CFEs, especially in
high-dimensional rank-deficient systems having more
transmitters than receivers, hence exhibiting a non-invertible

channel matrix. All the aforementioned detectors require
the accurate knowledge of all the CSIs. The complexity
of the related multiple-stream detectors may be quanti-
fied in terms of the number of database queries or CFEs
performed [12], [14], [24], [31].
Based on the current state-of-the-art, our novel

contributions are:
1) We propose attractive low-complexity HIHO,

Hard-Input Soft-Output (HISO) and SISO
Quantum-assisted MSDDs, which require no knowl-
edge of the CSI, hence eliminating the computational
complexity that would be required by the channel
estimation procedure for providing accurate channel
estimates. More specifically,
• We conceive both the SISO DHA-aided QMSDD
relying on MUlti-input Approximation (MUA)
and the DHA-aided Quantum Weighted Sum
Algorithm (QWSA) assisted QMSDD, both of
which achieve a performance equivalent to that of
the MAP MSDD, while requiring a substantially
lower number of CFEs than the MAP MSDD.

• We design the DHA-aided MAximum Approx-
imation (MAA) QMSDD, which may be used
for non-iterative soft-output data detection
and has a lower number of CFEs sthan the
DHA-MUAQMSDDand theDHA-QWSAQMSDD.

• We propose the HIHO DHA-based and Early-
Stopping-aided (ES) DHA QMSDD, followed by
comparing their performances to that of the
optimal HIHO ML MSDD.

2) The QMSDDs are employed in multi-user Direct
Sequence Spreading (DSS) and Slow SubCarrier
Hopping (SSCH)-aided Spatial Division Multiple
Access (SDMA) systems intrinsically amalgamated
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FIGURE 2. Summary of the sections of the paper.

with Orthogonal Frequency Domain Multiplex-
ing (OFDM), where the users are separated in the
frequency, time or code domain. The QMSDDs’
performance is evaluated based on their Bit Error
Ratio (BER) versus Eb/N0 plots, as well as on EXtrinsic
Information Transfer (EXIT) charts.

3) A novel methodology is designed for deterministically
initializing the DHA for the proposed QMSDDs for the
sake of reducing the receiver’s complexity by exploiting
the CDD.

4) For further lowering the detector’s complexity invoked
in our iterative receivers, the SISO QMSDDs are not
activated during every singleMSDD - DECoder (DEC)
iteration, whilst mitigating the resultant performance
degradation.

5) The effect of the detection window length Nw employed
in the QMSDDs, that of the interleaver length and
of the SSCH period on the QMSDDs’ performance is
investigated.

The rest of the paper is structured as depicted in Fig. 2.
In Section II we analyse the DPSK modulation scheme,
the ML MSDD and the MAP MSDD in the context of a
DSS/SSCH SDMA-OFDM system. In Section III we present
the quantum search algorithms, as well as the necessary
quantum computing background, while in Section IV we
propose the HIHO, HISO and SISO QMSDDs. Furthermore,
we exploit the CDD for deterministically initializing the
QMSDD in Section V and employ the QMSDD every
IpS number of QMSDD-DEC iterations in Section VI.
Section VII investigates the effect that the detection

window length and the SSCH period have on the
system’s performance. Finally, our conclusions are offered
in Section VIII.

II. DSS/SSCH SDMA-OFDM SYSTEM MODEL
USING NON-COHERENT DETECTION
The DSS/SSCH SDMA-OFDM system model relying on
non-coherent detection [3] is presented in Fig. 3. The system
supportsU users, each of whom encodes his / her information
bits {bu}, u ∈ {1, 2, . . . ,U}, using a turbo convolutional
encoder, resulting in the encoded bit sequence {cu}.

After the encoded bit sequence has been interleaved, the
bit sequence {du} is separated intoW parallel streams, where
W is the number of subcarriers associated to each user. Let
us assume that Q subcarriers are available in our system
and that the length of each user’s symbol stream is equal
to 0 symbols. Therefore, we have W ≤ Q, W ≤ 0 and
mod (0,W ) = 0. It should be noted at this stage that the user-
specific scheduling of the subcarrier allocation algorithm is
assumed to change every Th OFDM symbol periods. The sub-
carrier allocation procedure follows the DSS-aided Uniform
SSCH (USSCH) [13] algorithm performed at the BS.

Each parallel stream is differentially encoded by the
DMPSK Symbol Mapping block of Fig. 3. Let us
assume that conventional M -ary PSK modulation having a
mapping setM= {2πm/M; m = 0, 1, . . .M − 1} is chosen.
Furthermore, we omit the user subscript without any loss
of generality, since the same procedure occurs at each
user’s terminal. The first transmitted symbol s[0] is termed
as the reference symbol, which is assumed to be known
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FIGURE 3. System model of a direct-sequence and slow subcarrier-hopping aided SDMA-OFDM system with differential modulation and a receiver with
non-coherent MSDD.

at the receiver. After log2(Mc) bits have been mapped to an
Mc-ary PSK symbol x[t] during the tth time slot, the resultant
symbol is multiplied by the symbol transmitted during the
(t − 1)st time slot s[t − 1], as encapsulated in

s[t] = s[t − 1] · x[t]. (1)

Then, s[t] is buffered at the transmitter for encoding s[t + 1],
following (1).

Each of the W differentially encoded symbol sequences
{su,w} of the uth user are then mapped to the respective
subcarriers based on the schedule received by the BS. The
differential detection carried out at the receiver is based on the
assumption that the multipath Rayleigh channel states change
very slowly in that specific domain where the differential
encoding took place. In this treatise we have opted for the
differential encoding to take place in the time domain, hence
the channels are assumed to experience slow fading. Since
the subcarrier allocation schedule changes every Th OFDM
symbol periods for each user, it is not reasonable to assume
that the channel state of the uth user on the qth subcarrier will
be similar to that of the same user on the jth subcarrier after
a new subcarrier allocation schedule associated with j 6= q.
Therefore, the differential encoding procedure of theDMPSK
symbol mapping block seen in Fig. 3 occurs in blocks of Th
symbols on each of the W parallel streams of the uth user.
This architecture ensures that a new reference symbol is trans-
mitted every time the subcarriers the uth user transmits on
are changed. A visual representation of Nw and Th is depicted
in Fig. 4. It is logical to expect that when Th is increased,
the channel-correlation between the differentially encoded

FIGURE 4. Visual representation of Th and Nw for the uth user on the
qth subcarrier.

symbols is also increased. Therefore, if an MSDD is used
in conjunction with Nw = Th, the performance will be
improved. However, at the same time, the complexity of the
MSDD becomes higher. Furthermore, in the same scenario,
the users who have been allocated gravely faded subcarriers
suffer from prolonged frames, since the channel states vary
slowly.

Following the SSCH mapper of Fig. 3, the OFDM mod-
ulator modulates the symbols of each user by performing a
Q-point Inverse Fast Fourier Transform (IFFT). The symbols
are then spread in the time domain by a DSS spreader, using a
user-specific spreading sequence associated with a spreading
factor of SF . Let us use G = SF-chip Walsh-Hadamard
spreading codes, which are orthogonal to each other. The
allocation of the G number of WH spreading codes to the U
users may be performed as in⌊

U
G

⌋
+

{
1 if g < mod(U ,G)
0 if g ≥ mod(U ,G),

(2)

where g ∈ {1, 2, . . . ,G}. Following the DSS spreading
scheme in Fig. 3 in the time domain, the symbols are
transmitted over multipath Rayleigh channels to the BS.

In this treatise the systems we investigate have users
supported by the same DSS code allocated to different sub-
carriers. Therefore, there is no need to perform non-coherent
multi-user detection in the spatial domain, since there will
be no users who interfere with each other, because we use
orthogonal WH codes. These scenarios assist us in focusing
our attention on non-coherent MSDD, rather than on non-
coherent MUD.

Still considering Fig. 3, after the signals of the U users
have been transmitted, they are received by the P receive
AEs at the BS. Naturally, the users who transmit on differ-
ent subcarriers do not interfere with each other, since they
are separated in the frequency domain. In this treatise we
assume the employment of a synchronous system, therefore
all the received signals are synchronously superimposed at
the pth receive AE, with p ∈ {1, 2, . . . ,P}. Furthermore,
Additive White Gaussian Noise (AWGN) is added at each
receive AE, having a zero mean and a variance of N0 = 2σ 2.
The DSS despreader of Fig. 3 then despreads the signals
received on each receive AE in the time domain. At this
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stage, the users who transmit on the same subcarrier and have
been allocated different orthogonal DSS codes are separated.
Afterwards, the received OFDM symbol is demodulated on
the pth receive AE chain by using the Q-point FFT. Finally,
the demodulated symbols transmitted on different subcarriers
are dehopped and fed to the MUD / Differential Detector.

For the analysis of differential detectors, let us focus our
attention on the signal processing of the qth subcarrier and
the pth receive AE chain. Let us assume that Ug,q users
have been allocated the gth DSS code on the qth subcarrier,
Uq users transmit on the qth subcarrier, with 1 ≤ Uq ≤ U ,
while Gq different DSS codes are present on the qth subcar-
rier, with 1 ≤ Gq ≤ G. Since in our differential detection
scenarios we allow atmost one user belonging to a single DSS
group to transmit on the qth subcarrier, we have Uq = Gq
and Uq,g = 1. Therefore, the signal rp,q received in our
synchronous DSS/SSCH SDMA-OFDM system on the
qth subcarrier at the pth receive AE is expressed as [3]

rp,q = c̄GqH̄p,qs̄q + np,q, (3)

where c̄Gq is the (SF ×Uq) = (SF ×Gq)-element matrix that
contains the DSS codes of the Uq users on the qth subcarrier,
as in [3]

c̄Gq = [c1, . . . , c1︸ ︷︷ ︸
Uq,1=1

, c2, . . . , c2︸ ︷︷ ︸
Uq,2=1

, . . . , cGq , . . . , cGq︸ ︷︷ ︸
Uq,Gq=1

] (4)

= [c1, c2, . . . , cGq ], (5)

where cg is the gth DSS code, represented by a
(SF × 1)-element vector as in

cg =
[
cg[1], cg[2], . . . , cg[SF]

]T
, (6)

and cg[i] is the value of the ith chip of the gth DSS code,
with g ∈ {1, 2, . . . ,Gq} and cg[i] ∈ {− 1

√
SF
,+ 1
√
SF
}.

Furthermore, the H̄p,q matrix in (3) represents the (Uq×Uq)-
element FD-CHTF matrix of the channel states on the
qth subcarrier between the Uq users and the pth receive AE,
which is represented as [3]

H̄p,q = diag
[
h(1)p,1,q, h

(1)
p,2,q, . . . , h

(1)
p,Gq,q

]
(7)

= diag
[
hp,1,q, hp,2,q, . . . , hp,Gq,q

]
, (8)

where h(i)p,g,q is the complex-valued channel state in the
frequency domain on the qth subcarrier between the ith user
in the gth DSS code group and the pth receive AE, where
the fact that we have Uq,gq = 1 was exploited, with
gq ∈ {1, 2, . . . ,Gq}. Since in our non-coherent scenarios we
have allowed only one user, if any, from a single DSS code
group to be mapped to a subcarrier, we have i = 1 if the gth
DSS code is present on the qth subcarrier. Therefore, we may
omit the superscript (i) corresponding to the user index in the
gth DSS code group. Moreover, the (Uq×1)-element symbol
vector s̄q in (3) represents the differentially encoded symbols

of the Uq users who transmit on the qth subcarrier, as in [3]

s̄q =
[
s(1)1,q, s

(1)
2,q, . . . , s

(1)
Gq,q

]T
(9)

=
[
s1,q, s2,q, . . . , sGq,q

]T
, (10)

where s(i)g,q is the differentially encoded symbol transmitted
by the ith user of the gth DSS group on the qth subcarrier.
Once again, in our system we have i ∈ {0, 1}, therefore we
may omit the superscript (i) as we did in (10). Finally, the
(1 × SF)-element noise vector np,q with zero mean and a
variance equal to N0 = 2σ 2 is represented as [3]

np,q =
[
np,q[1], np,q[2], . . . , np,q[SF]

]T
. (11)

After the DSS despreading procedure, the (Gq × 1)-element
symbol vector mapped to the qth subcarrier at the pth receive
AE chain ȳp,q is equal to [3]

ȳp,q = čGqrp,q (12)

= R̄Gq H̄p,q s̄q + n̄p,q, (13)

where čGq is the (SF × Gq)-element code book, containing

all the different DSS codes that appear on the qth subcarrier,
as in [3]

čGq =
[
c1, c2, . . . , cGq

]T
, (14)

where cg is the DSS code presented in (6). In our system,
where a maximum of one user of the gth DSS code group is
allowed to transmit on the qth subcarrier, we have

čGq =
(
c̄Gq

)T
, (15)

where c̄Gq is given in (5). In (13), the (Gq× 1)-element noise
vector n̄p,q represents the effective noise and is given in

n̄ = čGqnp,q (16)

=
[
np,1,q, np,2,q, . . . , np,Gq,q

]T
. (17)

Finally, R̄Gq in (13) is the (SF × Uq)-element
cross-correlation matrix of the Gq DSS codes that are present
on the qth subcarrier, as formulated in

R̄Gq =


ω11 ω12 · · · ω1Gq
ω21 ω22 · · · ω2Gq
...

...
. . .

...

ωGq1 ωGq2 · · · ωGqGq

, (18)

where ωi,j is the cross-correlation between the ith and the
jth DSS code, where Uq,i = 1 was exploited. Since we
have chosen orthogonal WH codes in our system, the cross-
correlation matrix in (18) is equal to the identity matrix,
because we have:

ωi,j =

{
1 if i = j
0 if i 6= j.

(19)

In the end, the signal ȳp,q in (13) becomes

ȳp,q = R̄Gq H̄p,q s̄q + n̄p,q. (20)
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In the following sections the same differential detection
processwill be applied for every user’s symbol stream, having
been allocated a DSS code and transmitting on their allocated
subcarriers, therefore we may omit the u, g and q subscripts
without any loss of generality.

A. CONVENTIONAL DIFFERENTIAL DETECTOR
The signals received during the (t − 1)st and tth time slots at
the pth receive AE are

yp[t − 1] = hp[t − 1] · s[t − 1]+ np[t − 1] (21)

yp[t] = hp[t] · s[t]+ np[t], (22)

respectively, where hp[t − 1] and hp[t] denote the channel
states at the (t− 1)st and tth time slots, respectively, between
the user and the pth receive AE, while np[t − 1] and
np[t] are the AWGN samples imposed on the pth receive
AE at the (t − 1)st and tth time slots, respectively. Each of
the noise samples np[t − 1] and np[t] have zero mean and a
variance of 2σ 2. Assuming that the transmissions occur over
slow-fading channels, we have

hp[t − 1] = hp[t], ∀p = 1, 2, . . . ,P (23)

for every time slot that corresponds to the same transmitted
frame after the most recent reference symbol was transmitted.
It should be noted that (23) represents the main assumption
of non-coherent detection, but it does not imply that
hp[t − 1] = hp[t] is necessarily true in the actual channel.
Therefore, the more the channel varies in time, the more inac-
curate the assumption in (23) becomes, and hence the worse
the performance of the non-coherent detector is expected
to be. By substituting (23) into (21) and (22), we arrive at:

yp[t] = hp[t − 1] · s[t − 1] · x[t]+ np[t] (24)

= yp[t − 1] · x[t]+ np[t]− np[t − 1] · x[t]︸ ︷︷ ︸
n′p[t]

. (25)

Therefore, the M -ary symbol x[t] may be obtained by
following the same procedure as in a single-input multiple-
output channel, where yp[t − 1] is the reference signal, or the
‘‘known’’ channel state, and n′p[t] is the effective noise with
a variance of 4σ 2, since np[t] and np[t − 1] are added. The
resultant decision concerning x[t] is performed as in

x[t] = argmin
x∈M


∣∣∣∣∣∣x −

P∑
p=1

yp[t]
yp[t − 1]

∣∣∣∣∣∣
2
, (26)

where yp[t − 1] and yp[t] are described in (21) and (22),
respectively. The advantage of detecting the desired symbol
without requiring an estimate of the channel state is gleaned
at the cost of a 3 dB penalty due to the noise [3]. Even though
a higher transmission power is required in non-coherent
systems for achieving the same performance as their coherent
counterparts, the complexity of the non-coherent receivers is
typically much lower.

