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ABSTRACT Large-scale fingerprint recognition involves capturing ridge patterns at different time intervals
using various methods, such as live-scan and paper-ink approaches, introducing intraclass variations in the
fingerprint. The performance of existing algorithms is significantly affected when fingerprints are captured
with diverse acquisition settings such as multisession, multispectral, multiresolution, with slap, and with
latent fingerprints. One of the primary challenges in developing a generic and robust fingerprint matching
algorithm is the limited availability of large data sets that capture such intraclass diversity. In this paper, we
present the multisensor optical and latent fingerprint database of more than 19 000 fingerprint images with
different intraclass variations during fingerprint capture. We also showcase the baseline results of various
matching experiments on this database. The database is aimed to drive research in building robust algorithms
toward solving the problem of latent fingerprint matching and handling intraclass variations in fingerprint
capture. Some potential applications for this database are identified and the research challenges that can be
addressed using this database are also discussed.

INDEX TERMS Image databases, fingerprint recognition, forensics, feature extraction.

I. INTRODUCTION
After decades of research, fingerprint recognition has become
one of the most reliable and commonly used biometric
modalities. In 2012, the market for automated fingerprint
identification systems and fingerprint technologies
contributed the largest share of the global biometrics market
and is to continue to be the primary source of overall market
revenues [1]. This can be ascertained by the growing number
of deployed applications over the last decade using finger-
print biometrics. Some notable large scale applications are:
• The Office of Biometric Identity Management (OBIM),
previously called the US-VISIT program [2], provides
biometric identification services by collecting finger-
prints and other biometricmodalities from all the visitors
applying for U.S. visas. A fingerprint database of
over 90 million identities is currently accessible to
federal and state government agencies.

• Aadhaar [3], the brand name of Unique Identification of
Authority of India (UIDAI), is one of the largest
biometrics projects, providing civil and commercial
applications for Indian residents. It uses a combination
of fingerprint and iris biometrics for de-duplication and
authentication for over 800 million population.

• FBI IAFIS [4] is the U.S. national fingerprint and
criminal history system. It houses one of the largest

fingerprint databases, recording more than 70 million
suspects, along with more than 34 million civil prints.

On the basis of capture type, fingerprints can be classified
as (i) inked fingerprints, (ii) live-scan fingerprints, and
(iii) latent fingerprints. Using inked methods or using
a live-scan device (e.g. optical sensors, capacitive sensors),
different fingerprint information can be captured such as flat-
dap (single finger flat capture), slap (four finger flat capture),
or rolled fingerprints (nail-to-nail information). Extensive
research has been undertaken for recognizing fingerprints
captured using these methods [5]–[7]. Latent fingerprints,
on the contrary, are impressions that are deposited when the
sweat, amino acids, proteins, and natural secretions present in
the skin surface comes in contact with an external surface [8].
These fingerprints are not directly visible to human eyes and
after using special (chemical) procedures, the latent prints
can be lifted or photographed for further processing. In the
same context, simultaneous latent fingerprints are defined as
two or more latent fingerprints of the same hand deposited
concurrently on the same surface [9]. Research in automated
latent fingerprint recognition and simultaneous latent
fingerprint recognition is still in development stage.

The evolution of fingerprint authentication has resulted
in a broad spectrum of uses including personal authen-
tication, e-commerce, security, and forensic applications.
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FIGURE 1. Right index fingerprint captured from two different subjects showing high inter-class and intra-class variations. Variations are
introduced due to different capture methods: (a) inked fingerprint, (b)-(d) live scan fingerprints: (b) CrossMatch sensor, (c) Secugen
Hamster-IV sensor, (d) Lumidigm multi-spectral sensor, and (e) latent fingerprint using black powder dusting process. (Figure best viewed
under zoom).

