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ABSTRACT Cloud computing is developing so fast that more and more data centers have been built every
year. This naturally leads to high-power consumption. Virtual machine (VM) consolidation is the most
popular solution based on resource utilization. In fact, much more power can be saved if we know the
power consumption of each VM. Therefore, it is significant to measure the power consumption of each VM
for green cloud data centers. Since there is no device that can directly measure the power consumption of
each VM, modeling methods have been proposed. However, current models are not accurate enough when
multi-VMs are competing for resources on the same server. One of the main reasons is that the resource
features for modeling are correlated with each other, such as CPU and cache. In this paper, we propose
a tree regression-based method to accurately measure the power consumption of VMs on the same host.
The merits of this method are that the tree structure will split the data set into partitions, and each is an
easy-modeling subset. Experiments show that the average accuracy of our method is about 98% for different

types of applications running in VMs.

INDEX TERMS Virtual machine (VM), metering, measure, power, cloud computing.

I. INTRODUCTION
In recent years, many Internet service providers have built
their own data centers to process the ever increasing big
data. It is estimated that the data centers will consume more
than 100 billion kWH per year [1], and the energy cost of
data centers will double every 5 years [2]. The most popular
solution is to consolidate VMs to as few servers as possible,
with remained idle servers shut off. In fact, much more power
can be saved if the power consumption of each VM can be
accurately measured. Therefore, VM power metering is sig-
nificant for the power saving of green data centers. Besides,
it is reasonable to charge users according to the power con-
sumption of their VMs. The existing service provider like
Amazon charges users by configuration types and running
time of VMs [3], [4]. The problem lies in that, for VMs with
the same configuration and running time, the resource used
can be totally different, causing different power consumption.
However, there are several challenges to conquer for
VM power metering. VM is running at the level of software,
so that traditional hardware power meter cannot be used. It is
hard to measure the power consumption of virtual devices

like CPU, memory and disk that belongs to a VM. And it is
necessary to distinguish the proportion of hardware resources
used by each VM.

In this paper, we address the issues mentioned above
and propose a tree regression based model for VM power
metering. The procedures for VM power metering are as
follows: information collection, modeling, evaluating and
adjusting. In the architecture of our system, the synchro-
nization for sampling is emphasized. Different from existing
work, we regard the modeling features are not independent of
each other. Our tree regression model will automatically split
the dataset into easy modeling partitions, such that the accu-
racy problem incurred by the correlation between different
resources has no impact on our model. Tree pruning technique
has been used for optimization, and it proved to be effective in
enhancing accuracy for CPU intensive applications. We also
propose a new evaluation approach that reflects the extend
of error changes very well in real use. Experiments show
that our method is much more accurate than the commonly
used models in literature, but as light-weighted as linear
model. It also shows that our model is applicable in different
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scenarios including CPU intensive, IO intensive, and
distributed applications on Hadoop. Above all, our model
is suitable for estimating the power consumption of both
physical server and VMs running on it.

The rest of paper is organized as follows. In Section II,
we summarize the latest literature in VM power metering.
Section III presents the architecture of our VM power meter-
ing system. In Section IV, we demonstrate our tree regression
based modeling method in detail. In Section V, we introduce
experiment setup and make evaluations. Finally, Section VI
concludes this paper.

Il. RELATED WORK

In this section, we will review up-to-date literature regarding
VM power metering, including information collection such
as methods, tools can be used, as well as sampling interval.
We also review various modeling methods in literature as
follows.

A. INFORMATION COLLECTION
The modeling information includes two parts: physical server
power and profiling features of the resources.

To collect server power, there are two methods: one is
to use externally attached PDUs (Power Distributed Unit)
like WattsUp series [5] and Scheleifenbauer power meter [6].
The data can be logged inside the PDU or can be accessed
through local network area. The other is to use the
APIs provided by the server with built-in power meter. For
instance, Dell Power Series provide comprehensive power
information for each component inside the server through
Dell Open Management Suite [7]. PDU is convenient to
be attached to and detached from servers, but infeasible in
large scale. In contrast, server with inner power meter is
preferred for the power management of future data center,
though it may bring performance degradation when sampling
too frequent. Still, others use wires to connect their self-
developed power meter with each component in the server
to measure the components’ power [8]-[10]. But this method
is too complex to be used widely, and Dell Series has already
been able to provide power information of major components.