It should be noted that we employ a practical system,
where we experience continuous Rayleigh fading at the
subcarriers. Therefore, if the normalized Doppler frequency
of the independent Rayleigh channels on each tap of the
multipath channel model is equal to fd and we have
Q subcarriers, the effective Doppler frequency between the
channel states of two consecutively received symbols on the
qth subcarrier is equal to

Fd = fd · Q. (27)

In other words, the effective channel that a subcarrier
experiences in the time domain has a Doppler frequency of
Fd given by (27).

B. EFFECT OF TIME-SELECTIVE CHANNELS
The DPSKmodulation may be performed for the consecutive
symbols in the time domain, for consecutive OFDM symbols
of the same subcarriers. It may also be carried out in the
frequency domain, by differentially encoding the symbols of
the adjacent subcarriers of the same OFDM symbol. In this
treatise, we will proceed by applying differential modulation
in the time domain. Therefore, according to the slow-fading
assumption made in (23) about the channels, time-selective
channels are expected to impose a major effect on the
differential detection in our systems. This is characterized
by the autocorrelation function of the channel states between
the uth user and the pth receive AE on the qth subcarrier,
which is [3]

φthh[κ] , E
{
hp[t + κ] · h∗p[t]

}
= J0 (2πFdκ), (28)

where J0(·) is the zeroth-order Bessel function, fd is the
normalized Doppler frequency of the channels, while Fd is
the effective normalized Doppler frequency of the channels
as described in (27).

C. MAXIMUM LIKELIHOOD MULTIPLE SYMBOL
DIFFERENTIAL DETECTOR [3]
The performance of the CDDmainly depends on the accuracy
of the detection, since every decision made for the most
recently received symbol affects the detection of the next
symbol. The MSDD performs detection on Nw consecutively
received symbols with Nw > 2. The BER performance
of the MSDDs is assumed to be better than that of the
CDD, since the correlation between the phase distortions
of symbols that were transmitted with more than one sym-
bol period difference is also taken into consideration in the
detection. On the other hand, the complexity of any MSDD
is higher than that of the CDD, since the problem becomes
a ‘‘shortest-vector’’ problem [3] and the pool of legitimate
candidates increases exponentially with Nw. Since the refer-
ence symbol is known to the receiver, the MSDD performing
detection over Nw received symbols determines the estimates
of (Nw − 1) symbols.
As in the CDD section, the following analysis takes

place at the differential detection stage of Fig. 3. We focus
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our attention on the uth user, having been assigned the
gth DSS code and transmitting on the qth subcarrier, therefore
we omit the subscripts u, g and q. Furthermore, the symbols
described in (20) are assumed to be available. The number of
OFDM symbols transmitted between two reference symbols
is equal to Th.
Since the detection is performed in blocks of Nw symbols,

with the consecutive blocks overlapping by one symbol, the
ith received symbol vector, i ∈ {1, 2, . . . ,Th/Nw}, at the
pth receive AE consisting of Nw consecutively received
symbols in the time domain is

yp[i] , [yp[Nw · i− (Nw − 1)], yp[Nw · i− (Nw − 2)],

. . . , yp[Nw · i]]T. (29)

The received symbol vector of (29) is exploited by the
MSDD for estimating the ith Nw-element transmitted symbol
vector ŝ[i], which corresponds to the ith actually transmitted
symbol vector

s[i] , [s[Nw · i− (Nw − 1)], s[Nw · i− (Nw − 2)],

. . . , s[Nw · i]]T , (30)

which in turn is the differentially encoded version of the
(Nw − 1)-element symbol vector

x[i] , [x[Nw · i− (Nw − 2)], x[Nw · i− (Nw − 3)],

. . . , x[Nw · i]]T . (31)

The objective of the MSDD is to find the best estimate x̂[i] of
the symbol vector in (31). The MSDD performs detection on
a block-by-block basis, therefore we may omit the subscript i
in (29), (30) and (31) from our analysis, resulting in

yp , [ yp[1], yp[2], . . . , yp[Nw]]T, (32)

s , [ s[1], s[2], . . . , s[Nw] ]T , (33)

x , [ x[2], x[3], . . . , x[Nw] ]T . (34)

The conditional PDF of the received symbol vector y of (32)
over Nw consecutive OFDM symbols, given that the symbol
vector s of (33) was transmitted, is [50]

p(Y|s) =
exp

(
−Tr

{
YH9−1Y

})
(det {π9})P

, (35)

where Y is the (Nw × P)-element matrix that contains the
P number of received symbol vectors yp, p ∈ {1, 2, . . . ,P},
as in

Y = [y1, y2, . . . , yP] (36)

and Tr{·} yields the trace of a square matrix. Furthermore,

9 = E
{
ypyHp |s

}
is the (Nw × Nw)-element conditional

autocorrelation matrix of the Rayleigh channel. The con-
ditional autocorrelation matrix of the Rayleigh channel 9
in (35) depends on the transmitted symbol vector s, the noise
variance N0 and the normalized Doppler frequency Fd ,
therefore it is the same for each of the P receive AEs,

hence allowing us to omit the subscript p from the following
discussion of 9. It may be expanded as

9 = E
{
yyH |s

}
(37)

= diag(s) · E
{
hhH

}
· diag(sH )+ E

{
nnH

}
(38)

= diag(s) ·
(
E
{
hhH

}
+ 2σ 2

· INw
)
· diag(sH ) (39)

= diag(s) · C · diag(sH ), (40)

where C , E
{
hhH

}
+ 2σ 2

· INw and diag(s) is a diagonal
matrix with the vector s on its diagonal. Since we have chosen
to differentially encode the symbols in the time domain,
6h may be represented as

6h = E
{
hhH

}
(41)

= σ 2
h ·


φthh[0] φthh[1] · · · φthh[Nw − 1]
φthh[1] φthh[0] · · · φthh[Nw − 2]
...

...
. . .

...

φthh[Nw−1] φthh[Nw−2] · · · φthh[0]

,

where σ 2
h is the variance of the channel and φthh[κ],

k ∈ {0, 1, . . . ,Nw − 1}, is the autocorrelation function of the
channel states in the time domain, which is stated in (28).

In non-coherent receivers, where no channel coding has
been applied, the performance of HIHO MSDDs will be
equivalent to the performance of SISOMSDDs, provided that
the legitimate symbols are transmitted with equal probability,
but the required complexity is smaller. In HIHOMSDDs, the
detection is performed by finding that particular multi-level
symbol estimate x̂ of (34), or, equivalently, ŝ of (33), which
minimizes a specific metric, thus transforming the problem
into a ‘‘shortest-vector’’ problem [50]. More specifically, the
ML MSDD detects that particular symbol vector ŝ, which
maximizes the probability of ŝ having been transmitted, given
that the symbol matrixY has been received, or, in other words

ŝML = argmax
s∈MNw

(P(s|Y)) = argmax
s∈MNw

(
p(Y|s) · P(s)

p(Y)

)
(42)

where the Bayes’ theorem [61], [62] was applied. Still refer-
ring to (42), p(Y|s) is the conditional probability of having
received the symbol matrix Y, given that s was transmitted
as in (35), P(s) is the a priori probability of the symbol
vector s to have been transmitted and p(Y) is termed as the
system model probability, which represents the probability
of having received Y. Considering that a HIHO receiver is
non-iterative and that the transmitter generated the source bits
equiprobably, the values of p(Y) and P(s) are the same for
every legitimate s.

The conditional PDF p(Y|s) in (35) is the MLmetric of the
HIHOMSDD. Therefore, based on (42), the detected symbol
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vector ŝ will be the vector that satisfies

ŝML = argmax
s∈MNw

(
p(Y|s)

)
(43)

= argmin
s∈MNw

(
Tr
{
YH9−1Y

})
(44)

= argmin
s∈MNw

(
Tr
{
YH diag(s)C−1 diag(s)H Y

})
(45)

= argmin
s∈MNw

P∑
p=1

(
sH · diag(yp) · C−1 · diag(yp)H · s

)
(46)

= argmin
s∈MNw

P∑
p=1

(
sH · diag(yp) · FH · F · diag(yp)H · s

)
,

(47)

where (40) was used and F is an upper-triangular matrix
obtained by the Cholesky factorization of C−1 and satisfies

C−1 = FH F. (48)

By defining the upper-triangular matrix Up for
p = 1, 2, . . . ,P as

Up , F diag(yp)H = F diag(yp)∗ (49)

and substituting it in (47) we obtain

ŝML = argmin
s∈MNw

P∑
p=1

(
sH · UH

p · Up · s
)

(50)

= argmin
s∈MNw

P∑
p=1

(
‖ Up · s ‖22

)
. (51)

The ML MSDD performs optimally by exhaustively
searching the entire set MNw−1 for the symbol vector s that
satisfies (51). Therefore, the Cost Function (CF) of the HIHO
MSDD is

f HIHOMSDD(s) =
P∑
p=1

(
‖Up · s‖22

)
. (52)

D. MAXIMUM A POSTERIORI PROBABILITY MULTIPLE
SYMBOL DIFFERENTIAL DETECTOR [3]
When channel coding is used, the decoding procedure yields
improved estimates of the source’s bits, especially, when
the inputs of the decoder are soft estimates of the encoded
bits. Therefore, the MSDDs should provide the decoder
these soft estimates by generating extrinsic bit-based or
symbol-based LLRs. Moreover, the BER performance of
the system is further improved, if information is allowed to
be transferred from the decoder to the MSDD, resulting in
iterations between the MSDD and the decoder. In this case,
the MSDD should be capable of accepting soft inputs in
terms of the a priori LLRs of the encoded bits. The a priori
LLRs provided by the decoder affect the calculation of the
extrinsic LLR.

Based on (35), (47) and (51), the a posteriori LLR of
the tth symbol’s mth bit, with t ∈ {2, 3, . . . ,Nw} and
m ∈ {1, 2, . . . , log2(Mc)}, at the output of the MAPMSDD is

LMSDD,apo
(
b(m)t

)
= ln

P
(
b(m)t = 0 | Y

)
P
(
b(m)t = 1 | Y

) (53)

= ln
p
(
Y | b(m)t = 0

)
· P
(
b(m)t = 0

)
/p(Y)

p
(
Y | b(m)t = 1

)
· P
(
b(m)t = 1

)
/p(Y)

(54)

= ln

∑
x∈χ (t,m,0)

exp
(
−Tr

{
YH9−1Y

}
+ ln (P(x))

)
∑

x∈χ (t,m,1)
exp

(
−Tr

{
YH9−1Y

}
+ ln (P(x))

) (55)

= ln

∑
x∈χ (t,m,0)

exp

(
−

P∑
p=1

(
‖Up · s‖22

)
+ ln (P(x))

)
∑

x∈χ (t,m,1)
exp

(
−

P∑
p=1

(
‖Up · s‖22

)
+ ln (P(x))

) ,
(56)

whereχ (n,m, v) =
{
MNw | b(m)n = v

}
is the set that includes

the specific multi-level symbols of MNw of which the
(n · log2(Mc)+m)th bit is equal to v. Furthermore, assuming
that the bits of a symbol are independent, the symbol-based
a priori LLR P(x) is equal to

P(x) = P
(
b(1)2

)
· · ·P

(
b(log2(Mc))
2

)
·P
(
b(1)3

)
· · ·P

(
b(log2(Mc))
Nw

)
. (57)

The extrinsic LLR of the nth symbol’s mth bit is calculated
by removing the contribution of the bit-based a priori LLR
that corresponds to b(m)n , as in

Lm,ex
(
b(m)n

)
= Lm,apo

(
b(m)n

)
− ln

P
(
b(m)n = 0

)
P
(
b(m)n = 1

)
. (58)

The MAP MSDD calculates every additive term in both the
numerator and denominator of (55) that takes part in the com-
putation of the extrinsic LLR [3]. The CF in the SISOMSDD
is similar to that of the HIHO MSDD and it is extracted
from (55) as in

f SISOMSDD(x) = −Tr
{
YH9−1Y

}
+ ln (P(x)) (59)

Therefore, when an Mc-ary modulation scheme is employed
and the detection window of the MSDD has a size
ofNw symbols, the complexity of theMAPMSDD is equal to

CMAP =
MNw−1
c

(Nw − 1) log2(Mc)
, (60)

where (Nw − 1) was used instead of Nw, since the reference
symbol is known at the receiver.
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III. QUANTUM SEARCH ALGORITHMS
In quantum computing, the equivalent of the classical bit
is the quantum bit, or qubit.1 A qubit |q〉 may be found
in the |0〉 or |1〉 states, or any superposition of the two, as
encapsulated in

|q〉 = a|0〉 + b|1〉, (61)

where a, b ∈ C and |a|2 + |b|2 = 1. When we desire
to observe a qubit’s state, we have to ‘‘measure’’ it on an
orthonormal basis. For example, when we measure the qubit
in (61) on the computational basis {|0〉, |1〉}, we have |a|2

probability of obtaining the state |0〉 and |b|2 probability of
obtaining the state |1〉. The state of a qubit evolves by passing
it through unitary operators. One of the most commonly
used unitary operators is the Hadamard operator H , which
is defined as:

H |0〉 =
1
√
2
|0〉 +

1
√
2
|1〉 = |+〉 (62)

H |1〉 =
1
√
2
|0〉 −

1
√
2
|1〉 = |−〉. (63)

Multiple qubits may form quantum registers, allowing a
superposition of a number of states that is exponentially
increasing with the number of qubits. For instance, if we
have n = 2 qubits, they may be found in the following
superposition of states:

|q1〉|q2〉 = a|00〉 + b|01〉 + c|10〉 + d |11〉, (64)

where |a|2+|b|2+|c|2+|d |2 = 1 and |c|2 is the probability of
observing the two qubits in the |10〉 state. Let us now consider
the two qubits in (64), where a = 1/

√
2, b = 0, c = 0 and

d = 1/
√
2, resulting in the quantum state

|q1q2〉 =
|00〉 + |11〉
√
2

. (65)

By measuring only the first qubit in (65) we may observe
it in the |0〉 state with 50% probability and in the |1〉 state
with 50% probability. Let us assume that we observe it in
the |1〉 state. Automatically, the second qubit is also in the
|1〉 state with 100% probability. Therefore, the measurement
or observation of one of the qubits in (65) affects the state of
the other qubit, indicating that the two qubits are entangled.

In the context of search, let us refer to the multi-
level symbols by stating their respective decimal index
representation. For instance, in a system where U = 2
users transmit QPSK symbols, the 2-level symbol
x =

[
(+1 + j)/

√
2, (+1 − j)/

√
2
]
is demapped to [00|01]

with a decimal representation of x = 1. The integration of the
quantum algorithms with the QMSDD is depicted in Fig. 5.

1A qubit may be interpreted as a spinning coin in a black box, where it is
simultaneously in the ‘‘Heads’’ and ‘‘Tails’’ state, until it settles down and
we observe it to be either ‘‘Heads’’ or ‘‘Tails’’ after it has settled down.
The qubit may be physically implemented using different methods, such
as the spin of an electron, the polarization of a photon, or the states of a
superconductor [57], [58]. For an extensive tutorial on quantum computing
and quantum search algorithms, please refer to [14].

FIGURE 5. The DHA employed in our QMSDDs makes multiple calls to the
BBHT QSA. Grover’s QSA is not used, but it is included for terms of
completion, since the BBHT QSA uses the same Oracle OG , but may even
operate when the number of solutions is unknown. The QMSDD is
performed on a subcarrier basis. The DHA receives as input the received
signals at all the receive AEs on the qth subcarrier, the channel estimates,
the noise’s variance and the a priori LLRs. After it completes its initial
procedure, the DHA exchanges information with a classical processing
unit, which determines whether the DHA should be called again and its
search space. Finally, the QMSDD outputs the calculated a posteriori LLRs.

A. GROVER’S QUANTUM SEARCH ALGORITHM
Given a known value δ and an unsorted database representing
a function f (x), a search algorithm finds that specific x value,
for which we have f (x) = δ with ∼100%. The index x that
corresponds to the known value δ in the database is termed as
the solution to the search problem. In an N -element database,
the classical algorithms requireO(N ) queries to the database,
where O(·) represents the order of a number, while Grover’s
QSA finds a solution with ∼100% success probability after
O(
√
N ) calls [31], [32]. However, the number of legitimate

solutions S of the search problem has to be known for finding
them by Grover’s QSA [24], [31].