This widespread usage has also led to emergence of different
challenges in fingerprint recognition. Some of these
challenges are:
• Interoperability Across Multiple Fingerprint Sensors:
Wide range of intra-class variations can occur based
on the method or the sensor by which the fingerprint
is captured [10]. Fig. 1 shows sample images of the
right index fingerprint of a subject captured using
different capturing methods, concurrently. It can be
observed that these images visually differ with variations
in capture process or the acquisition sensor. The report
by the National Research Council [11] also discusses
this important challenge and suggests the availability
of a large database with fingerprint impressions from
multiple fingerprint devices can help in improving the
performance of algorithms (Recommendation 12).

• Matching Latent Prints to Slap or Rolled Fingerprints:
Forensic experts in law enforcement agencies lift latent
fingerprints from crime scenes and match them with
enrolled databases containing slap or rolled fingerprints.
Since the information content and quality of latent
fingerprints is significantly different from slap and
rolled fingerprints, there is significant research required
to improve the performance of current systems [8].

• Matching Fingerprint Images of Different Resolutions
and Spectrums: Fingerprint capture technology was
primarily driven by optical and capacitive sensors.

However, with growing usage of fingerprint in
e-commerce applications and advent of smart mobile
phones, matching fingerprints across different
resolutions is also gaining importance. Further, there are
fingerprint sensors, such as Lumidigm Venus that utilize
information from multiple spectrums for fingerprint
capture. Matching such images with the ones obtained
from optical or capacitive sensors requires additional
research.

Similar to other data driven research areas,
advancements in fingerprint recognition, especially in the
academic community, are dependent on the availability of
large databases. Some of the large publicly available
fingerprint databases include card ink-print databases, live
scan fingerprint databases, multisensor fingerprint databases,
multi-resolution fingerprint databases, latent with
corresponding full fingerprint databases, and other special
databases. A comparative analysis of all the existing public
fingerprint databases is provided in Table 1, which also
provides a listing of the types of research challenges that can
be addressed using each database.

Existing databases primarily have two limitations:
• they generally only contain image variations
corresponding to a few challenges, and

• some challenges such as latent fingerprint recognition
and cross spectral matching have small databases
associated with them.
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TABLE 1. Comparison of publicly available fingerprint databases in terms of capture methodology, database size, and the research challenges
that can be addressed.

Some of these challenges are being researched using
non-public databases and therefore, it becomes challenging
to understand the progression in the state-of-the-art in
fingerprints and to reproduce the results. It is our assertion
that the availability of a large fingerprint database containing
images with variations such as multisensor, multi-spectral,
and latent vs. live-scan fingerprint images can significantly
instigate research in the academic community and help
visualize improvements in the literature. Therefore, we have

created a new fingerprint database, termed as Multisensor
Optical and Latent Fingerprint (MOLF) database. TheMOLF
database contains 19,200multisensor, multi-spectral, dap and
slap fingerprint images of 1000 classes pertaining to 100
subjects obtained from three different sensors along with
mated latent and simultaneous latent fingerprints. Moreover,
the latent and simultaneous latent fingerprints have man-
ually annotated features. This database provides a scope
for development, evaluation, and performance assessment of
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TABLE 2. Different subsets of the MOLF database along with fingerprint type, capture protocol, and its properties.

fingerprint matching algorithms based on single-variate
matching as well as cross-variate matching in several appli-
cations. The next section presents the details of the database.

II. MULTISENSOR OPTICAL AND LATENT
FINGERPRINT DATABASE
The MOLF database contains large number of fingerprint
images with variations in terms of sensor, resolution, and
capture spectrum, with slap, latent, and simultaneous latent
fingerprint images. Therefore, it provides the opportunity
to develop and evaluate algorithms for preprocessing,
feature extraction, and matching in different scenarios
including latent fingerprint matching. As shown in Table 2,
the database contains 19,200 fingerprint samples from all
10 fingers of 100 individuals (1000 classes, treating each
finger as a class) captured in two independent sessions
with an average time difference of 15 days. There are
68 male participants and 32 female participants and the
overall age range of the participants is between 18 and 52.
The database is captured in an indoor environment under
controlled illumination. During each session, each individual
provides the following information:

1) two independent instances of all 10 fingerprints
captured using Lumidigm Venus sensor,

2) two independent instances of all 10 fingerprints
captured using Secugen Hamster-IV sensor,

3) two independent instances of slap fingerprints
(4 + 4 + 2) captured using CrossMatch L-Scan Patrol
sensor, and

4) four independent simultaneous latent impressions
(2+2+3+4 latent fingerprints) of left and right hand
fingers, separately.