To collect profiling features of resources, the information is
collected from CPU, memory, and 10. To account the portion
of CPU usage by each VM, Kansal et al. [11] propose to
transform the tracked performance counters of each VM into
the utilization of physical processor. Stoess et al. [12] directly
use PMCs (Performance Monitor Counters) for each VM.
IBM in [13] uses time slices of processors to account the por-
tion of CPU usage by each VM. For memory, Bao et al. [14]
believe the throughput of memory can well reflect the
variation of memory power, while Kansal and Krishnan
profiled their memory utilization using LLC missed
in [11] and [15]. Still, Kim et al. [16] estimate the power
consumption of memory using the number of memory
accesses. For 10, Kansal uses disk throughput to esti-
mate disk power, while Stoess believes the finishing time
of an IO request is more reliable. IBM has implemented
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monitoring of 10 throughput for each VM at hypervisor level
of Xen.

It is a complex task to implement the above mentioned
methods for modeling information collection. Fortunately,
there have been some tools for collecting profiling features
of resources at system level, some are designed specifically
for profiling VM. Table 1 summarizes the tools that can be
used for profiling in virtulization platform.

TABLE 1. Tools for profiling in virtualization platform.

Virtualization Tools
XenOprof  Xenperf
Xen Xentrace Xentop
Xenanalyze Xenstat
XenMon
KVM Perf Suite  Oprofile
Perfmon2
VMWare ReTrace vmkperf

In information collection, the rate of sampling should also
be taken into consideration. Sampling too frequent will incur
degradation of performance; otherwise, the modeling accu-
racy will decline. An empirically setting for sampling rate
is 1~2 seconds [17], [18]. In fact, the sampling rate should be
adjusted according to the variation of running applications, as
is mentioned in [19]. In our expriment, we choose 2 seconds
as our sampling rate.

B. MODELING METHODS

From the perspective of information collection, VM power
metering can be classified into two categories: white box
method and black box method. As is mentioned in [20],
white box method collects the modeling information of
each VM using a proxy running inside of each VM. This
method breaks the integrity of VM, not suitable for providing
VM services like Amazon EC2. It is inaccurate when model-
ing information is collected from different VM OSes such as
Windows and Linux. In view of this, most recent researches
use black box method that collect the modeling information
of each VM at the level of hypervisor or host.

From the perspective of modeling method, VM power
metering can be classified into linear model and non-linear
model. Let the total server power denoted as Py, static
power denoted as Pg;qic. The general model for both linear
and non-linear is based on the assumption that the total server
power consists of static power and the power consumed by
each component such as CPU, memory, and 10, denoted as
Pcpu, Puem, Pro, respectively. Thus, we have:

Protai = Pstatic + Pcpu + Ppem + Pro

In linear model, the power consumption of each compo-
nent is in linear relationship with utilization of the resource,
denoted as Rcpy, Ryem, and Rjo for CPU, memory and IO,
respectively. Thus, we have:

Protal = Pstaric + aRcpy + BRyem + YRi0 + e,
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where e represents the adjusting variable in linear regression.
Since the power consumption of each component is caused
by running VMs, then:

n n
CPU M
Protal = Pstaric + ZRVMi + B ZRVAflrin
i i

n
+y Y R, +e.
i

where R%}i], Rﬁ‘ffw',?’, and R(,%[ denote CPU, memory, and

IO usage by each VM;, respectively. «, B, and y are the
parameters to be trained. Thus, the power consumption of
each VM i, denoted as Py, is:

Py, = aRGyY + BRYT + vRYY, .

Among the linear models, Kansal et al [11] use
CPU utilization, LLCM (Last Level Cache Missing), and
transfer time of IO for modeling. Krishnan et al. [15] only use
instructions retired and LLC (Last Level Cache) hits for his
linear model. Kim et al. [16] considered the number of active
cores, retired instructions, and number of memory accesses
in his linear model. Similarly, Bertran er al. [21], [22]
also considered the number of active cores for his linear
model. Chen et al. [19] propose a modified model using
CPU and Hard disk. Bohra and Chaudhary [23] use PMCs
such as CPU_CLK_UNHALTED, DRAM_ACCESSES,
INSTRUCTION_CACHE_FETCHES and DATA_CAC-
HE_FETCHES to represent the component states of CPU,
memory and caches for modeling. The only difference among
those linear models is the component slection for modeling.
In linear models, least squares is often used for multi-variable
linear regression.