For an N -element database, Grover’s QSA initially
employs n = log2 N qubits to the |0〉⊗n quantum state.2

Afterwards, every qubit passes through a Hadamard gate H
resulting in the quantum state

|x〉 =
N−1∑
q=0

1
√
N
|q〉 =

N−1∑
q=0

1
√

MNw−1
|q〉, (66)

as detailed in [31] and [32]. The Grover operator
G = HP0H ·OG is then applied to the qubits, where H is the
Hadamard gate, P0 is a rotation gate that maps |x〉 to −|x〉
if and only if |x〉 = |0〉⊗n, and OG is the Oracle gate.
The Oracle operator OG evaluates the function for all the
inputs that the quantum states are superimposed in and maps
|xs〉 → −|xs〉 in (66) for those specific quantum states,
which satisfy f (xs) = δ. The diffusion operator HP0H then
evolves the resultant states in such a way so that the solution
states |xs〉 have a higher probability to be observed during a
potential measurement than the rest of the states. Therefore,
after a single application of the Grover operator, the equiprob-
able superposition of states in (66) is changed to a biased
superposition of states in the favour of the solution states.

2The n-element tensor product is defined as: |0〉⊗n =

|0〉1 ⊗ |0〉2 ⊗ · · · ⊗ |0〉n︸ ︷︷ ︸
n

= |0〉1|0〉2 . . . |0〉n︸ ︷︷ ︸
n

= |00 . . . 0〉︸ ︷︷ ︸
n

.
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After applying the Grover operator Lopt times, where

Lopt =

⌈
π

4

√
N
S

⌉
, (67)

the probability of observing the resultant GL |x〉 quantum state
and obtaining a solution is given by [31], [32]

Psuccess = sin2
[(
2Lopt + 1

)
θ
]
, (68)

where we have θ = arcsin
(√

S/N
)
.

The Oracle evaluates the CF once in the Quantum
Domain (QD) during every Grover operator. Since the actual
complexity of the Oracle will depend on the particular tech-
nology used to create it, let us continue by assuming that a
single Oracle operation is equivalent to a single CFE in the
Classical Domain (CD). In our communications application,
the Oracle evaluates the CF of (52) or (59) and therefore a
single application of the Oracle is assumed to be equivalent
to a single evaluation of the respective CF. The CF of the
MSDD does not require the knowledge of the channel states,
but it may require extra computations with respect to the CF
of the coherent detection schemes, such as the calculation of
autocorrelation function of the users’ channel states of (28)
and the conditional autocorrelation matrix of the Rayleigh
channel of (40).

B. BOYER, BRASSARD, HØYER, TAPP
QUANTUM SEARCH ALGORITHM
When the number of solutions S is not known, Grover’s
QSA cannot be employed, since we are unable to calculate
the optimal number of Grover iterations in (67). The Boyer,
Brassard, Høyer, Tapp (BBHT) QSA [14], [24] employs the
Grover operator a pseudo-random number of times, L, and
checks whether the outcome is a solution or not, by then
evaluating the function in the CD. If the outcome is a solution,
then the BBHT QSA outputs it and stops. If it is not, the pro-
cess is restarted, after updating the set that L takes its values
from in Step 2 of Algorithm 1. Finally, if a solution xs exists,
it will have been found with ∼100% success probability
before

LQDBBHT = 4.5
√
N/S (69)

Grover iterations in the QD [24]. The detailed steps of the
algorithm are presented in Algorithm 1. Since the number of
solutions S is unknown, the worst-case scenario corresponds
to S = 1, hence the BBHT QSA times out after

LQD,max
BBHT = 4.5

√
N (70)

CFEs or database queries, concluding that there is no solution
to the search problem.

C. DÜRR - HØYER ALGORITHM
The DHA [21] succeeds in finding the specific index xmin
that minimizes the function f (x) or, equivalently, corre-
sponds to the minimum entry in a database with ∼100%
probability after O(

√
N ) CFEs. The steps of the DHA are

Algorithm 1 Improved BBHT-QSA [63]

1: Set m← 1, λ← 6/5 and LQDBBHT ← 0, LCDBBHT ← 0.

2: Choose L uniformly from the set {0, . . . , bmc}.
3: Apply the G operator L times starting from the initial state |x〉

in (66), resulting in the final state |xf 〉 = GL |x〉.
4: Observe |xf 〉 in the QD and obtain |j〉.

5: Compute f (x) in the CD.

6: Update LCDBBHT ← LCDBBHT + 1 and LQDBBHT ← LQDBBHT + L.

7: if f (x) = δ or LQDBBHT ≥ L
QD, max
BBHT then

8: Set xs ← j, output xs, LCDBBHT , L
QD
BBHT and exit.

9: else
10: Set m← min

{
λm,
√
N
}
.

11: if m =
√
N then

12: Choose L uniformly from the set {1, . . . , bmc} and go to
step 4.

13: else
14: Go to step 3.
15: end if
16: end if

Algorithm 2 Deterministically-Initialised DHA [12], [13]

1: Set i← xI and LDHA ← 0, LCDDHA ← 0, LQDDHA ← 0.
2: The BBHT QSA is employed with δ ← f (i), an Oracle that

marks as solutions the states |x〉 that obey f (x) < δ and
LQD, max
BBHT ← 4.5

√
N . Obtain xs, LCDBBHT and LQDBBHT from the

BBHT QSA.

3: LCDDHA ← LCDDHA + LCDBBHT , L
QD
DHA ← LQDDHA + LQDBBHT and

LDHA ← LDHA + LCDDHA + L
QD
DHA .

4: if f (xs) ≥ f (i) or LDHA ≥ 22.5
√
N , then

5: Set xmin ← i, output xmin and exit.
6: else
7: Set i← xs and go to Step 2.
8: end if

given in Algorithm 2. Commencing from an initial index
i = xI , the DHA employs the BBHTQSA in conjunctionwith
an alternative Oracle. More specifically, the DHA’s Oracle
marks as solutions all the specific states x that satisfy
f (x) < f (i). After the call to the BBHT QSA ends, a xs has
been found, where we have f (xs) < f (i). After making i = xs,
the BBHT QSA is called again for finding another xs that
corresponds to an even smaller CF value. This process is
continued until the BBHT QSA concludes that there is no
solution to the search problem, essentially indicating that
xmin was found during the last call to the BBHT QSA. The
choice of the initial index xI was shown to be related to
the complexity of the algorithm [12], [14]. The maximum
number of CFEs performed in the QD required by the DHA
to find xmin is equal to [21]

LQD,max
DHA = 22.5

√
N , (71)

while the minimum number of CFEs performed in the CD
when the BBHT QSA evaluates the observed state in the CD
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for checking if it is a solution is [13]

LCD,min
DHA =min

(
LCDDHA

)
+1

s.t.

LCDDHA−1∑
j=0

min
(⌊
λj
⌋
,
√
N
) ≥ 4.5

√
N . (72)

IV. QUANTUM-ASSISTED MULTIPLE SYMBOL
DIFFERENTIAL DETECTION
In this section we present the proposed QMSDDs in the
uplink of a U = 4-user DSS/SSCH SDMA-OFDM system
relying on a single transmit antenna each and P = 2 receive
AEs at the BS, using QPSK modulation, Turbo Coding (TC)
with R = 1/2 rate and 8 Trellis states, as well as Q = 1024
subcarriers with a channel bandwidth of 10 MHz [64].
In contrast to the LTE standard, we will assume that all
Q = 1024 subcarriers are active. Moreover, each user
transmits on W = 512 subcarriers out of the available
Q = 1024 subcarriers and is allocated one of the G = 2
available Walsh-Hadamard DSS codes. The schedule of
the subcarrier allocation is generated by the DSS-based
USSCH [13] and it changes every Th = 13 OFDM symbol
periods, while the length of a symbol frame is equal to
12 288 symbols. Let us use the Extended Pedestrian A (EPA)
LTE channel model [64] for our example. The parameters of
the system are described in Table 1. The sampling frequency
is chosen according to the LTE standard [64], while a carrier
frequency of fc = 2.5 GHz is selected. The mobile velocity of
the EPA channel is the one that corresponds to the maximum
Doppler frequency of the channel, according to the LTE
standard [64]. All the channels are assumed to experience
Rayleigh fading. The Rayleigh fading is a complex-valued
zero-mean Gaussian process with a variance of σ 2

h [3].

A. DÜRR-HØYER ALGORITHM-BASED QMSDD
The DHA may be used for performing HIHO QMSDD. The
CF of the HIHO differential detection is stated in (51). The
effective search space has

CML = MNw−1 (73)

entries and hence the complexity of the ML MSDD
increases exponentially with the size of the detection window
2 ≤ Nw ≤ Th, requiring MNw−1 CFEs. The HIHO
MSDD’s CF is evaluated by the Oracle and accordingly,
the DHA QMSDD succeeds in finding that specific sym-
bol vector s, which minimizes the CF in (51) at a com-
plexity of O

(√
MNw−1

)
CFEs. Let us initially assume that

the DHA QMSDD is randomly initialized.
Let us proceed by comparing the DHA QMSDD to

both the ML MSDD and to the CDD in our DSS/SSCH
SDMA-OFDM system characterized in Table 1. The size
of the detection window Nw is chosen to be Nw = 5 or
Nw = 7, where Nw = 2 corresponds to an MSDD equivalent
to the CDD. The symbol detected by the MSDDs at the
Nwth position of s is the reference symbol of the subsequent
MSDD procedure.

TABLE 1. Parameters of the 4-user OFDM system.

FIGURE 6. BER performance of the DHA QMSDD, the ML MSDD and the
CDD in the DSS/SSCH SDMA-OFDM system of Fig. 3, using the parameters
summarized in Table 1. The BER performance of the coherent detection of
the same system is also included for comparison.

Fig. 6 depicts the BER performance of both the DHA
QMSDD, as well as of the MLMSDD and of the CDD in our
system scenario. Additionally, we have included the perfor-
mance of the equivalent coherent system for reference, where
the channel states have been perfectly estimated at the BS.
We may observe that the DHA QMSDD has an equivalent
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TABLE 2. Computational complexity in terms of the number
of CFEs/bit in Fig. 6.

performance to that of the MLMSDD, for both values of Nw.
At the same time, the computational complexity of the DHA
QMSDD was only 55% and 12.77% of the corresponding
complexities of the ML MSDD for Nw = 5 and Nw = 7,
respectively, as presented in Table 2. Furthermore, the
ML MSDD and the DHA QMSDD perform better than the
CDD by approximately 0.6 dB for Nw = 7. Naturally,
the BER versus Signal to Noise Ratio (SNR) improvement is
achieved at an increased complexity, since the complexity of
the CDD is 2 CFEs / bit. The BER improvement between the
scenario where Nw = 7 was used and the one where Nw = 5
was selected is 0.2 dB. This is mainly due to the fact that
since we have Th = 13, there are two and three detection
windows whenNw = 7 andNw = 5, respectively, resulting in
a similar performance. The expected 3 dB difference between
the coherent ML detection and the MSDDs is indeed present
in Fig. 6 and it becomes higher upon increasing Eb/N0 due
to the channel coding having a more beneficial effect on
coherent systems [3].

B. EARLY-STOPPING AIDED DHA-BASED QMSDD
The ES-DHA was proposed in [12]. Based on the acquired
statistics of the required number of CFEs of off-line searches
using the DHA, the ES-DHA may be able to reduce the nec-
essary complexity of the QMSDD. In more detail, when the
randomly-initialised or the deterministically-initialised DHA
finds the symbol vector ŝML of (51) after a number of BBHT
iterations, it does not realize this success until another BBHT
iteration yields a symbol vector s, which has a higher CF
value than that of the already found ŝML . By simulating a large
number of DHA searches in an off-line fashion for the same
search space size as our system’s search space, wemay gather
statistics concerning the number of CFEs that were required
for the DHA to find the solution ŝML , rather than to realize
that the solution has already been found [12]. By carefully
interpreting these statistics, we are able to perform optimal
MSDD at a reduced complexity, or allow a suboptimal per-
formance, if we operate under a strict complexity-budget in
terms of the number of CFEs.

For our scenario, the CDF curves of the number of CFEs
performed both in the CD and the QD, as well as the total
number of CFEs carried out in both domains during the DHA
searches are plotted in Fig. 7a for Nw = 7 and Eb/N0 = 13.5.
Since the initial DHA input is selected to be random, the
value of the Eb/N0 does not affect the resultant PDF and
CDF curves [12]. We simulated the DHA in our system
scenario for 12·106 independent instances. Fig. 7a shows that
in 99% of the DHA instances, the search was completed in

FIGURE 7. PDF and CDF curves of the DHA in the system scenario of
Fig. 3, using the parameters summarized in Table 1 for Nw = 7 after
12 · 106 number of independent DHA instances, before and after
subtracting the minimum total number of CFEs, equal to 314 CFEs,
required by the DHA to realize that the solution has already been
found. (a) Total number of CF evaluations. (b) Number of Grover iterations
(CF evaluations in the QD). (c) Number of CF evaluations in the CD.

fewer than 787 CFEs, or performing less than
787/4096 · 100% = 19.2% of the number of CFEs required
by the ML QMSDD. Similarly, 80% of the DHA searches
were completed after evaluating the CF of (51) at most
605 times, which forms 14.8% of the number of CFEs
per multi-level MSDD symbol vector performed in the
MLMSDDs. It should be noted at this point that the statistics
do not take into consideration the success of the search, but
only the complexity required for the search to be completed.
However, the DHA has a success probability of ∼100%,
hence in most of the instances the search is indeed successful.
By exploiting the CDF curves of Fig. 7 we may stop the DHA
in our scenario after 787 CFEs and expect a ∼99% success
probability in our search for ŝML .

By observing Fig. 7a we are also able to infer that the
minimum number of total CFEs required by the DHA to
complete its actions is 313, which forms 7.6% of the CFEs
in the MLMSDD. This is the minimum number of CFEs that
the DHA required out of 12 · 106 instances for realizing that
it had already found ŝML and this corresponds to the scenario,
where the random initial DHA input was equal to ŝML and
the minimum number of CFEs both in the CD and the QD
were performed. The probability of the random initial DHA
input to be equal to the optimal symbol index and at the same

time the DHA to require exactly 4.5
√
MNw−1
c = 288 CFEs

in the QD for finding it turned out to be equal to
1.4 · 10−5 based on the CDF seen in Fig. 7b. Furthermore,
the minimum number of CFEs performed in the CD was
equal to 25 CFEs with a probability of occurrence equal to
9 ·10−6 according to the CDF in Fig. 7c. In total, the scenario
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associated with the lowest complexity is the one, where the
random initial DHA input is equal to the optimal symbol
index and the DHA performs 288 CFEs in the QD and
25 CFEs in the CD, resulting in a total of 313 CFEs. In our
simulation instances this incident occurred with a probability
of 3 · 10−6.
These 313 CFEs did not impact the output, since the

initial DHA input was already equal to the desired output.
Therefore, the ES-DHA QMSDD considers this amount of
313 CFEs as unnecessary complexity and always subtracts
it from the affordable number of CFEs of the DHA, without
altering the success probability indicated by the CDF curves.
In other words, if we allow the DHA to run in our system
scenario for 787 CFEs and for 787−313 = 474 CFEs, which
form only 11.6% of the number of CFEs performed in the
ML MSDD, we should expect a ∼99% success probability
in both scenarios. This non-intuitive phenomenon may be
logically interpreted as the difference between the number of
CFEs the DHA requires to find the solution and the number
of CFEs the DHA requires to realize that it has already
found the solution. In the first case, the DHA will naturally
terminate its own operation 99% of the time while having
found the solution. By contrast, in the second case the DHA
will naturally stop on its own 34.4% of the time but it will
again have found the solution 99% of the time, assuming a
100% success ratio. Fig. 7a also presents the CDF curve after
313 CFEs have been subtracted.

FIGURE 8. BER performance of the ES-DHA QMSDD for the 99%, 80% and
50% points of the CDF curve in Fig. 7, corresponding to a maximum of
474, 292 and 201 CFEs, respectively, in the DSS/SSCH SDMA-OFDM system
scenario of Fig. 3, using the parameters summarized in Table 1
for Nw = 7.