As for non-linear models, methods can be classified
into polynomial models, lookup table method, and machine
learning models. For polynomial modeling method,
Versick et al. [24] and WalBlmann et al. [25] propose a
polynomial formula, and the maximum accuracy can be
reached when the polinomial order is six. Xiao et al. [26] and
Peng and Sai [27] build his polynomial model using PMCs.
For lookup table method, Jiang ef al. [28] just build an matrix
called LUT to store the CPU and LLC, fill the matrix with
collected data and interpolate data by the designed rule. But
the table is too large to be retrieved when more features
are considered. For machine learning modeling method,
Yang et al. [18] adopt a machine learning method called
&-SVR model for VM power metering.

Other work related to VM power metering are:
Liu et al. [29] build a model for estimating the power
consumption of VM migration, and he finds that the migra-
tion power is in linear relationship with transmitting volumes.
Ma et al. [30] take the power consumption of fan into
consideration for each VM. Quesnel et al. [31] propose a
method that fairly divides the idle server power into each VM.

To sum up, linear model is a commonly used method in
VM power metering for its simplicity in implementation,
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with low overhead when running. However, it is built on the
assumption that all the input variables are independent of each
other [17]. It is obvious that the parameters should be trained
frequently when the behaviors of applications always vary,
causing high overhead. Non-linear model may improve the
accuracy to a certain extend, but too complex especially in
updating parameters. In this paper, we propose a tree regres-
sion based method for VM power metering. It is a simple
method with high accuracy and low overhead as linear model.
The following sections will demonstrate the architecture of
our system in detail.

Ill. SYSTEM ARCHITECTURE

In this section, we will describe the basic architecture of our
system for VM power metering, as is shown in Figure 1.
This architecture is based on black box method that collects
modeling information of each VM at the level of host.

(NTP#erver)
VM2

App || App

Information
Y .
VM1 Tools/ P Collection [P] Modeling
A y'y
T T T

Y

Power . .
Host OS > Meter Estimation

FIGURE 1. Architecture of VM Power Metering.

In this architecture, several VMs are running on the host,
each with several applications running inside. The first step
for VM power metering is information collection, so there
are tools collecting the features of each VM at host level.
A separate server is running for gathering the modeling infor-
mation of the host server and the information from PDU. It is
worth emphasizing that the information collecting server runs
a NTP service for synchronizing the timestamps of resource
information and power information. The second step is
modeling, and there is a modeling module specifically
responsible for training parameters based on collected
samples. The last step is to evaluate the accuracy by
calculating the error between estimated and measured server
power. The estimation module is also responsible for updat-
ing parameters when errors exceed a certain threshold. With
all these modules, our system can provide high quality service
for VM power metering in real application.

IV. TREE REGRESSION BASED METHOD

FOR VM POWER METERING

For VM power metering, the commonly used linear fitting
method is inaccurate when the interrelations of the resource
features of the training data are too complex. In fact, the
resource features are not always in rigor linear relationship.
The pattern of resource features with power may vary for dif-
ferent applications. Thus, modeling should be closely related
to collected dataset for this application, and a separate set
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of parameters will be fitted on it. One feasible solution is to
split the dataset into several easy-modeling subsets. For any
subset, it will be splitted until any subset fits the model very
well. This is a regression problem, and it can be formulated
like this: suppose there is a training data of n observations,
each has a response variable y, and a vector of predictor
variables x with length m. The domain of x and y are denoted
as X and Y, respectively. Thus, the training samples can be
denoted as D = {(x1, y1), .- -, (xn, yn)}. Our goal is to find
a proper model for estimating y from a new predictor x.
In theory, the solution is to split X into k disjoint pieces,
A1,Ap, ..., Ar,suchthat X = Ufle A; and the mean squared
prediction error (Vpredicr — ¥)° is minimized [32].

In this paper, we propose a tree regression based approach
to measure the power consumption of VMs. It recursively
partition the dataset into several easy modeling pieces. For
tree regression method, it usually can be classified into model
tree and regression tree. The only difference between these
two types of trees is that the former uses linear regression to
fit the partitioned data, while the latter uses a constant for each
partitioned data. We will evaluate tree regression methods
in Section V.

There are basically three steps for VM power metering:

Step 1: Information collection, including static server
power, profiling features of resource for both server and VM,
and real server power when VM runs tasks inside.

Step 2: Build a tree model for server power. It involves
two algorithms: CreateTree and FeatureValueSelect.

Step 3: Apply the built tree to estimate the power consump-
tion of each VM.

In tree building, there are four major tasks for VM power
metering: (i) how to create a tree, (ii) how to make partitions
for training data, (iii) when to stop partitioning, (iv) how
to apply our tree to estimate the power consumption
of VM. Since model tree has been proved to perform well in
our experiment, we will mainly discuss our tree regression
method using model tree to address the above mentioned
four tasks in the following.

A. BASIC THEORY

We build our tree using resource features including
CPU utilization, Last Level Cache Misses (LLCM), bytes
of throughput for VM power metering. All these features
have been proved to be effective in power
modeling [11], [15], [29]. We collect the information for each
VM using blackbox method. Thus, the accuracy of server
power model will have great impact on the the estimated
VM power [20].

Here are some definitions. Suppose there are n observa-
tions in the training dataset. The response variable of each
observation is server power, denoted as Py, . The predic-
tor variables of each observation is a vector of resource
usage, denoted as R. R = {Rcpu, Rmemory, Rio}, Where
Rcpu, Rimemory, and Rjp denote CPU utilization, LLCM, and
IO throughput, respectively. Thus, the training samples can
be denoted as D = {(Ry, Py), ..., (R,, P,)}. The estimated
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power of server using tree regression method can be denoted
as Pggimatea(d), d € D. For each non-leaf node (also called
partitioning node) in the tree, denoted as Node, it has four
fields, (feature, value, right, left). feature represents resource
feature such as CPU, memory, or 10, value is a real value of
the resource feature. right and left represent the right and left
child of this node, respectively. For leaf node, it has no fields
for left child and right child. It has only two field, feature
and value. feature is null if it is a leaf node. value is not a
real number for leaf node. Instead, it has two fields: data
and paras, denoting the partitioned dataset of the leaf and
the modeling parameters fitted on this dataset, respectively.
In fact, the data field is not necessary in real use if we
do not optimize the tree by punning. In this paper, we will
discuss pruning using the partitioned dataset of the leaf node,
so that leaf node is designed with two fields. For ease of
understanding, Figure 2 is a simple example to illustrate the
data structure for partitioning node and leaf node of our tree:

‘ data ‘paras‘ ‘ data ‘paras ‘ data ‘paras‘ data paras
d

e f g

FIGURE 2. A Simple Example of Our Tree Structure.

B. CREATING TREE
The main idea of CreateTree is to recursively partition the
dataset into subsets until there is no proper features to
be selected for partitioning. In each partitioning, a proper
(feature, value) pair is selected in the dataset. The partition
happens only when the enhancement of accuracy exceeds
a certain threshold. If the selected feature is null, the input
dataset with modeling parameters fitted on it will be added to
the tree as a leaf node, like that in Figure 2.

In Algorithm 1, function SplitData is to partition the
training dataset D into two parts D1 and D2 by the
value of resource feature. It is worth noting that function
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Algorithm 1 CreateTree

Algorithm 2 FeatureValueSelect

Input:
The training dataset D;
Output:
Atree T,
1: (feature, value) = FeatureValueSelect(D, s, t);
2: if feature = null then
3:  return value;
4: else
5. T.feature = feature,
6:  T.value = value;
7. (D1, D2) = SplitData(D, feature, value);
8:  T.left = CreateTree(D1);
9:  T.right = CreateTree(Dy);

- end if

—_
=

FeatureValueSelect is the key in tree creating. It always
selects the best ( feature, value) pair for further partitioning.
The following will give FeatureValueSelect algorithm.

C. FEATUREVALUESELECT
The main idea of FeatureValueSelect (see Algorithm 2) is
to select the best (feature, value) pair for partitioning in tree
creation. In fact, the selected value is obtained through trying
of partitions using the values feature from samples of the
input dataset one by one. As a result, the error of this tree
can be reduced after partitioning. The inputs of this algorithm
includes two stopping conditions: s and ¢, denoting minimum
size of partitioned dataset and threshold of error reduction,
respectively. If any partitioned subset is smaller than s in size,
or the error reduction after partitioning is less than ¢, this
trying is invalid, and this partition will not really happen in
creating tree. The two thresholds s and ¢ avoid unnecessary
partitions in enhancing accuracy, so that the tree can be
created in a much faster speed. The feature is null if no proper
feature can be found in the dataset, or threshold conditions
cannot be satisfied.