The BER performance of the ES-DHA QMSDD is illus-
trated in Fig. 8, where it is compared to the DHA QMSDD
of Section IV-A for various early stopping points based on
the gray CDF curve in Fig. 7a and Nw = 7. According to
Fig. 8, the BER performance of the ES-DHA QMSDD when
the 474 CFEs corresponding to the 99% point of the CDF
are chosen as the maximum affordable number of CFEs is

TABLE 3. Complexity in terms of the number of CFEs/bit in Fig. 8.

equivalent to that of the DHA QMSDD and the ML MSDD.
The computational complexity of the ES-DHA-99%
QMSDD is equal to 37.9 CFEs per bit, compared to the
complexity of the DHA QMSDD, which requires 43.6 CFEs
per bit, according to Table 3. Moreover, when the 80% point
of the CDF is selected, the ES-DHA QMSDD’s performance
is equivalent to that of the CDD until the Eb/N0 = 9 dB
point, after which it becomes worse. It seems that in this
system scenario, the CDD finds the optimal solution more
often than 80% of the time. This might have been expected,
since the power gain of the MSDD when compared to the
CDD is only 0.5 dB. Similarly, the performance of the
ES-DHAQMSDDwhen the 50% point of the CDF in Fig. 7 is
chosen is worse than that of the CDD by 2−3 dB. The reason
for this is that the 201 CFEs in the ES-DHA QMSDD, which
correspond to the 50% CDF point, are insufficient for achiev-
ing an acceptable performance. Furthermore, the fact that the
ES-DHA is randomly-initialized contributes to the fact of
experiencing a worse performance than the CDD, when the
number of maximum affordable CFEs is not sufficiently high.
We will propose a method for circumventing this problem
in Section V.

C. DHA-BASED QMSDD WITH MAXIMUM
APPROXIMATION
As in the MAP MSDD analysis, let us focus our discussions
on the calculation of the tth differentially encoded symbol’s
mth bit. The methodology of the DHA-based detector relying
on the MAximum Approximation (DHA-MAA) is described
in detail in [13]. In this section we will apply the DHA-MAA
algorithm for performing HISO QMSDD. The DHA-MAA
QMSDD calculates the bit-based or symbol-based LLRs by
using only a reduced subset of the legitimate multi-level
MSDD symbol vectors in the MAP MSDD.

The DHA-MAAQMSDD invokes the DHA for finding the
symbol vector x̂min that satisfies

x̂min = argmax
x∈MNw−1

{
exp

(
− Tr

{
YH9−1Y

}
+ ln

(
P(x)

) )}
= argmin

x∈MNw−1

{ P∑
p=1

(
‖ Up · s ‖22

)
− ln

(
P(x)

)}
, (74)
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where the connection between s and x is stated in (1) and its
CF is given by:

f SISO−DHAMSDD (x) =
P∑
p=1

[ (
‖Up · s‖22

)
− ln(P(x))

]
. (75)

The DHA will search through the entire legitimate search
space MNw−1, where the first symbol in the MSDD symbol
vector x is fixed to its known value, since it corresponds to the
reference symbol. During the search for x̂, the DHA evaluates
the CF value of (75) for many other multi-level symbols,
which may be stored and exploited for the calculation of the
LLRs. More precisely, once the search is completed, the best
symbol found for the numerator and the best symbol found for
the denominator of each bit’s LLR are used for its calculation.
Let us redefine a number of sets for assisting us in the analysis
of the DHA-MAA QMSDD. The set X includes the unique
symbols that were evaluated during the DHA search. From
that set X , we may then create two sets for each bit, based on
the bit’s specific value. For example, X t,m,v is that particular
set, which contains all the symbols in X , where the value of
the tth transmitted symbol’s mth bit is equal to v. By using
the decimal representation x for indexing the corresponding
symbol vector x as in Section III, we have

x ∈ X t,m,v
⇔ x ∈ X ∧ x ∈ χ (t,m, v). (76)

In other words, X t,m,v includes all the unique symbols
that the DHA search encountered, which have the
(t ·log2Mc+m)th bit of their binary representation equal to v.
Hence, the LLR calculated by the DHA-MAA is equal to

LDHA−MAA,apo
(
b(m)t

)
= ln

max
(
exp

(
− f SISO−DHAMSDD (x)

)
| x ∈ X t,m,0

)
max

(
exp

(
− f SISO−DHAMSDD (x)

)
| x ∈ X t,m,1

) . (77)

According to (77), the globally optimal symbol x̂ that
is found during the DHA search, will be used for the cal-
culation of every bit’s LLR, either in its numerator or in
its denominator, since there is no symbol with a higher
exp

(
−f SISO−DHAMSDD (x)

)
value than x̂min. Hence, the signs of the

LLRs calculated by the DHA-MAA QMSDD always match
the signs of the LLRs calculated by the MAP MSDD. The
difference between the two MSDDs’ LLRs is in the magni-
tude of the LLRs, with the DHA-MAA QMSDD tending to
output LLRs having a higher confidence than they actually
have [13]. This occurs due to the fact that the optimal multi-
level symbol of a set is used for the calculation of either the
numerator or the denominator, while in some cases a sub-
optimal symbol is used for the calculation of the denominator
or the numerator, respectively.

In the case when a set X t,m,v is empty for a specific
{t,m, v} set, the DHA is called again to search for the specific
multi-level symbol x̂t,m,vmin ∈ χ (t,m, v) that minimizes the
CF in (74) [13]. By employing another DHA search, we
can ensure that the optimal symbol of that set is found with
∼100% probability and considering that the globally optimal

symbol was found during the initial DHA search, the value of
the (t ·log2Mc+m)th bit’s LLR calculated by the DHA-MAA
QMSDD will be close to that of the MAP MSDD. However,
the additional complexity imposed by the extra DHA search
is added to the total complexity of the DHA-MAA QMSDD.
For this reason, we have proposed in [13] a solution that we
termed as the Neighbour Exploitation (NE) technique.

Briefly, according to the NE technique, if the set X t,m,v

is empty after the initial DHA search, then the neighbour
of the globally optimal symbol x̂ that was found at the
(t · log2Mc + m)th position becomes the sole member of
X t,m,v. More specifically, if the set X t,m,v is empty, then the
set X t,m,v⊕1 includes x̂. At the price of an additional CFE,
we may use the globally optimal symbol x̂ and the
corresponding neighbour of x̂ for the calculation of the
tth symbol’s mth bit’s LLR.
The minimum complexity per bit quantified in terms

of the number of CFEs of the DHA-MAA QMSDD then
becomes [13]

Cmin
DHA−MAA =

4.5
√
M (Nw−1)
c + LCD,min

DHA

(Nw − 1) · log2Mc
, (78)

where LCD,min
DHA is the minimum possible number of CFEs per-

formed in the classic domain during the initial DHA search,
which is described in (72). By contrast, the minimum number
of CFEs of the DHA-MAA-NE QMSDD is equal to [13]

Cmin
DHA−MAA−NE =

4.5
√
M (Nw−1)
c + LCD,min

DHA

(Nw − 1) · log2Mc
+ 1, (79)

which is only a single CFE higher than the minimum com-
plexity of the DHA-MAAQMSDD in (78) due to the require-
ments of the NE technique.

In Fig. 9 we compare the BER performances of the
MAP MSDD and the DHA-MAA QMSDD both with and
without the NE technique, when used in the DSS/SSCH

FIGURE 9. BER performance of the DHA-MAA QMSDDs and the MAP
MSDD in the DSS/SSCH SDMA-OFDM system scenario of Fig. 3, using the
parameters summarized in Table 1 for Nw = 7.
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SDMA-OFDM system scenario of Fig. 3 relying on the
parameters of Table 1 involving J = 3 iterations between the
MSDD and the channel decoder. We may observe that there
is an 1 dB loss between the MAPMSDD and the DHA-MAA
QMSDD with 1 MSDD-DEC iteration. Additionally, the
DHA-MAA-NEQMSDD offers a slightly better BER perfor-
mance, when compared to that of the DHA-MAA QMSDD.
When the number of iterations between the MSDDs and the
decoders is increased, the performance of the MAP MSDD
is improved, but those of the DHA-MAA QMSDD and the
DHA-MAA-NE QMSDD essentially remain the same, hence
resulting in a power loss of approximately 2 dB for the latter
pair after J = 3 MSDD-DEC iterations between the MAP
MSDD and the DHA-MAA QMSDDs.

The computational complexities of the MSDDs quantified
in terms of the number of CFEs per bit are summarized
in Table 4, where again the CF is given in (75). We make
the conclusive assumption that all the CF values obtained by
the MAP MSDD during the first MSDD-DEC iteration are
stored and reused during any subsequent iterations, which
reduces the complexity. Therefore, the complexity of the
MAP MSDD is assumed to be independent of the number
of MSDD-DEC iterations, when quantified in terms of the
number of CFEs. On the other hand, we assume that
the DHA-MAA QMSDD is performed during every
MSDD-DEC iteration. In this way, the comparison of the
complexities of the classical and quantum MSDDs has the
smallest difference possible and corresponds to the worst-
case-scenario for the QMSDDs.

TABLE 4. Complexity in terms of the number of CFEs/bit in Fig. 9.

According to Table 4, the complexities of the DHA-MAA
and DHA-MAA QMSDDs are lower than that of the MAP
MSDD. When operating at Eb/N0 = 10.5 dB the complexity
of the QMSDDs does not increase dramatically with the num-
ber of MSDD-DEC iterations, because most of the time the
entire frame was correctly decoded during the first iteration.
Therefore, the small number of additional CFEs, which may
be as low as a single CFE per bit, when J = 2 MSDD-DEC

iterations are performed, provides a modest gain of 0.25 dB
as observed in Fig. 9, when we compare the QMSDDs
using J = 1 MSDD-DEC iteration and that using J = 2
MSDD-DEC iterations. Similarly, when J = 3 iterations are
allowed between the MSDDs and the channel decoders, the
complexities of the QMSDDs are only slightly increased at
Eb/N0 = 10.5 dB. However, the BER performance remains
essentially the same as in the case, where J = 2MSDD-DEC
iterations were performed. When we have Eb/N0 = 5 dB,
the complexities of the DHA-MAAQMSDDs combined with
multiple MSDD-DEC iterations may be deemed to be the
corresponding multiples of the complexities required for a
single MSDD-DEC iteration. For example, in the case of
the DHA-MAA-NE QMSDD, 44.62 CFEs are required for a
single MSDD-DEC iteration, while almost three times more
are necessitated for the scenario where J = 3 MSDD-DEC
iterations are performed. Observe in Fig. 9 this increased
complexity fails to achieve any substantial BER performance
improvement for the system. The reason for the increase in
complexity is that none of the frames are correctly decoded
during any of the previous iterations.

Therefore, based on Fig. 9, despite increasing the receiver-
complexity by allowing iterations between the MSDD and
the channel decoder, the performance of the DHA-MAA
QMSDDs is not improved. In the context of the DHA-MAA
QMSDD, the MSDD-DEC iterations translate into updated
values of the a priori symbol-based probabilities P(x)
in (55) and (74). By calculating the LLR as in (77), the
DHA-MAA QMSDD essentially ignores other symbols,
although they would be expected to improve the resultant
LLR value. Moreover, since the DHA-MAA QMSDD does
not always use the optimal symbols for the calculation of
both the numerator and the denominator of each bit’s LLR,
the excessive value of the resultant LLRs, which actually
represent an undue confidence, have a negative effect on
the channel decoder by misinforming it. This is verified
by observing the EXIT chart of our system scenario in
Fig. 10, where the inner decoder’s curves corresponding
to the MSDDs and the outer decoder’s curve correspond-
ing to the TC employed are depicted. Furthermore, the
Monte-Carlo simulation based stair-case-shaped decoding
trajectories were generated for a frame length of 24 576 bits
per user. All the EXIT curves in this treatise have been
generated by using the histogram-based method [3], which
provides more accurate predictions of the soft-information
PDFs than the Gaussian approximation.

According to Fig. 10, the DHA-MAA and DHA-MAA-NE
QMSDDs initially output a lower MI than the MAP MSDD,
but upon iterating they eventually become higher than that of
the MAP MSDD, yielding a higher MI at their output. This
fact does not represent the reality, yet, it was expected. The
DHA-MAA and DHA-MAA-NE QMSDD always generate
extrinsic LLRs, which have the same polarity as the ones
the MAP MSDD generates. Due to the fact that the
two QMSDDs generate their LLRs according to (77) and that
most of the times they do not use the optimal symbols for both
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FIGURE 10. EXIT chart of the DHA-MAA and DHA-MAA-NE QMSDDs, as
well as the MAP MSDD in the DSS/SSCH SDMA-OFDM system scenario of
Fig. 3, using the parameters summarized in Table 1 for Nw = 7.

the numerator and the denominator, we expect to obtain LLR
values having the correct polarity, but higher values than they
should truly have. Therefore, their inner decoder EXIT curves
erroneously represent the belief that the QMSDDs surpass the
performance of the MAP MSDD.

All the EXIT curves in Fig. 10 have been generated using
Gaussian-distributed LLRs as their inputs. The generation of
non-Gaussian EXIT charts [65] may provide a more accu-
rate design of a system, especially when approximations in
the calculation of the LLRs are used. Nonetheless, in this
paper we rely on Gaussian LLR-assumption, for avoiding the
related complex discussions.

As a result of this Gaussian approximation, the decod-
ing trajectories of the QMSDDs reach their respective inner
decoder curve at IA,MSDD = 0, but beyond this point they
do not match with their respective EXIT curves. More specif-
ically, the decoding trajectory of the DHA-MAA QMSDD
fails to reach the IDEC,E = 1 line of perfect convergence to
a vanishingly low BER, when the inner and outer decoders
are serially connected as in our scenario. The reasons for
the behaviour of this trajectory is that the DHA-MAA and
DHA-MAA-NE QMSDDs do not satisfy the consistency
condition [66], which implies that they provide excessive,
overconfident LLR values, which is partly attributable to the
fact that their interleaver length is limited to 24 576 bits for
each user. If the non-Gaussian EXIT charts [65] were shown,
the inner and outer decoder EXIT curves after two and three
iterations would form a much narrower tunnel or a closed
tunnel, for the DHA-MAA-NE and DHA-MAA QMSDDs,
respectively.

D. DHA-BASED QMSDD WITH MULTI-INPUT
APPROXIMATION
The Dürr-Høyer algorithm-based MUD with MUA was
analysed in [13]. The same principles are followed here for

the creation of the DHA-MUA QMSDD. The DHA-MUA
QMSDD starts by performing a single DHA search for find-
ing the optimalmulti-levelMSDD symbol vector that belongs
to the numerator of the first bit’s LLR and another single
DHA search for finding the optimal multi-level symbol that
belongs to the denominator of the first bit’s LLR. Therefore,
the search space of each of the first two DHA searches has
MNw−2 entries. The CF used for determining the optimality
of the symbols is the one formulated in (75).

When we randomly initialize the DHA-MUA QMSDD,
if the randomly selected initial symbol belongs to the numer-
ator of the first bit’s LLR, we firstly perform the DHA
search for that numerator. Similarly, we commence with the
denominator of the first bit’s LLR, provided that the random
initial symbol belongs to it. Let us assume that we start by
performing the DHA for the numerator. After we find the
optimal symbol x̂1,1,0min in theX 1,1,0 set, we initialize the DHA
search for the denominator using the neighbour of x̂t,m,0min in the
first bit position. Once both searches have been completed,
we compare the two optimal symbols x̂1,1,0min and x̂1,1,1min for
determining the globally optimal symbol x̂min with the aid of:

x̂min =

 x̂1,1,0min if fDHA
(
x̂1,1,0min

)
< fDHA

(
x̂1,1,1min

)
x̂1,1,1min if fDHA

(
x̂1,1,0min

)
> fDHA

(
x̂1,1,1min

)
.

(80)

For the calculation of the LLRs of the subsequent bits, we
only perform a single DHA search per bit. More specifically,
if the globally optimal symbol x̂min belongs to the numerator
of a bit’s LLR, then we perform a DHA search for the
specific search space that corresponds to the denominator of
that bit’s LLR, and vice versa. At the end, every set X t,m,v

for t ∈ {1, 2, . . . ,Nw − 1}, m ∈ {1, 2, . . . , log2Mc} and
v ∈ {0, 1} will contain at least one symbol. Let us assume
without loss of generality that the symbols both in X t,m,0

and X t,m,1 are stored in a descending order based on their
CF values. The pair of knowledge transfer techniques that
were investigated in [13] in the context of MUDs, namely
the Forward Knowledge Transfer (FKT)3 and the Forward
and Backward Knowledge Transfer (FBKT)4, may be readily
applied in the context of the QMSDD for the creation of

3In the DHA-MUA QMSDD, the search results obtained for the
[(u − 1) · log2(M ) + m]th bit of a multi-level QMSDD symbol
vector on the qth subcarrier are stored in X u,m,0

q and X u,m,1
q .