In Algorithm 2, Error function quantifies the overall devi-
ation between measured server power and estimated power.
It is calculated as follows:

n
Error(D) = ) (d; - Prowal — Pstimarea(d))’, di € D,

l
where Prgrimareqa(d;) s the estimated power. In fact, MakeLeaf
function is to generate a leaf node, the output of this function
includes two fields: input dataset and parameters fitted on it
using linear model. For regression tree, the leaf node contains
(data, C), where C is the mean value of response variables in
the dataset.

Traditional linear resource-power model needs to fit all the
collected samples globally with relatively high error for some
dataset. So Li et al. [33] propose a piecewise linear fitting
model. But the method is too subjective in partitioning into
high, middle and low utilization for a certain feature. In fact,
our tree regression is also a piecewise modeling method.
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Input:
The training dataset D;
Minimum partition size s;
Error reduction threshold ¢;
Output:
(bestfeature, bestvalue);
olderr = Error(D);
newerr = 0,
besterr = Infinit;
bestfeature = nulls;
bestvalue = nulls;
for alld € D do
for all feature € {CPU, memory, 10} do
(D1, D2) = SplitData(D, feature, d Rfeamre);
if size(D1) < s or size(D;) < s then
continue;
end if
newerr = Error(D1) + Error(Dy);
if newerr < besterr then
besterr = newerr;
bestfeature = feature,
bestvalue = d Rpeamre;
end if
end for
: end for
. if O < olderr — besterr < t then
return (null, MakeLeaf (D));
: end if
. if size(D) < s or size(D;) < s then
return (null, MakeLeaf (D));
: end if
: return (bestfeature, bestvalue);

R e A A R ol

DR NN NN = s s s s e e
QR RN 720 % 3Nk 2O

But our partition is executed automatically based on training
data, rather than artificial partitioning. Thus, the generated
model, especially partition, will fit the dataset much better.

D. TREE PRUNING

During the process of building tree, each partition will gen-
erate more branches and leaves. In pruning, a separate test
dataset will be used. It recursively merges the leaves of this
tree until further merging will not enhance the accuracy of
this tree. Through pruning, all over-fitting partitions will be
merged into one, and the merging is executed recursively
starting from leaf nodes.

In Algorithm 3, function Istree is to judge if the input
is a tree or a leaf node. Function Merge is to merge the
datasets of two leaves with the same parent into one dataset.
Function Linear is to train parameters based on the input
dataset. Function Evaluate is to calculate quadratic sum of
deviations between measured and estimated power for the
dataset using the input modeling parameters. The leaves of
the same parent will be merged if the accuracy after merging
can be enhanced. Tree pruning has been proved to be a useful
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Algorithm 3 TreePruning

Algorithm 4 Estimation of Server Power

Input:
Tree T';
Test Dataset D;
Output:
Atree T,

. if Istree(T .left) or Istree(T .right) then

(D1, Dp) = SplitData(D, T .feature, T .value);

: end if

. if Istree(T .left) then

T .left = TreePruning(T .left, D1);

end if

. if Istree(T .right) then

T .right = TreePruning(T .right, D>);

. end if

. if not Istree(T .left) and not Istree(T .right) then

(D1, Dp) = SplitData(D, T .feature, T .value);

ErrorNoMerge = Evaluate(Dy, T .left .paras)+
Evaluate(D1, T .right .paras);

13:  MergeData = Merge(T .left.data, T .right .data);

14: Mergeparas = Linear(MergeData);

15:  ErrorMerge = Evaluate(D, Mergeparas);

16:  if ErrorMerge < ErrorNoMerge then

R A A T i

— = =
M e

17: return (MergeData, Mergeparas)
18:  else

19: return T';

20:  end if

21: else

22: return 7;

23: end if

optimization for CPU intensive applications, which will be
discussed in Section V.

E. ESTIMATION OF POWER CONSUMPTION

For VM power metering, the first step is to build a proper
model for server power. The following algorithm 4 describes
how to estimate the power consumption of server using built
regression tree. And then, the power consumption of each
VM can be calculated easily.

In Algorithm 4, there is always a proper leaf can be found
in the regression tree for any new observation, and its power
can be estimated using the parameters in this leaf. Function
Calculate is to calculate the power consumption for this
observation. For each partitioned dataset, a linear model is
fitted on it and added to the tree as a leaf node. So we have:

Protal = Pstaic + aRcpy + BRrrem + vRio + e,

In this paper, we collect the profiling features of each VM
at host level. The resource features for each VM is contained
in that of the server. Thus, VM power can be divided from
host power in a fair way, so we have:

Pyy, = o + BRYT' + v RiY, + ei,
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Input:
New observation d = (R, Peq);
R = {Rcpu, Ruemory Rio};

Atree T,

Output:
PEstimated(d);

1: while T is not leaf do

2 if d.Rpoamure < T .value then

3 T =T.left;

4:  else

5 T = T.right;

6 end if

7: end while

8: PEstimated(d) = Calculate(d .R, T .paras);
9: return Pggimared(d);

where ¢; is the bias for VM;, and

e =ex (aR%I? + ,BRQ,’[AE,I’:’ + yR{,?VIi +e))

n
CPU M 10
/Z (@Ryy, + BRyy; + v Ryjy)
j=1

F. ACCURACY EVALUATION

For VM power metering, evaluating the accuracy is very
important. The parameters adjusting will heavily rely on the
evaluation method. It has been acknowledged that a good
model for server power will always give predictions with
limited error [11]. If we have an accurate server power model,
then VM power metering can be transformed into a problem
of how to fairly divide server power into each VM. The
evaluation in literature is usually given as follows:

|PEslimated (di) - di-PTotall

()
di~PT0tal

1 n
Error_rate = —
3
1=

where PEgtimatea denotes the estimated server power.

Although this evaluation method has been used widely,
there exists a serious problem. As is known to all, the power
of a server consists of dynamic power, denoted as Pgynamic
and static power, denoted as Pguric

Protal = denamic + Pgratic

When Pgygic 1s too large, the Error_rate will be reduced to
be very small. Thus, the evaluation result is not satisfying,
even if it is less than 5%. For example, suppose the basic
power for a server is 200W, when the real error is 10W, the
error_rate will be 5%. Formula (1) is the most popular used
method in literature, but it does not reflect the real error very
well.

To be more objective in evaluation, the basic server power
as well as deviation between Prgimarea and Preq should be
given. Thus, we can know better how the system performs in
power estimation. In this paper, we propose a new method to
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evaluate the accuracy of power models, and the formula is:

n
Error_rate — 1 Z |PEstimated (di) — di - Ppotal
n d; - denamic

@

i=

It reflects the extend of errors against dynamic power more
objectively. We use our proposed method to make evaluation.
For comparison with work in literature, we also gives our
accuracy using formula (1).

Using our tree regression model, we do not need to update
parameters too often. Because any new observed data will
always find a proper set of modeling parameters by searching
the leaf node in the tree. And each leaf node is separately
modeled using its partitioned dataset. In Algorithm 2,
two threshold such as size s and error ¢ are considered. The
best s and ¢ are selected by constant trying. Even if we got the
best parameters, we do not ensure current tree still performs
best for testing dataset. So tree pruning, as an optimization
technique, will be tried in our experiment.

V. EXPERIMENTS

In this section, we will introduce the details of our experi-
ment platform including the server configuration, tools used,
benchmarks. Through result analyzing, we find our tree
regression method for VM power metering is very promising.

A. EXPERIMENTS SETUP

The configuration of server in our experiment is Lenovo T350
with 4 cores of CPU and 8G memory. The static power of our
server is 166 Watts, which is collected when server is idle.
There are three VMs running on the host, each is dispatched
with one two-core CPU, 2GB memory. The information
collection server is a HP PC with 2GB memory. It also runs
NTP service. All the OSes of server and PC are Ubuntu.
We use KVM as virtualization platform for our experiment,
due to its light-weighted merit compared with other virtual-
ization solutions. Each VM will run as a separate process in
system, so that tools like perf is adopted for profiling
each VM. We also use sysstat and iostat for profiling
other modeling related information. The power meter is an
externally attached PDU called HOPI 9800 made in
China. It provides real time power information such as
energy consumption (KWH), power (Watts), voltage (Volt),
current (Amp), and its minimum resolution is 0.001 Watt.
All the information can be accessed in real time through
USB connection to PC.

To evaluate our method, we choose some classical bench-
marks including CPU intensive, 1O intensive, and distributed
hadoop benchmarks, as are listed in Table 2.

For UnixBench, we choose 8 benchmarks as our testing
instances in Table 2. We run the instances one after another,
and the training data is the combination of all samples of
those benchmarks. One reason is that a well-built model
should be based on sufficient samplings, versatile instances
are needed. Another reason is that the running time for each
of the testing instance in UnixBench is too short, and the
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TABLE 2. Benchmarks.