These search results are used only for calculating the LLR of the
[(u − 1) · log2(M ) + m]th bit. When the Forward Knowledge Transfer
modification is employed, the search results of the DHA related to the
[(u − 1) · log2(M ) + m]th bit are also used for the calculation
of the LLRs of the subsequent bits b[(u−1)·log2(M )+m+1],
b[(u−1)·log2(M )+m+2], . . . , b[U ·log2(M )] of the multi-level symbol, by being

stored in their corresponding setsX u,m+1,0
q ,X u,m+1,1

q , . . . ,XU ,log2(M ),0
q ,

XU ,log2(M ),1
q .
4Similarly to the Forward Knowledge Transfer modification,

when the Forward & Backward Knowledge Transfer modification is
employed, the search results of the DHA related to the [(u − 1) ·
log2(M ) + m]th bit of a multi-level QMSDD symbol vector are also used
for the calculation of the LLRs of all the bits b1, b2, . . . , b[U ·log2(M )]
of the multi-level symbol, by being stored in their corresponding sets
X 1,1,0
q ,X 1,1,1

q , . . . ,XU ,log2(M ),0
q ,XU ,log2(M ),1

q .
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the sets X t,m,v. The NE technique is also applicable in the
DHA-MUA QMSDD.

Moreover, let us assume thatX t,m,1 containsmore symbols
than X t,m,0, i.e. we have that

∣∣X t,m,1
∣∣ > ∣∣X t,m,0

∣∣ . Then,
the sets X̄ t,m,0 and X̄ t,m,1 are created by trimming the last
symbols in X t,m,1 with the lowest CF values, so that the
resultant set X̄ t,m,1 has the same size as X̄ t,m,0

= X t,m,0.
Let us also define the sign variable ςt,m, which is equal to
+1 if the globally optimal symbol x̂min belongs to X̄ t,m,0,
otherwise it is −1.

Afterwards, we calculate the difference between the
CF values of the respective last symbols in the sorted X̄ t,m,0

and X̄ t,m,1 sets. If the sign of the result does not match the
value of ςt,m, both symbols are deleted from their respective
sets and we continue this process with the rest of the symbol
pairs until we reach the first elements of each set. If the sign
of the difference matches the value of ςt,m, no action is taken
andwe proceedwith the next symbol pairs. The newly formed
sets are described by X̂ t,m,0 and X̂ t,m,1. By performing this
procedure, we ensure that the resultant LLR’s polarity is the
same as in the MAP MSDD.

The LLR of the tth symbol’s mth bit is calculated as in

LDHA−MUA,apo
(
b(m)t

)

= ln

∑
x∈X̂ t,m,0

exp
(
− f SISO−DHAMSDD (x)

)
∑

x∈X̂ t,m,1

exp
(
− f SISO−DHAMSDD (x)

) . (81)

In this treatise we will only consider the scenario, where the
DHA-MUA QMSDDs adopt the NE technique having a total
minimum complexity of

Cmin
DHA−MUA−NE =

(
4.5
√
MNw−1
c /2+ LCD,min

DHA

)
·

(
1+

1
(Nw − 1) · log2Mc

)
+ 1. (82)

The BER performances of the DHA-MUA QMSDD are
illustrated in Fig. 11 for our system scenario associated
with Nw = 7, where they are compared to the DHA-MAA
QMSDD, DHA-MAA-NE QMSDD and the MAP MSDD.
In the same figure we have also plotted the BER curves,
when different knowledge transfer techniques are exploited.
If we allow a single iteration between the MSDDs and
the channel decoders, the performance of the DHA-MUA,
DHA-MUA-FKT and DHA-MUA-FBKT QMSDDs is
near optimal, with those of the DHA-MUA-FBKT and
DHA-MUA-FKT QMSDDs being slightly better than that
of the DHA-MUA QMSDD and only 0.12 dB away from
that of the optimal MAPMSDD, due to their more intelligent
knowledge transfer technique. When we calculate the BER
at the output of the decoders after two MSDD-DEC itera-
tions, there is a 0.35 dB loss between the DHA-MUA-FBKT
QMSDD and the MAP MSDD. The reason for this increased
loss when multiple iterations are performed is the specific
nature of the approximations that have been adopted for

FIGURE 11. BER performance of the family of DHA-MUA QMSDDs and the
MAP MSDD in the DSS/SSCH SDMA-OFDM system scenario of Fig. 3, using
the parameters summarized in Table 1 for Nw = 7.

the QMSDDs, when considering the calculation of the LLRs.
During the first MSDD-DEC iteration, the a priori LLRs are
all-zero, hence they are the same for the MAPMSDD and the
QMSDDs. During the second iteration, the a priori LLRs
of the QMSDDs become different from those of the
MAP MSDD, hence eroding the performance. Nonethe-
less, only 0.1 dB extra transmission power is required
for the DHA-MUA-FBKT QMSDD to achieve the same
performance as the MAP MSDD. Finally, when J = 3
MSDD-DEC iterations are performed, the performance of
the QMSDDs becomes similar to their respective perfor-
mance, when assuming that J = 2 MSDD-DEC iterations
were allowed, provided that we have Eb/N0 < 8 dB. The
power loss between the DHA-MUA-FBKT QMSDD and the
MAP MSDD is 0.45 dB at BER = 10−5.
The complexities of the QMSDDs are summarized in

Table 5 and, once again, the complexities of the QMSDDs

TABLE 5. Complexity in terms of the number of CFEs/bit in Fig. 11.
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at multiple MSDD-DEC iterations rely on the Eb/N0 value.
In our scenario we may see that the complexities of the
DHA-MUA QMSDDs approach that of the MAP MSDD.
Therefore, the family of DHA-MUA QMSDDs is more suit-
able for non-coherent receivers, where Nw and M are high,
for the sake of achieving a higher complexity gain compared
to the MAP MSDD, as we will see in Section VII. Since
the complexity of the DHA-MUA QMSDD decreases upon
increasing the SNR and a typical system is desired to operate
around BER = 10−5, we expect that the top half of Table 5
will be more applicable in practice. It should also be noted
that the complexity of the DHA-MUA QMSDD encountered
in our scenario is higher than that of the MAP MSDD even
during the first MSDD-DEC iteration, while the complexities
of the DHA-MUA-FKT and DHA-MUA-FBKT QMSDDs
become higher than that of the MAP MSDD during the
second MSDD-DEC iteration. The DHA-MUA-FKT and
DHA-MUA-FBKT QMSDDs require more memory than the
DHA-MUA, DHA-MAA and DHA-MAA-NE due to the
associated knowledge transfer, but their required memory is
still smaller than that of the MAP MSDD. Furthermore, the
FBKT technique imposes delay on the system, due to the
backward knowledge transfer, but once again, the delay is
lower than that of the MAPMSDD, where all the bits have to
wait for all the CFEs to be performed.

The DHA-MUA QMSDDs are eligible for employment
in an iterative receiver, by updating the values of the a
priori symbol probabilities in (74) and restarting the DHA
searches. The inner decoder EXIT curves of the DHA-MUA,
DHA-MUA-FKT and DHA-MUA-FBKT QMSDDs in our
system scenario of Table 1 are given in Fig. 12 for
Eb/N0 = 4 dB and 24 576 bits per frame per user. The inner
EXIT curves of the DHA-MUA-FKT and DHA-MUA-FBKT

FIGURE 12. EXIT chart of the DHA-MUA, DHA-MUA-FKT and
DHA-MUA-FBKT QMSDDs, as well as the MAP MSDD in the DSS/SSCH
SDMA-OFDM system scenario of Fig. 3, using the parameters summarized
in Table 1 for Nw = 7.

QMSDDs match that of the MAP MSDD, with the inner
decoder EXIT curves of the DHA-MUA being a little lower
than those of the rest. The fact that the inner decoder
EXIT curves of the DHA-MUA-FKT and DHA-MUA-FBKT
QMSDDs are slightly higher than that of the MAP MSDD at
IMSDD,A = 0.5 is due to the simplifications made by theMUA
and the visualisation relying on EXIT charts assuming to have
Gaussian inputs, similarly to the MAA case. In systems asso-
ciated with larger search spaces, the difference is expected to
be more obvious, since the approximations of the QMSDDs
will have a larger impact on the performance.

E. QUANTUM WEIGHTED SUM
ALGORITHM-BASED QMSDD
The QWSA proposed in [14] may be used for performing
non-coherent MSDD. The QWSA estimates the weighted
sum of a function at a precision, which depends on the number
lQWSA of qubits employed in its Quantum Control Regis-
ter (QCR). The more qubits are used in the QCR, the higher
the estimation accuracy becomes, but at the same time, the
computational complexity of the QWSA is increased. In our
MSDD applications, we use the a priori bit-based LLRs of
the MSDD, associated with the a priori bit probabilities as
the weights of the QWSA. At the same time, the function to
be estimated by the weighted sum is the normalized CF of the
MSDD presented in (51), which leads to:

fQWSA(s) =

P∑
p=1

(
‖Up · s ‖22

)
P∑
p=1

(
‖Up · smax ‖

2
2

) , (83)

where smax is the legitimate multi-level symbol that maxi-
mizes the CF of the MSDD in (51). The QWSA only accepts
functions that obey f : {0, 1, . . . ,N−1} → [0, 1]. The reason
for including the denominator of (83) for normalizing the CF
of the QWSA is ensuring that the CF values remains limited
to its legitimate value range.

Any search algorithm may be used for finding smax,
which is suitable for calculating the denominator in (83).
These are exemplified by the brute force search, ant colony
optimization and genetic algorithm-based search. However,
suboptimal search methods may output an smax value that is
different from the true one, in which case the CF value of
the true smax will have a value higher than 1, hence forcing
the QWSA to output erroneous results. In this treatise, the
DHA is employed for finding smax, since we may achieve
a ∼100% probability of success at a low complexity. The
total computational complexity of the DHA-aided QWSA
QMSDD expressed in terms of the number of CFEs per bit
depends on both the DHA as well as the QWSA and it is in
the range of

CDHA−QWSA = 2lQWSA+3

+

{
22.5
√

MNw−1/
[
(Nw − 1) log2(M )

]
upper bound

4.5
√

MNw−1/
[
(Nw − 1) log2(M )

]
lower bound.
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According to [14], the DHA-QWSA and hence the
DHA-QWSA QMSDD may also be employed in large-scale
systems, since its effect can only be evident there. However,
we will focus our attention on small-scale systems, due
to the practical constraints in our simulation time and
memory requirements. Let us employ the DHA-QWSA
QMSDD in our system scenario described in Table 1.
The BER performance of the DHA-QWSA QMSDD for
lQWSA = 9, 10, 11 qubits is compared to that of the opti-
mal classical MAP MSDD in Fig. 13. We may verify that
by increasing the number of control qubits lQWSA in the
QWSA, we improve the system’s performance, at the cost of
increasing the complexity required to achieve it. For lQWSA =
10 qubits, we may achieve a loss of 0.5 dB, when compared
to the MAP MSDD, while if lQWSA = 11 qubits are used in
the QCR of the QWSA, we have a 0.22 dB loss, when J = 3
MSDD-DEC iterations are affordable. The total number of
CFEs of the DHA-QWSA QMSDDs in Fig. 13 are given in
Table 6. Since the complexity of the DHA-QWSA QMSDD
is higher than that of the MAP MSDD in every instance
of our scenario, it is worth noting once again that the
DHA-QWSA QMSDD is suitable for large-scale systems, as
are most of the quantum detectors advocated in this treatise.
Based on Table 6 we may observe that the performance of the
DHA-QWSA QMSDD is almost independent of the power
during the first MSDD-DEC iteration, since the number
of CFEs per bit is similar for both Eb/N0 = 4 dB and
Eb/N0 = 8 dB. On the other hand, when we can afford mul-
tiple MSDD-DEC iterations, the complexity becomes lower,
when the power is increased, which is due to the fact that a
second or a third MSDD-DEC iteration is required less often,
because the frame is perfectly decoded during the first or
second MSDD-DEC iteration.

FIGURE 13. BER performance of the DHA-aided QWSA QMSDD and the
MAP MSDD in the DSS/SSCH SDMA-OFDM system scenario of Fig. 3, using
the parameters summarized in Table 1 for Nw = 7, when using
lQWSA = 9, 10, 11 control qubits in the QWSA.

Fig. 14 presents the EXIT chart of our scenario for a
single frame transmitted by each user at Eb/N0 = 4 dB.

TABLE 6. Complexity in terms of the number of CFEs/bit in Fig. 13.

FIGURE 14. EXIT chart of the QWSA QMSDD with lQWSA = 10 qubits, as
well as the MAP MSDD in the DSS/SSCH SDMA-OFDM system scenario
of Fig. 3, using the parameters summarized in Table 1 for Nw = 7.

According to Fig. 14, the frame length of 24 576 bits
per frame per user was not sufficient for the specific
Monte-Carlo decoding trajectory to be fully decoded by the
MAP MSDD after one iteration. Both the MAP MSDD
and the DHA-QWSA QMSDD successfully reach the
IDEC,E = 1 point after two MSDD-DEC iterations.
By observing Fig. 14 we may conclude that the DHA-aided
QWSA QMSDD may be beneficially incorporated into an
iterative receiver, since its inner decoder EXIT curve matches
that of the MAP MSDD.

V. EXPLOITATION OF THE CONVENTIONAL
DIFFERENTIAL DETECTOR
All the MSDDs that detect the transmitted symbols over an
Nw-long symbol window require the reception of Nw signals.
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In our discussions presented in the previous sections, we have
assumed having a random initial input to the DHA, since
we have no a priori information about the transmitted multi-
level symbol. When we used coherent multi-user detection
in [12] and [13], we initialized the DHA searches with the
output symbol of either the MF, ZF or the MMSE detectors.

By assuming that the signals arrive in the same sequence
as they were transmitted, we may be able to perform CDD
for every consecutively formed received signal pair in each
Nw-long symbol window, while waiting for all the Nw signals
to be received. Once all the signals are received and the
QMSDD procedure can be initiated, the combined outputs
of the (Nw − 1) CDDs may be used as the initial input
of the corresponding DHA search. Therefore, no additional
delay is imposed on the QMSDD and there is only a modest
increase in complexity, since the (Nw−1)-fold increase of the
CDD applications is compensated by the lower complexity
required by a deterministically-initialized DHA. By exploit-
ing the CDD in our scenario described in Table 1, the resultant
procedure is described in Fig. 15, where the first detection
window is presented.

FIGURE 15. Exploitation of the CDD for initializing the DHA searches in
the first detection window of the QMSDDs, resulting in reduced
complexity and same performance.

More specifically, we firstly receive the reference signal,
which is buffered. When the second signal is received, we
perform the CDD on the first two received signals, obtaining
the symbol index output xCDD, 1 ∈ {0, 1, . . . ,M − 1}. Both
received signals remain buffered. After the third signal has
arrived, the CDD is applied for the detection window formed
by the second and third signal, where the second signal acts
as the reference, which is equal to xCDD, 1. The output of
the second CDD is xCDD, 2 ∈ {0, 1, . . . ,M − 1}. The same
process is repeated, until all Nw signals have been received
and (Nw − 1) CDDs have been performed, obtaining xCDD, k ,
k = 1, 2, . . . ,Nw − 1. Finally, we are ready to combine the
CDD outputs for the sake of obtaining a multi-level symbol
index, which may be the initial symbol of the DHA in the
QMSDD employed. The initial multi-level symbol index is
equal to

xinit =
Nw−1∑
k=1

xCDD, k ·MNw−1−k . (84)

During the second detection window, the proce-
dure ensues similarly to the one analysed during the

first detection window, with the slight difference that instead
of a reference symbol, the output of the QMSDD generated
for the last symbol of the previous detection window is
used. The visual representation of the CDD activation for
the nth detection window is depicted in Fig. 16. By using
the CDD initialization, we essentially perform a CDD for
every unknown symbol. Therefore, the additional complexity
of the CDD initialization imposed to the overall detection
complexity in terms of number of CFEs per bit is equal to

CCDD,init =
M

log2(M )
. (85)

FIGURE 16. Exploitation of the CDD for initializing the DHA searches in
the nth detection window of the QMSDDs, resulting in reduced
complexity and same performance.