Benchmarks Test Instances Descriptions
dhry2  whets
UnixBench hanoi int CPU Intensive Tests
short long
float double
10Zone read write 10 Intensive Tests
Hadoop Pl sc.)rt Distributed System Tests
randomwriter

size of dataset is not large enough for a good modeling. For
I0Zone benchmark, by adjusting the throughput of reading
and writing, the observations of this benchmark is sufficient
for modeling. As for Hadoop, there are three benchmarks
such as pi, sort and write. For each benchmark, three VMs
cooperate to finish the task. And each of the benchmarks can
generate a single dataset by adjusting its workload. Thus, we
have five datasets in total. Note that the power consumption
does not solely depend on the size of input, it also rely on
the inner computation of this application. Through adjusting
parameters of input when running benchmarks, we just try to
collect sufficient observations for modeling.

In experiment, each dataset is divided into two parts, train-
ing set and testing set, which account for 99% and 1%,
respectively. In tree pruning, a separate subset is chosen from
training set for optimization, and it has the same size as
testing set. Why not dividing the whole dataset empirically
into subsets of 90% and 10% in proportion? The reason is
that when dataset is not so large, this way of dividing will
cause more errors, especially for our tree model. So we try to
build our tree using as many observations as possible. Since
our datasets are not very large, we ingeniously use K-fold
cross validation method to evaluate our model, and K is set
to be 100. In other words, there are 100 different groups
of datasets, each group has two parts of 99:1 in proportion
to the whole dataset. Thus, we can objectively evaluate our
model without sacrificing the accuracy of our method when
modeling.

B. RESULT ANALYSIS
1) PARAMETERS SELECTION
Before analyzing the final result regarding the accuracy of our
model, parameters selection for s and ¢ should be discussed
first. s is the minimum size of subset that should be satisfied
in partitioning. And ¢ is the minimum error reduction that
should be satisfied after partitioning. The first experiment
we have done is to select the best parameters for our tree.
For each combination of s and ¢, 100-fold cross validation
has been used, so that the final result can be evaluated in
an objective way. Here are the best parameters selected on
different benchmarks, as are shown in Figure 3 and Figure 4.
Figure 3 is the best size for regression tree and model tree
on different benchmarks. It can be easily found that the best
size in regression tree is much smaller than that of model
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FIGURE 4. Best Error Threshold for RegTree and ModelTree.

tree except for the last benchmark. For the regression tree,
each leaf model is the mean of the response variables for the
dataset, too large leaf will lead to large variance unless each
partitioned dataset has similar values like that of benchmark
Write. Even though, better model can be fitted with larger
partitioning size for model tree in general.

Figure 4 is the best error threshold for regression tree and
model tree on different benchmarks. Through experiment, we
have found that, if the error threshold is set too small such
as 1 and 2, it is too tight to make partitioning, such that the
advantages of tree regression can not be made full of. It will
also cost a lot of time in creating tree, and the accuracy of built
tree is not very high. So we relax the range of # to be 5~10.
Thus, the tree can be built much faster with high accuracy.
We found that there are many best pairs of s — ¢ combinations
for each benchmark. For example, ¢ can be set to be any from
the range 5~10 with the unique best size s for both model
tree and regression tree on benchmark CPU, as is shown
in Figure 4. And there is only one best ¢ for regression tree on
benchmark IO, and four best ¢ on benchmark Pi. In general,
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it takes more efforts for selecting the best s compared
with ¢ in creating tree.

It is important to find how the changes of s and ¢ affect
tree structure such as the number of leaves and depth, and
accuracy. Figure 5 shows the variation of the number of
leaves, the depth of tree, and accuracy with error ¢ changes
when size s is fixed. In this experiment, we fix the size to
be 120 and 30 for model tree and regression tree, respectively.
Similarly, Figure 6 shows the trends with size s when ¢ is fixed
to be 9.

From (a(1), b(1), c(1)) in Figure 5, it can be seen that
the number of leaves, depth, and accuracy are unchanging
with error threshold ¢ changes on different benchmarks for
model tree. While for regression tree, the number of leaves
drops slightly on CPU and IO benchmark. But the changing
of error threshold has hardly affected accuracy, as is shown in
(a(2), b(2), c(2)). Therefore, the threshold of error ¢ has very
little impact on leaves, depth and accuracy when size is fixed.

In Figure 6, it can be seen that the number of leaves
and depth drop when size increases for both model tree and
regression tree. Larger leaf node means shorter height of
the tree. In general, the accuracy of both model tree and
regression tree will first increase until to its best size, and
then the accuracy will decline afterwards. Although there is
fluctuations for benchmark Pi, but the overall trend is the
same with others.

It is not difficult to conclude that the changing of ¢ has
very little effect on both regression tree and model tree. But
the changing of s will greatly affect the tree structure such as
leaf number and depth, as well as accuracy. In most cases, the
best s for model tree is larger than that for regression tree.

2) ACCURACY ANALYSIS
To evaluate the accuracy of our tree regression method, we
calculate the error rate using formula (1) and formula (2),
denoted as Evaluationl and Evaluation2 in Figure 7. For
each benchmark, we run five algorithms, and they are linear
regression method, regression tree, regression tree with
Optimization (pruning), model tree, and model tree with
pruning, short as Line, RT, RTO, MT, MTO in this Figure.

In Figure 7, it can be easily seen that model tree is the
most accurate method in general. Tree pruning enhances the
accuracy of model tree on CPU benchmark which includes
8 cases, as is shown in (a2). Although pruning does not always
ensure accuracy enhancement, it can be a good choice for
conditions when our model tree is built with too many leaves
with small size, or running computing intensive applications.
In Figure 7, regression tree performs bad in general compared
with model tree, though it performs best on Hadoop Write.
The accuracy of regression tree is unstable regardless of
pruning or not, even lower than traditional linear model in
some cases. Therefore, model tree is preferred in modeling
using tree structure.

In Figure 7, Evaluation2 is using our proposed method,
as is shown in formula (2). The accuracy among different
algorithms can be distinguished easily using our method.
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For example, the excellence of model tree using
optimization (MTO) is much more obvious in a(2) compared
with that in (al). The reason is that formula (1) always
has a big Pgsyyic added to denominator, so that accuracy

618

of the algorithms seem to be too similar. By comparisons
between Evaluationl and Evaluation2, it can be found that
our proposed evaluation method can reflect the extend of error
against dynamic power in a more objective and obvious way.
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Our model tree gives a satisfying accuracy in experiments.
It is necessary to analyze the distribution of accuracy for
the 100 groups of datasets in our K-fold cross validation on
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different benchmarks, as is shown in Figure 8. The accuracy
in this Figure is calculated using our proposed formula (2).
We found that the proportion of data with accuracy
less than 70% is almost none, and most observations are more
than 80%. Quite a certain of observations have accuracy more
than 90%.

To evaluate our model tree, we also use traditional evalua-
tion method, denoted as formula (1) in Section I'V. In Figure 9,
it shows the accuracy of our model tree is almost 98% on
average for the five benchmarks, and each is with accuracy
more than 96%.

For real error between estimated and measured power,
our model tree is very accurate on CPU and IO bench-
marks with mean error between 1.3~1.5 Watts, better than
that on Hadoop distributed benchmarks. In Figure 10, the
average error of those benchmarks is 4.03 Watts. The
relative inaccuracy of Hadoop benchmarks is mainly caused
by resource competition among the VMs and the virtualiza-
tion management from OS. Nonetheless, it proved that out
model tree is state-of-the-art for its merits in modeling using
tree structure.
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VI. CONCLUSION
VM power metering is significant for the power management
of green cloud data centers. In this paper, we propose a tree
regression based method for VM power metering. It recur-
sively divides the input data into two subsets according to the
selected resource feature with value from the dataset. And
each leaf node is a data structure with two fields: partitioned
dataset, and parameters of linear model fitted on this dataset.
Using the observations of server, we build a model tree to
estimate the power consumption of server. And then the
power consumption of each VM can be obtained by fairly
dividing from server power. In parameters selection, we also
found that the partition size affects the accuracy of the tree
greatly, while error threshold affects little. In addition, a new
evaluation method has been proposed to objectively reflect
the extend of error changes. Experiments show that our model
tree is accurate on different benchmarks, suitable for real use.
Based on our research, there will be more machine learn-
ing methods to be applied for VM power metering. One
interesting direction is to build a proper black-box models
such as neural network models using collected dataset, not
just collecting data in black-box way for each VM. Another
direction is how to evaluate the accuracy in the granularity of
each VM.
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