A. HARD-OUTPUT CDD-INITIALIZED QMSDD
The impact of the deterministic CDD initialization of the
DHA is more apparent, when we use the DHA QMSDD of
Section IV-A. Fig. 17 shows the PDF and CDF curves of
our system scenario presented in Table 1, when we either
initialize the DHA using the CDD outputs or randomly.
In the same figure, we may observe that the DHA finds the
solution sooner, when it is initialized by the CDD instead of
being randomly initialized. This is indeed expected, since the
closer we start the search to the optimal symbol, the faster
the optimal symbol will be found and the search will be
concluded. It is reasonable to expect that the DHA search is
completed sooner when the initial symbol is the optimal one.
Based on the CDF curves seen in Fig. 7 we may also invoke
the ‘‘CDD-initialized’’ ES-DHA for achieving a near-optimal
performance at an even lower complexity. For example, if
we stop the CDD-initialized ES-DHA QMSDD of Fig. 7 in
Section IV-B after 363−313 = 50 CFEs, we will have found
the optimal multi-level symbol with a success probability of
90%, where in our scenario 313 is the minimum number of
CFEs that the DHA needs for realizing that the solution has
indeed been found in our scenario. On the other hand, we
will require 656 − 313 = 343 CFEs to achieve the same
probability of success with a randomly-initialized ES-DHA
QMSDD. It is reasonable to conclude that achieving a good
performance by the CDD is vital for the sake of attaining
a substantial complexity reduction by the CDD-initialized
DHA QMSDD. According to Fig. 6, the BER performance
of the CDD was 0.5 dB away from that of the ML MSDD,
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FIGURE 17. PDF and CDF curves of the DHA in the scenario of Fig. 3, using
the parameters summarized in Table 1 for Nw = 7 after 12 · 106 number
of independent DHA instances, when the DHA searches are initialized by
using the pre-calculated CDD outputs or by using a random symbol index.
(a) Total number of CF evaluations. (b) Number of Grover iterations
(CF evaluations in the QD). (c) Number of CF evaluations in the CD.

therefore its outputs were identical to the optimal symbol
most of the time, as it can also be inferred from the shape of
the CDD-initialized DHA QMSDD’s PDF curve portrayed
in Fig. 17a. The BER performance of the CDD-initialized
DHA QMSDD is expected to be equivalent to that of the
randomly-initialized DHA QMSDD. This is indeed verified
in Fig. 18, where we may observe that the CDD-initialized
DHA QMSDD performs equivalently both to the random-
initialized DHA QMSDD and to the ML MSDD.

FIGURE 18. BER performance of the randomly-initialized and
CDD-initialized DHA QMSDD in the DSS/SSCH SDMA-OFDM system
scenario of Fig. 3, using the parameters summarized in Table 1 for Nw = 7.

B. SOFT-INPUT SOFT-OUTPUT CDD-INITIALIZED QMSDD
The initialization of the DHA searches with the aid of the
CDD outputs may also be used in the SISO DHA-aided
QMSDDs of Fig. 11 in Section IV-D. The effect of the
CDD-aided initialization of the DHA search in the SISO
QMSDDs is not as straightforward as in the hard-output
QMSDDs, since the goal is not only to find the optimal
multi-level symbol, but also to create a set of the best symbols
found. By commencing the search closer to the optimal multi-
level symbol, we may exclude a number of near-optimal sym-
bols that would have been found, if the randomly-initialized
search was used instead.

In addition to the CDD-aided initialization of the DHA
searches, in the iterative QMSDDs we may also use
the optimal multi-level symbol found during the first
MSDD-DEC iteration as the initial input of the DHA search
during the second MSDD-DEC iteration. Similarly, the
best symbol found during the second MSDD-DEC itera-
tion may initialize the DHA search of the same detection
window during the third MSDD-DEC iteration and so on.
In this way, the CDD is performed only during the first
MSDD-DEC iteration and no additional complexity is
imposed by initializing the DHA search during the subse-
quent MSDD-DEC iterations. Let us use the term deter-
ministic initialization in the context of the SISO QMSDD,
when we employ the CDD-based initialization for the DHA
searches during the first QMSDD-DEC iteration and we use
the best found symbols for initializing the DHA searches of
the subsequent QMSDD-DEC iterations.

The BER performance of the deterministically-initialized
DHA-MUA-FKT QMSDD is compared in Fig. 19 both to
that of the randomly-initialized DHA-MUA-FKT QMSDD

FIGURE 19. BER performance of the CDD-initialized and
randomly-initialized DHA-MUA-FKT QMSDD in the DSS/SSCH
SDMA-OFDM system scenario of Fig. 3, using the parameters summarized
in Table 1 for Nw 7 = 7. The CDD-initialized DHA-MUA-FKT QMSDD also
employs deterministic DHA initialization during the second and
third MSDD-DEC iterations by using the optimal symbol of each detection
window found during the previous MSDD-DEC iteration.
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TABLE 7. Complexity in terms of the number of CFEs/bit in Fig. 19.

of Fig. 11 as well as to that of the MAP MSDD of
Fig. 11, while their respective computational complexi-
ties are given in Table 7. Based on Fig. 19, the perfor-
mance of the CDD-initialized DHA-MUA-FKT QMSDD
is seen to be equivalent to that of the randomly-initialized
DHA-MUA-FKT QMSDD. According to Table 7,
the complexity of the deterministically-initialized
DHA-MUA-FKT QMSDD is higher than that of the
randomly-initialized DHA-MUA-FKT QMSDD during the
first QMSDD-DEC iteration and it becomes lower dur-
ing the second and third QMSDD-DEC iteration. The rea-
son that the deterministically-initialized DHA-MUA-FKT
QMSDD of Fig. 19 has a higher complexity lies in its nature,
where multiple DHA searches take place. For example, let
us focus our attention on the nth detection window. The
two DHA searches of the multi-level symbol’s first bit
will be concluded sooner in the deterministically-initialized
DHA-MUA-FKT QMSDD than in the randomly-initialized
DHA-MUA-FKT QMSDD, as it was also shown in the
case of the hard-output DHA QMSDD of Section V-A.
Therefore, it is expected for the resultant sets X 1,1,0 and
X 1,1,1 of the deterministically-initialized DHA-MUA-FKT
QMSDD to contain fewer elements. According to the
methodology followed by the DHA-MUA-FKT QMSDD,
the subsequent DHA searches of the rest of the bits in the

multi-level symbols are initialized either based on the best
already found symbols during the previousDHA searches due
to the forward knowledge transfer, or based on the neighbours
of the globally optimal symbol. Therefore, the more elements
are included in the sets X 1,1,0 and X 1,1,1, the higher the
probability of initializing the DHA search of the second bit
closer to its optimal symbol. Hence, the randomly-initialized
DHA-MUA-FKT QMSDD has the edge over the
deterministically-initialized DHA-MUA-FKT QMSDD dur-
ing this part due to the size of its initial sets X 1,1,0 and
X 1,1,1, effectively mitigating the complexity imposed during
the first bit’s first DHA search. After the DHA searches of
the first few bits have been completed, the deterministically-
initialized DHA-MUA-FKT QMSDD of Fig. 19 has also
increased its sets’ size and the complexity of the DHA
searches conducted for the rest of the bits in the multi-level
symbol is similar to that in its randomly-initialized coun-
terpart. It should be noted that in the DHA-MUA QMSDD,
where there is no knowledge transfer, the deterministically-
initialized DHA-MUA QMSDD will have a lower complex-
ity than its randomly-initialized counterpart, as portrayed
in Table 7.

During the subsequent QMSDD-DEC iterations, the initial
advantage of the deterministically initialized
DHA-MUA-FKT QMSDD of Fig. 19 becomes more dom-
inant, since the initialization of the first bit’s first DHA is
the best found symbol during the previous QMSDD-DEC
iteration and it often remains the optimal symbol of the spe-
cific detection window during the rest of the QMSDD-DEC
iterations. This results in the deterministically-initialized
DHA-MUA-FKT QMSDD essentially initializing the first
bit’s DHA search with its solution. The deterministically-
initialized DHA-MUA-FKT is expected to have fewer
elements in the X t,m,v

q sets than its randomly-initialized
counterpart, since it will reach the optimal multi-level MSDD
symbol vector after fewer CFEs, which in turn leads to
fewer unique CF values found. The problem of the smaller
set size arrived at after the first two DHA searches also
persists for the deterministically-initialized DHA-MUA-FKT
QMSDD, but the difference in complexity reduction is not
mitigated sufficiently rapidly by the randomly-initialized
DHA-MUA-FKT QMSDD of Fig. 19.

In Table 7 we also characterize the randomly-initialized
DHA-MUA-FKT QMSDD with iteration memory, which
uses a randomly selected initial input for the DHA searches
during the first MSDD-DEC iteration and then later employs
the globally optimal multi-level symbol found during the
previous iteration for the subsequent MSDD-DEC itera-
tions. The randomly-initialized DHA-MUA-FKT QMSDD
associated with an iteration memory uses a random initial
input only during the J = 1st MSDD-DEC iteration. For
the subsequent J ≥ 2 MSDD-DEC iterations the best
symbol found during the previous MSDD-DEC iteration
is used instead for the sake of initializing the DHA. This
hybrid semi-deterministically-initialized DHA-MUA-FKT
QMSDD has a complexity, which is identical to that of
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the randomly-initialized DHA-MUA-FKT QMSDD during
the first iteration, while its complexity during the rest of the
iterations is similar to that of ts deterministically-initialized
counterpart.

VI. EMPLOYMENT OF THE QMSDD ONLY AFTER
EVERY IpS QMSDD-DEC ITERATIONS
In case of coherent detection, when we use the MAP MUD
we may assume that improved channel estimates become
available during the subsequent MUD-DEC iterations, there-
fore the MAP MUD should re-evaluate the CF for all the
legitimate multi-level symbols during each MUD-DEC iter-
ation, which, inevitably increases its complexity upon each
additional iteration. By contrast, in case of non-coherent
detection, the MAP MSDD is only employed during the first
MSDD-DEC iteration and the hitherto computed complete
set of CFEs is reused during the subsequent MSDD-DEC
iterations. In this treatise, we assume that the reuse of the
same hitherto found CFE set is granted without any additional
computational complexity, since our metric is selected to be
the number of CFEs performed by an MSDD. This may have
been observed in Table 4, Table 5, Table 6 and Table 7, where
the complexity of the MAPMSDD remains constant over the
three MSDD-DEC iterations.

However, we have employed our QMSDDs during
each QMSDD-DEC iteration, taking into consideration the
fact that there is a possibility that during the second
QMSDD-DEC iteration the globally optimal symbol may be
a symbol that was not found during the first QMSDD-DEC
iteration. This may occur, since the proposed QMSDDs find
a suitable subset of symbols used for calculating the bit-based
LLRs, instead of calculating the CFE corresponding to every
legitimate multi-level symbol, as in the MAP MSDD.

In this section we investigate the effect of actively not
employing the DHA-MUA-FBKT QMSDD during every
QMSDD-DEC iteration in our scenario presented in Table 1
in the interest of reducing the complexity imposed. During
the specific QMSDD-DEC iterations which dispense with
employing the QMSDD, the LLRs are calculated based on the
most recently found CFE set and the newly obtained a priori
probabilities gleaned from the channel decoder. Hence, the
CF that is used when the QMSDD is employed does not
include the a priori probabilities, which is in contrast to (75)
and it becomes

f SISO−DHAMSDD,IpS (x) =
P∑
p=1

(
‖Up · s‖22

)
, (86)

where the relationship between s and x is described in (1).
By dispensing with the employment of the QMSDD dur-
ing each QMSDD-DEC iteration and by exploiting both
the previously found symbol as well as the CFE sets we
expect an even lower complexity, albeit at the cost of
a BER performance degradation. It should be noted that
the entire CFE set that was found during the most recent
QMSDD-DEC iteration, where the QMSDD was used will

be exploited for the calculation of the LLRs during the
QMSDD-DEC iterations, where the QSMDD is not used, by
substituting the CF values in (55), along with the updated
a priori probabilities.
Fig. 20 presents the BER performance of the

randomly-initialized DHA-MUA-FBKT QMSDD of
Section IV-D relying on having an iteration memory in our
scenario as portrayed in Section V-B, when it is employed
during every QMSDD-DEC iteration. In other words, this
corresponds to an Iterations per Search (IpS) ratio of IpS = 1.
Furthermore, the scenarios of IpS = 2, 3 and 6 are also pre-
sented in Fig. 20. We may observe that the BER performance
is worse, when we employ the QMSDD less frequently.
However, the complexity reduction attained by reusing the
same, previously obtained sets diminishes upon increasing
the number of QMSDD-DEC iterations. Observe in Fig. 20
that there is a trade-off between the performance gain and the
decoding complexity obtained by a QMSDD-DEC iteration,
where the previously found symbol set is used.

FIGURE 20. BER performance of the randomly-initialized DHA-MUA-FBKT
QMSDD with iteration memory in the DSS/SSCH SDMA-OFDM system
described in Fig. 3, using the parameters summarized in Table 1 for
Nw = 7 and IpS ∈ {1, 2, 3, 6}.

Based on Fig. 20 we observe that as expected, the gain
achieved during an additional iteration, when the QMSDD is
employed is higher than that when the previously obtained
CFE set is used. However, the performance degradation
may not be severe, whilst the attainable complexity reduc-
tion is substantial. For example, the performance of the
DHA-MUA-FBKT QMSDD associated with IpS = 3 after
J = 3 MSDD-DEC iterations is 0.25 dB away from that
of its counterpart relying on IpS = 1 at BER = 10−5.
In other words, in this scenario if we employ the
DHA-MUA-FBKT QMSDD only during the first
MSDD-DEC iteration, similarly to the MAP MSDD, we
would need 0.25 dB more power for achieving the same
performance as in the case, where we employed J = 3
MSDD-DEC iterations. The complexities of the systems
investigated are summarized in Table 8. It should be noted
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TABLE 8. Complexity in terms of the number of CFEs/bit in Fig. 19.

that similarly to the MAP MSDD, the complexity of the
QMSDD relying on the previously found sets being reused
remains the same.

VII. EFFECT OF THE DETECTION WINDOW LENGTH AND
THE FREQUENCY OF SUBCARRIER HOPPING
In non-coherent multiple-symbol differential detection,
extending the length of the detection windowNw has a benefi-
cial impact on the system’s performance, which however has
to be traded-off against the detector’s complexity. Explicitly,
the MAP MSDD’s complexity increases exponentially with
the detection window’s size, but the BER performance is
improved. This is illustrated in Fig. 21, where we investigate
the system specified in Table 1 with the slight difference that
10 752 bits are transmitted by each of the 4 users in each
frame, when we have Nw = 8 and Nw = 4 and when QPSK
modulation associated with M = 4 is used, resulting in a
search space of MNw−1 = 16 384 and 64 legitimate multi-
level symbols, respectively. We may observe that fewer bit
errors occur at the end of the channel decoding procedure, for
Nw = 8 than in the case of Nw = 4 for the same Eb/N0 value.
More specifically, the performance gap between the Nw = 8
system and the Nw = 4 system is approximately 0.3 dB,
when a single MSDD-DEC iteration is performed and 0.5 dB
when we allow 2 or 3 MSDD-DEC iterations. However, the
complexity of the Nw = 8 MAP MSDD quantified in terms
of the number of CFEs per bit is 109.68 times higher than
that of the MAP MSDD, which uses Nw = 4. In more
detail, according to (60), the complexity of the MAP MSDD
associated withNw = 8 is equal to 1170.3 CFEs per bit, while
only 10.67 CFEs per bit are required by the MAP MSDD
for Nw = 4.

FIGURE 21. BER performance of the MAP MSDD in the DSS/SSCH
SDMA-OFDM system described in Fig. 3, using the parameters
summarized in Table 1 for 10 752 bits per frame per user and Nw ∈ {4, 8}.

It should be noted that in both systems characterized in
Fig. 21 the same value was used for the period of subcarrier
hopping Th. The reason Th was kept the same is that of provid-
ing a fair comparison between the MSDDs having different
detection window lengths. In fact, even by keeping the value
of Th the same, there is a difference in the operation of the
MAP MSDDs using Nw = 8 and Nw = 4, since the former
one has to detect the signal of (Th−1)/(Nw−1) = 21/7 = 3
windows after themost recent reception of a reference symbol
and before a new reference symbol arrives on a different
subcarrier, while the MAP MSDD associated with Nw = 4
has to detect the signals gleaned from (Th − 1)/(Nw − 1) =
21/3 = 7 windows during the same period. Naturally, the
difference in the number of detection windows affects the
system’s performance in the case, where the last symbol of a
detectionwindowwhich is subsequently used as the reference
symbol of the next detection window has been erroneously
detected. That scenario occurs more frequently, when we
have a shorter window length Nw and a longer subcarrier
hopping period Th.
When we increase the subcarrier hopping period Th, we

require the transmission of fewer reference symbols, since
each user transmits on the same slow-fading subcarrier for
a longer period of time, therefore increasing the system’s
throughput. At the same time however, we do not allocate the
resources to the users in a fair manner, since in the scenario
of a user operating in a deeply-fading channel, that user
will have to continue to have to suffer for the duration of
Th symbols. A trade-off between the throughput and quality
of service has to be struck in the SSCHmulti-carrier systems.

In our QMSDD application, the value of Th may have
an additional impact in the performance of the system.
Explicitly, when we increase the subcarrier hopping
period Th, the number of consecutive detection windows
with only the first symbol of the first detection window
of that chain being a reference symbol is also increased.
Intuitively, this would lead to a worse BER performance
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FIGURE 22. BER performance of the MAP MSDD in the DSS/SSCH
SDMA-OFDM system described in Fig. 3, using the parameters
summarized in Table 1 for 10 752 bits per frame per user and
[Nw , Th] ∈ {[8, 8], [8, 22], [4, 4], [4, 22]}.

than when the subcarrier hopping period Th is equal to
the detection window’s length Nw and hence a refer-
ence symbol is transmitted for each detection window.
In Fig. 22, we show the BER performance of our system,
when we use the MAP MSDD associated with [Nw,Th] ∈
{[8, 8], [8, 22], [4, 4], [4, 22]}. We may conclude that the
value of Th has an impact on the BER performance, even
though the gain achieved is relatively modest and should
be considered in the light of the associated system through-
put reduction. Interestingly, in the case of Nw = 4,
the performance improves, when we increase Th in
the BER = 10−2 − 10−4 range, but when operating
at BER = 10−5, the performance of the two MAP MSDDs
remains essentially the same.

For comparison, in Fig. 22 we have also included
the BER curves of the MAP MSDD associated with
[Nw = 7,Th = 13], where each user transmits 12 288 bits
per frame. The objective of this comparison is that of deter-
mining the impact of the detection window’s lengthNw, when
contrasted to an increased interleaver length and hence a
commensurately improved channel decoding performance.
Based on Fig. 22, the BER performance of the MAP MSDD
using [Nw = 8,Th = 8] when 10 752 bits per frame per
user are transmitted is equivalent to that of the MAP MSDD
associated with [Nw = 7,Th = 13] when 12 288 bits per
frame per user are used. Therefore, the interleavers’ length
and the value of the detection window’s length Nw have
the most substantial impact on a system, while that of the
subcarrier hopping period Th is significantly lower.

In Fig. 23, Fig. 24 and Fig. 25 we present the
BER performance with respect to the Eb/N0 values
of the deterministically-initialized DHA-MUA QMSDD,
DHA-MUA-FKTQMSDDandDHA-MUA-FBKTQMSDD,
respectively, all equipped with an iteration memory for
the sake of updating the initial guess of the DHA
searches. In the same figures, we have replotted the

FIGURE 23. BER performance of the deterministically-initialized
DHA-MUA QMSDD with iteration memory in the DSS/SSCH SDMA-OFDM
system of Fig. 3, using the parameters summarized in Table 1 for
10 752 bits per frame per user and [Nw , Th] ∈
{[8, 8], [8, 22], [4, 4], [4, 22]}.

FIGURE 24. BER performance of the deterministically-initialized
DHA-MUA-FKT QMSDD with iteration memory in the DSS/SSCH
SDMA-OFDM system of Fig. 3, using the parameters summarized in
Table 1 for 10 752 bits per frame per user and
[Nw , Th] ∈ {[8, 8], [8, 22], [4, 4], [4, 22]}.

BER performance of the MAP MSDD associated with
[Nw = 8,Th = 8] for comparison. As expected, the
QMSDDs using [Nw = 8,Th = 8] performs close to the
optimal MAP MSDD. Once again, the effect of Th is not
very pronounced, since systems having the same detection
window length Nw perform equally well. On the other hand,
by increasing Nw we achieve an improved BER performance
at the cost of a concomitant increase in complexity, as stated
in Table 9, where only the complexities of the QMSDDs that
employ Nw = 8 are stated, since their complexity recorded
for Nw = 4 is higher than that of the respective MAP
MSDD associated with Nw = 4. It should be noted that the
value of Th does not affect the complexity of the QMSDD,
therefore the same QMSDDs that employ [Nw = 8,Th = 8]
and [Nw = 8,Th = 22] have an identical complexity
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FIGURE 25. BER performance of the deterministically-initialized
DHA-MUA-FBKT QMSDD with iteration memory in the DSS/SSCH
SDMA-OFDM system of Fig. 3, using the parameters summarized in
Table 1 for 10 752 bits per frame per user and
[Nw , Th] ∈ {[8, 8], [8, 22], [4, 4], [4, 22]}.

TABLE 9. Complexity in terms of the number of CFEs/bit of the
QMSDDs that use Nw = 8 in Fig. 22, Fig. 23, Fig. 24 and Fig. 25.

in terms of the CFEs. Based on Table 9, the QMSDDs
have lower complexities than the MAP MSDD, even after
J = 3 MSDD-DEC iterations. A comparison between the
complexities stated in Table 5 and Table 9, which characterize
the same QMSDDs associated with Nw = 7 and Nw = 8,
respectively, demonstrates the scaling of the QMSDDs’
complexities with respect to that of the MAP MSDD. The
reason for the associated slight increase of the number of
CFEs per bit required in the QMSDDs when adding an extra
QMSDD-DEC iteration is that due to the relatively high value
of Eb/N0 = 9 dB, most of the frames were successfully
decoded during the previous iterations. Therefore, only the
erroneously detected frameswill participate in the subsequent
MSDD-DEC iteration. When the value of Eb/N0 is lower, the
complexity of the QMSDDs seen in Table 9 becomes higher,
while that of theMAPMSDDwill remain the same. However,
since typically it is required for the systems to operate at
BER = 10−5 or even lower, the choice of Eb/N0 = 9 dB
satisfies the QMSDDs associated with J = 3 QMSDD-DEC
iterations.

VIII. CONCLUSIONS
In this treatise we answered a number of design
dilemmas. More explicitly, we argued in favour of the family

of non-coherent receivers, which do not require channel
estimates, in contrast to their higher-complexity coherent
receiver counterparts, which rely on the accuracy of the chan-
nel estimation. Therefore, the complexity of the non-coherent
receivers is lower, but their BER performance is degraded,
when compared to that of a coherent receiver provided with
perfect channel estimates. Furthermore, we showed that the
MSDD performs better than the CDD, by performing detec-
tion over an extended window of several symbols. Based on
the complexity reduction achieved by the quantum algorithms
over their classical counterparts, we opted for exploiting
them in the context of MSDD in non-coherent receivers,
whilst achieving a near-optimal performance at a reduced
complexity.

We introduced a number of quantum-assisted
multi-symbol differential detectors. More specifically, we
investigated the HIHODHAQMSDD and ES-DHAQMSDD
in Section IV-A and Section IV-B, respectively, as well
as the SO DHA-MAA QMSDD and DHA-MAA-NE
QMSDD in Section IV-C. Furthermore, we presented the
SISO DHA-MUA QMSDD, DHA-MUA-FKT QMSDD,
DHA-MUA-FBKT QMSDD in Section IV-D and the
DHA-aided QWSA QMSDD in Section IV-E.

In Fig. 6 we showed that the DHA QMSDD offers an
equivalent performance to the ML MSDD, while requiring
fewer CFEs per bit. The ES-DHA QMSDD provides a
tunable performance based on the affordable complexity
budget, as demonstrated in Fig. 8. We showed in
Fig. 9 and Fig. 10 that the DHA-MAA and the
DHA-MAA-NEQMSDDs are unsuitable for integration with
iterative receivers, but they provide a near-optimal perfor-
mance at a low complexity during the first MSDD-DEC
iteration. The family of DHA-MUAQMSDDsmay be used in
a receiver, as presented in Fig. 12, where iterations are carried
out between theMSDD and the DEC, hence achieving a BER
performance, which is less than 1 dB away from that of the
optimal MAP MSDD’s performance, as depicted in Fig. 11.

Moreover, in Section V we proposed a methodology
for deterministically initializing the DHA searches of the
QMSDDs, by employing the CDD, while waiting for the
signals that participate in a detection window to arrive and
hence acquiring an early estimate of the optimal symbol.
In the scenarios, when the CDD estimate turns out to be
the same as the MSDD’s estimate, or close to it in terms
of its Hamming distance, the complexity reduction achieved
is higher. As seen in Fig. 17 and Table 7, the impact of the
CDD initialization on the complexity is more apparent in the
HIHO DHA and ES-DHA QMSDDs, where the objective is
to simply find the globally optimal multi-level symbol. In the
case of the SISO DHA-based QMSDDs, the CDD-initialized
QMSDDs require approximately the same complexity as the
randomly-initialized QMSDDs, due to their more complex
methodology. For this reason, we proposed the iteration
memory concept of Section V-B for the SISO QMSDDs,
where the globally optimal symbol found during a single
MSDD-DEC iteration is used for initializing the DHA

VOLUME 3, 2015 595



P. Botsinis et al.: Noncoherent QMSDD for Wireless Systems

searches of the next MSDD-DEC iteration, hence further
reducing the complexity.

Furthermore, motivated by our quest for low-complexity
QMSDDs, we proposed the reuse of the symbol set cre-
ated by the SISO DHA-based QMSDDs during a single
QMSDD-DEC iteration in (IpS − 1) of the subsequent
QMSDD-DEC iterations, hence reducing the complexity,
since the QMSDD was not employed in those iterations. We
found that the system performance associated with IpS > 1
was close to that of the scenario, where the QMSDD is
employed during every QMSDD-DEC iteration, albeit the
corresponding complexity was lower for IpS > 1.
Finally, in Fig. 22, Fig. 23, Fig. 24 and Fig. 25 we

investigated the effect of the detection window length Nw,
of the subcarrier-hopping period Th and of the interleaver
length on the system’s performance. The parameters having
the highest impact were the interleaver length and the detec-
tion window length Nw, with the subcarrier-hopping period
Th having a much lower effect on the system’s BER. The
proposed QMSDDs will result in a higher performance gain
with respect to that of the CDD in systems with excessively
high Doppler frequency, where the CDD experiences an
BER floor.

Apart from the challenges of near-optimal non-coherent
detection at a low complexity, there is a number of open prob-
lems in wireless systems that may be efficiently tackled by
quantum computing and quantum search algorithms. It may
be beneficial to create a joint quantum MUD and decoder,
by incorporating the forward error correction metric into
the multiple-stream detection metric. Moreover, quantum-
assisted turbo synchronization and channel estimation may
prove less complex than the existing algorithms, while the
Minimum BER (MBER) criterion may be adopted for per-
forming quantum-assisted turbo synchronization, channel
estimation and detection [67], [68]. A study, which bench-
marks the quantum-assisted solutions against the best known
bio-inspired algorithms [3], [69]–[72] may prove beneficial.
Quantum search algorithms may also be used in the con-
text of network coding [73], [74]. Furthermore, the quantum
search algorithms employed in this treatise are assumed to
operate in an error-free environment. In practice, based on the
imperfections of the materials that will be used to create the
quantum gates, the qubits may have a non-zero probability
of changing their states [57], [58], leading to undesirable
search outcomes. Modelling the effects of specific materials
as a quantum channel, we may be able to use quantum error
correction codes [75], [76] for stabilizing the quantum states
in the quantum circuits.

REFERENCES
[1] M. Dong and L. Tong, ‘‘Optimal design and placement of pilot symbols

for channel estimation,’’ IEEE Trans. Signal Process., vol. 50, no. 12,
pp. 3055–3069, Dec. 2002.

[2] A. Vosoughi and A. Scaglione, ‘‘Everything you always wanted to know
about training: Guidelines derived using the affine precoding framework
and the CRB,’’ IEEE Trans. Signal Process., vol. 54, no. 3, pp. 940–954,
Mar. 2006.

[3] L. Hanzo, Y. Akhtman, M. Jiang, and L. Wang, MIMO-OFDM for
LTE, WIFI and WIMAX: Coherent Versus Non-Coherent and Cooperative
Turbo-Transceivers. New York, NY, USA: Wiley, 2010.

[4] L. Wang and L. Hanzo, ‘‘Dispensing with channel estimation: Differen-
tially modulated cooperative wireless communications,’’ IEEE Commun.
Surveys Tuts., vol. 14, no. 13, pp. 836–857, Mar. 2012.

[5] L.Wang, L. Li, C. Xu, D. Liang, S. X. Ng, and L. Hanzo, ‘‘Multiple-symbol
joint signal processing for differentially encoded single- and multi-carrier
communications: Principles, designs and applications,’’ IEEE Commun.
Surveys Tuts., vol. 16, no. 2, pp. 689–712, Feb. 2014.

[6] V. Buchoux, O. Cappe, E. Moulines, and A. Gorokhov, ‘‘On the perfor-
mance of semi-blind subspace-based channel estimation,’’ IEEE Trans.
Signal Process., vol. 48, no. 6, pp. 1750–1759, Jun. 2000.

[7] E. de Carvalho and D. T. M. Slock, ‘‘Blind and semi-blind FIR multichan-
nel estimation: (Global) identifiability conditions,’’ IEEE Trans. Signal
Process., vol. 52, no. 4, pp. 1053–1064, Apr. 2004.

[8] L. Tong, R. Liu, V. C. Soon, and Y.-F. Huang, ‘‘Indeterminacy and identi-
fiability of blind identification,’’ IEEE Trans. Circuits Syst., vol. 38, no. 5,
pp. 499–509, May 1991.

[9] L. Tong and S. Perreau, ‘‘Multichannel blind identification: From sub-
space to maximum likelihood methods,’’ Proc. IEEE, vol. 86, no. 10,
pp. 1951–1968, Oct. 1998.

[10] M. C. Necker and G. L. Stuber, ‘‘Totally blind channel estimation for
OFDM on fast varying mobile radio channels,’’ IEEE Trans. Wireless
Commun., vol. 3, no. 5, pp. 1514–1525, Sep. 2004.

[11] G. Brassard, F. Dupuis, S. Gambs, and A. Tapp. (Jun. 2011). ‘‘An optimal
quantum algorithm to approximate the mean and its application for approx-
imating the median of a set of points over an arbitrary distance.’’ [Online].
Available: http://arxiv.org/abs/1106.4267

[12] P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Fixed-complexity quantum-assisted
multi-user detection for CDMA and SDMA,’’ IEEE Trans. Commun.,
vol. 62, no. 3, pp. 990–1000, Mar. 2014.

[13] P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, ‘‘Low-complexity soft-
output quantum-assisted multiuser detection for direct-sequence spreading
and slow subcarrier-hopping aided SDMA-OFDM systems,’’ IEEEAccess,
vol. 2, pp. 451–472, May 2014.

[14] P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Quantum search algorithms, quantum
wireless, and a low-complexity maximum likelihood iterative quantum
multi-user detector design,’’ IEEE Access, vol. 1, pp. 94–122, May 2013.

[15] A. Malossini, E. Blanzieri, and T. Calarco, ‘‘Quantum genetic optimiza-
tion,’’ IEEE Trans. Evol. Comput., vol. 12, no. 2, pp. 231–241, Apr. 2008.

[16] S. Imre, ‘‘Quantum existence testing and its application for finding extreme
values in unsorted databases,’’ IEEE Trans. Comput., vol. 56, no. 5,
pp. 706–710, May 2007.

[17] S. Imre and F. Balázs, ‘‘Non-coherent multi-user detection based on quan-
tum search,’’ in Proc. IEEE Int. Conf. Commun. (ICC), vol. 1. May 2002,
pp. 283–287.

[18] S. Imre and F. Balázs, ‘‘Performance evaluation of quantum based multi-
user detector,’’ in Proc. IEEE 7th Int. Symp. Spread Spectr. Techn. Appl.,
vol. 3. Sep. 2002, pp. 722–725.

[19] T. Hogg, ‘‘Quantum search heuristics,’’ Phys. Rev. A, vol. 61, no. 5,
p. 052311, Apr. 2000.

[20] T. Hogg and D. Portnov, ‘‘Quantum optimization,’’ Inf. Sci., vol. 128,
nos. 3–4, pp. 181–197, 2000.

[21] C. Durr and P. Høyer. (Jul. 1996). ‘‘A quantum algorithm for finding the
minimum.’’ [Online]. Available: http://arxiv.org/abs/quant-ph/9607014

[22] D. Ventura and T. Martinez. (Jul. 1998). ‘‘Quantum associative memory.’’
[Online]. Available: http://arxiv.org/abs/quant-ph/9807053

[23] G. Brassard, P. Høyer, and A. Tapp. (May 1998). ‘‘Quantum counting.’’
[Online]. Available: http://arxiv.org/abs/quant-ph/9805082

[24] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, ‘‘Tight bounds on quantum
searching,’’ Fortschritte Phys., vol. 46, nos. 4–5, pp. 493–505, 1998.

[25] P. W. Shor, ‘‘Algorithms for quantum computation: Discrete logarithms
and factoring,’’ in Proc. 35th Annu. Symp. Found. Comput. Sci., Nov. 1994,
pp. 124–134.

[26] D. Deutsch and R. Jozsa, ‘‘Rapid solution of problems by quantum
computation,’’ Proc., Math. Phys. Sci., vol. 439, no. 1907, pp. 553–558,
Dec. 1992.

[27] D. Deutsch, ‘‘Quantum theory, the Church–Turing principle and the uni-
versal quantum computer,’’ Proc. Roy. Soc. London A, Math. Phys. Sci.,
vol. 400, no. 1818, pp. 97–117, 1985.

596 VOLUME 3, 2015



P. Botsinis et al.: Noncoherent QMSDD for Wireless Systems

[28] R. P. Feynman, ‘‘Simulating physics with computers,’’ Int. J. Theoretical
Phys., vol. 21, nos. 6–7, pp. 467–488, Jun. 1982.

[29] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. (May 2000). ‘‘Quantum
amplitude amplification and estimation.’’ [Online]. Available:
http://arxiv.org/abs/quant-ph/0005055

[30] J. C. Garcia-Escartin and P. Chamorro-Posada, ‘‘Quantum spread spectrum
multiple access,’’ IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 3,
May/Jun. 2015, Art. ID 6400107.

[31] L. K. Grover, ‘‘A fast quantum mechanical algorithm for database
search,’’ in Proc. 28th Annu. ACM Symp. Theory Comput., May 1996,
pp. 212–219.

[32] L. K. Grover, ‘‘Quantum mechanics helps in searching for a needle in a
haystack,’’ Phys. Rev. Lett., vol. 79, no. 2, pp. 325–328, Jul. 1997.

[33] J. K. Cavers, ‘‘An analysis of pilot symbol assistedmodulation for Rayleigh
fading channels [mobile radio],’’ IEEE Trans. Veh. Technol., vol. 40, no. 4,
pp. 686–693, Nov. 1991.

[34] T. S. Rappaport et al., ‘‘Millimeter wave mobile communications for 5G
cellular: It will work!’’ IEEE Access, vol. 1, pp. 335–349, May 2013.

[35] S. Sugiura, S. Chen, and L. Hanzo, ‘‘MIMO-aided near-capacity turbo
transceivers: Taxonomy and performance versus complexity,’’ IEEE
Commun. Surveys Tuts., vol. 14, no. 2, pp. 421–442, May 2012.

[36] L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi,
‘‘Wireless myths, realities, and futures: From 3G/4G to optical and
quantum wireless,’’ Proc. IEEE, vol. 100, no. Special Centennial Issue,
pp. 1853–1888, May 2012.

[37] J. Hoydis, S. ten Brink, and M. Debbah, ‘‘Massive MIMO in the UL/DL of
cellular networks: How many antennas do we need?’’ IEEE J. Sel. Areas
Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[38] D. Divsalar and M. K. Simon, ‘‘Multiple-symbol differential detection of
MPSK,’’ IEEE Trans. Commun., vol. 38, no. 3, pp. 300–308, Mar. 1990.

[39] F. Adachi and M. Sawahashi, ‘‘Decision feedback multiple-symbol dif-
ferential detection for M-ary DPSK,’’ Electron. Lett., vol. 29, no. 15,
pp. 1385–1387, Jul. 1993.

[40] K. Mackenthun, Jr., ‘‘A fast algorithm for multiple-symbol differen-
tial detection of MPSK,’’ IEEE Trans. Commun., vol. 42, no. 234,
pp. 1471–1474, Feb./Apr. 1994.

[41] M. Peleg and S. Shamai, ‘‘Iterative decoding of coded and interleaved
noncoherent multiple symbol detected DPSK,’’ Electron. Lett., vol. 33,
no. 12, pp. 1018–1020, Jun. 1997.

[42] L. Hanzo, S. X. Ng, W. Webb, and T. Keller, Quadrature Amplitude
Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and
Space-Time Coded OFDM, CDMA and MC-CDMA Systems. New York,
NY, USA: Wiley, Sep. 2004.

[43] P. Yang, Y. Xiao, B. Zhang, S. Li, M. El-Hajjar, and L. Hanzo,
‘‘Star-QAM signaling constellations for spatial modulation,’’ IEEE Trans.
Veh. Technol., vol. 63, no. 8, pp. 3741–3749, Oct. 2014.

[44] S. Sugiura, C. Xu, S. X. Ng, and L. Hanzo, ‘‘Reduced-complexity coherent
versus non-coherent QAM-aided space-time shift keying,’’ IEEE Trans.
Commun., vol. 59, no. 11, pp. 3090–3101, Nov. 2011.

[45] D. Divsalar andM. K. Simon, ‘‘Maximum-likelihood differential detection
of uncoded and trellis coded amplitude phase modulation over AWGN and
fading channels-metrics and performance,’’ IEEETrans. Commun., vol. 42,
no. 1, pp. 76–89, Jan. 1994.

[46] P. Ho and D. Fung, ‘‘Error performance of multiple-symbol differential
detection of PSK signals transmitted over correlated Rayleigh fading chan-
nels,’’ IEEE Trans. Commun., vol. 40, no. 10, pp. 1566–1569, Oct. 1992.

[47] R. Schober, W. H. Gerstacker, and J. B. Huber, ‘‘Decision-feedback dif-
ferential detection of MDPSK for flat Rayleigh fading channels,’’ IEEE
Trans. Commun., vol. 47, no. 7, pp. 1025–1035, Jul. 1999.

[48] H. Leib, ‘‘Data-aided noncoherent demodulation of DPSK,’’ IEEE Trans.
Commun., vol. 43, nos. 2–4, pp. 722–725, Feb./Apr. 1995.

[49] R. Schober and W. H. Gerstacker, ‘‘Decision-feedback differential detec-
tion based on linear prediction forMDPSK signals transmitted over Ricean
fading channels,’’ IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 391–402,
Mar. 2000.

[50] L. Lampe, R. Schober, V. Pauli, and C. Windpassinger, ‘‘Multiple-symbol
differential sphere decoding,’’ IEEE Trans. Commun., vol. 53, no. 12,
pp. 1981–1985, Dec. 2005.

[51] C. Xu, S. Sugiura, S. X. Ng, and L. Hanzo, ‘‘Reduced-complexity non-
coherently detected differential space-time shift keying,’’ IEEE Signal
Process. Lett., vol. 18, no. 3, pp. 153–156, Mar. 2011.

[52] C. Xu, L. Wang, S. X. Ng, and L. Hanzo, ‘‘Multiple-symbol differential
sphere detection aided differential space-time block codes using QAM
constellations,’’ IEEE Signal Process. Lett., vol. 18, no. 9, pp. 497–500,
Sep. 2011.

[53] L. H.-J. Lampe and R. Schober, ‘‘Low-complexity iterative demodulation
for noncoherent coded transmission over Ricean-fading channels,’’ IEEE
Trans. Veh. Technol., vol. 50, no. 6, pp. 1481–1496, Nov. 2001.

[54] L. H.-J. Lampe and R. Schober, ‘‘Iterative decision-feedback differential
demodulation of bit-interleaved coded MDPSK for flat Rayleigh fading
channels,’’ IEEE Trans. Commun., vol. 49, no. 7, pp. 1176–1184, Jul. 2001.

[55] P. Hoeher and J. Lodge, ‘‘‘Turbo DPSK’: Iterative differential PSK demod-
ulation and channel decoding,’’ IEEE Trans. Commun., vol. 47, no. 6,
pp. 837–843, Jun. 1999.

[56] V. Pauli, L. Lampe, and R. Schober, ‘‘‘Turbo DPSK’ using soft multiple-
symbol differential sphere decoding,’’ IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1385–1398, Apr. 2006.

[57] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[58] S. Imre and F. Balázs, Quantum Computing and Communications:
An Engineering Approach. New York, NY, USA: Wiley, 2005.

[59] S. Imre and L. Gyongyosi, Advanced Quantum Communications:
An Engineering Approach. New York, NY, USA: Wiley, 2013.

[60] P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Low-complexity iterative quan-
tum multi-user detection in SDMA systems,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2014, pp. 5592–5597.

[61] J. G. Proakis, Digital Communications, 4th ed. New York, NY, USA:
McGraw-Hill, 2001.

[62] L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA
for Broadband Multi-User Communications, WLANs and Broadcasting.
New York, NY, USA: Wiley, 2003.

[63] D. Alanis, P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Quantum-assisted
routing optimization for self-organizing networks,’’ IEEE Access, vol. 2,
pp. 614–632, Jun. 2014.

[64] S. Sesia, I. Toufik, and M. Baker, LTE, The UMTS Long Term Evolution:
From Theory to Practice. New York, NY, USA: Wiley, 2009.

[65] Y.-M. Chen, Y.-L. Ueng, and H.-J. Shiau, ‘‘An EXIT-based design method
for LDPC-coded schemeswithout Gaussian assumptions,’’ IEEECommun.
Lett., vol. 17, pp. 1648–1651, Aug. 2013.

[66] J. Hagenauer, ‘‘The EXIT chart—Introduction to extrinsic information
transfer,’’ in Proc. 12th Eur. Signal Process. Conf. (EUSIPCO), 2004,
pp. 1541–1548.

[67] A. K. Dutta, K. V. S. Hari, and L. Hanzo, ‘‘Channel estimation relying on
the minimum bit-errorratio criterion for BPSK and QPSK signals,’’ IET
Commun., vol. 8, no. 1, pp. 69–76, Jan. 2014.

[68] A. Dutta, K. Hari, and L. Hanzo, ‘‘Minimum-error-probability CFO esti-
mation for muti-user MIMO OFDM systems,’’ IEEE Trans. Veh. Technol.,
Aug. 2014.

[69] S. X. Ng, K. Yen, and L. Hanzo, ‘‘M-ary codedmodulation assisted genetic
algorithm based multiuser detection for CDMA systems,’’ in Proc. IEEE
Wireless Commun. Netw. Conf., vol. 2. Mar. 2003, pp. 779–783.

[70] L. Hanzo, L.-L. Yang, E.-L. Kuan, and K. Yen, Single and Multi-Carrier
DS-CDMA: Multi-User Detection, Space-Time Spreading, Synchronisa-
tion, Networking and Standards. New York, NY, USA: Wiley, 2003.

[71] M. Jiang, S. X. Ng, and L. Hanzo, ‘‘Hybrid iterative multiuser detection
for channel coded space division multiple access OFDM systems,’’ IEEE
Trans. Veh. Technol., vol. 55, no. 1, pp. 115–127, Jan. 2006.

[72] M. Jiang and L. Hanzo, ‘‘Multiuser MIMO-OFDM for next-generation
wireless systems,’’ Proc. IEEE, vol. 95, no. 7, pp. 1430–1469, Jul. 2007.

[73] W. Chen, L. Hanzo, and Z. Cao, ‘‘Network coded modulation for
two-way relaying,’’ in Proc. IEEE Wireless Commun. Netw. Conf.,
Mar. 2011, pp. 1765–1770.

[74] W. Chen, Z. Cao, and L. Hanzo, ‘‘Maximum Euclidean distance network
codedmodulation for asymmetric decode-and-forward two-way relaying,’’
IET Commun., vol. 7, no. 1, pp. 988–998, Jul. 2013.

[75] Z. Babar, S. X. Ng, and L. Hanzo, ‘‘Near-capacity code design for
entanglement-assisted classical communication over quantum depolariz-
ing channels,’’ IEEE Trans. Commun., vol. 61, no. 12, pp. 4801–4807,
Dec. 2013.

[76] Z. Babar, S. X. Ng, and L. Hanzo, ‘‘EXIT-chart-aided near-capacity
quantum turbo code design,’’ IEEE Trans. Veh. Technol., vol. 64, no. 3,
pp. 866–875, Mar. 2015.

VOLUME 3, 2015 597



P. Botsinis et al.: Noncoherent QMSDD for Wireless Systems

PANAGIOTIS BOTSINIS (S’12) received the
Diploma degree from the School of Electrical
and Computer Engineering, National Technical
University of Athens, Greece, in 2010, and the
M.Sc. (Hons.) degree in wireless communica-
tions from the University of Southampton, U.K.,
in 2011. He is currently pursuing the Ph.D.
degree with the Southampton Wireless, School of
Electronics and Computer Science, University of
Southampton. Since 2010, he has been a member

of the Technical Chamber of Greece.
His research interests include quantum-assisted communications, quan-

tum computation, iterative detection, orthogonal frequency domain multi-
plexing,MIMO,multiple access systems, codedmodulation, channel coding,
cooperative communications, and combinatorial optimization.

DIMITRIOS ALANIS (S’13) received the
M.Eng. degree in electrical and computer
engineering from the Aristotle University of
Thessaloniki, in 2011, and the M.Sc. degree in
wireless communications from the University of
Southampton, in 2012. He is currently pursuing
the Ph.D. degree with the Southampton Wireless,
School of Electronics and Computer Science,
University of Southampton.

Dimitrios’s research interests include quantum
computation and quantum information theory, quantum search algorithms,
cooperative communications, resource allocation for self-organizing net-
works, bioinspired optimization algorithms, and classical and quantum game
theory.

ZUNAIRA BABAR received the B.Eng. degree
in electrical engineering from the National Uni-
versity of Science and Technology, Islamabad,
Pakistan, in 2008, and the M.Sc. (Hons.) degree
in wireless communications from the Univer-
sity of Southampton, U.K., in 2011, where she
is currently pursuing the Ph.D. degree with
the Southampton Wireless, School of Electron-
ics and Computer Science. Her research inter-
ests include quantum error correction codes,

channel coding, coded modulation, iterative detection, and cooperative
communications.

SOON XIN NG (S’99–M’03–SM’08) received
the B.Eng. (Hons.) degree in electronics engi-
neering and the Ph.D. degree in wireless com-
munications from the University of Southampton,
Southampton, U.K., in 1999 and 2002,
respectively. From 2003 to 2006, he was a
Post-Doctoral Research Fellow working on col-
laborative European research projects known as
SCOUT, NEWCOM, and PHOENIX. Since 2006,
he has been an Academic Staff Member with the

School of Electronics and Computer Science, University of Southampton.
He is involved in the OPTIMIX and CONCERTO European projects, and
the IUATC and UC4G projects. He is currently an Associate Professor of
Telecommunications with the University of Southampton.

He has authored over 180 papers and co-authored two John Wiley/IEEE
Press books in his research field. His research interests include adaptive
coded modulation, coded modulation, channel coding, space–time coding,
joint source and channel coding, iterative detection, orthogonal frequency
domain multiplexing, MIMO, cooperative communications, distributed cod-
ing, quantum error correction codes, and joint wireless-and-optical-fiber
communications. He is a Chartered Engineer and a fellow of the Higher
Education Academy in the U.K.

LAJOS HANZO (M’91–SM’92–F’04) received
the degree in electronics, in 1976, the Ph.D.
degree, in 1983, and the D.Sc. degree from
the Technical University of Budapest, in 2009.
During the 37 years of career in telecommu-
nications, he has held various research and
academic positions in Hungary, Germany, and
U.K. Since 1986, he has been with the School
of Electronics and Computer Science, Univer-
sity of Southampton, U.K., where he holds

the Chair in telecommunications. He has successfully supervised over
80 Ph.D. students, has co-authored 20 John Wiley/IEEE Press books
in mobile radio communications totaling in excess of 10 000 pages,
and has authored over 1400 research entries at the IEEE Xplore.
He has over 19 000 citations. He is a fellow of the Future Institute of
Engineering and Technology, and the European Association for Signal
Processing. He is directing the 100-strong academic research team, working
on a range of research projects in the field of wireless multimedia commu-
nications sponsored by the industry, the U.K. Engineering and Physical Sci-
ences Research Council, the European Research Council Advanced Fellow
Grant, and the Royal Society’s Wolfson Research Merit Award. His research
is funded by the European Research Council’s Senior Research FellowGrant.
He has acted as the Technical Program Committee and General Chair of
the IEEE conferences, presented keynote lectures, and received a number
of distinctions. He is an enthusiastic supporter of industrial and academic
liaison, and offers a range of industrial courses. He is also a Governor of the
IEEE Vehicular Technology Society. From 2008 to 2012, he was the Editor-
in-Chief of the IEEE Press and a Chair Professor with Tsinghua University,
Beijing.

598 VOLUME 3, 2015