A sample fingerprint instance captured from all the
sensors is shown in Fig. 2. Depending on the type of prob-
lems that can be addressed, the database is partitioned into
six subsets: DB1 contains the flat dap (all 10) fingerprints
collected using Lumidigm Venus sensor and DB2 contains
the same fingerprints collected using Secugen Hamster-IV
sensor. DB3 contains the slap fingerprints (4 + 4 + 2 con-
figuration) collected using CrossMatch L-Scan patrol sensor
whileDB3_A contains the dap fingerprints cropped fromDB3
using NFSEG tool [32]. DB4 contains the latent fingerprints

andDB5 contains the simultaneous latent fingerprints. Latent
fingerprints are obtained by manually cropping the simulta-
neous latent fingerprints. Table 2 provides details about the
different subsets of the database.

A. FINGERPRINT DATA COLLECTED
WITH OPTICAL SENSORS
The MOLF database has fingerprints taken using
three optical sensors: (i) Lumidigm Venus IP65 Shell,
(ii) Secugen Hamster-IV, and (iii) CrossMatch L-Scan Patrol.
The three sensors comply with FBI’s Image Quality
Specifications (IQS). The resolution of images captured from
Lumidigm, Secugen, and CrossMatch sensors are 500ppi
each while the image sizes are 352 × 544, 258 × 336, and
1600× 1500, pixels respectively.

For 100 individuals, each of the 10 fingerprints is
captured in two sessions and in each session, two independent
instances are captured. For each sensor, there are 4000 images
(DB1, DB2, DB3_A) with 1000 fingerprint classes. During
the first session, the whole process of collection is explained
to all the volunteers (subjects) and they are assisted in clean-
ing their fingers using dry or wet tissues, depending on the
requirement. During the second session, the volunteers are
allowed to act upon their own and without forced cleaning.
The capture is not controlled by the expert and no
constraints are applied on the finger’s condition. The key
motive behind this procedure is to mimic the practical
situation of an intentionally registered gallery finger-
print (session I) and an unconstrained probe fingerprint
(session II).

B. LATENT FINGERPRINT COLLECTION
The latent and simultaneous latent fingerprints are captured
using a black powder dusting process [6]. The usual method
of lifting dusted fingerprints using forensic tapes introduces
non-linear distortion in the fingerprint ridge information.
Therefore, instead of lifting the dusted fingerprints using
tapes, a camera setup is created to directly capture the simul-
taneous latent fingerprint. The camera setup is an improved
version of the setup created during the capture of the IIIT-D
SLF database [9]. The setup consists of a USB programmable
UEye camera with a capture size of 3840 × 2748 pixels.
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FIGURE 2. Sample fingerprints captured of a subject representing capture variations in the MOLF database: (a) 500ppi fingerprint
set from Secugen live scan sensor, (b) multi-spectral fingerprint set from Lumidigm live scan sensor, (c) slap fingerprint set from
CrossMatch L-Scan Patrol live scan sensor, (d) latent fingerprint set, (e) simultaneous latent fingerprint set of subject’s right hand,
and (f) simultaneous latent fingerprint set of subject’s left hand. The simultaneous impressions are captured with black powder
dusting method and are directly captured using a camera setup created. The latent fingerprints are manually cropped from the
simultaneous impressions.

It has a 0.5-inch CMOS sensor and captures at a maximum
rate of three frames per second. A manual C-Mount CCTV
lens having a focal length of 8mm is mounted on the camera
with finer focus for capturing the latent fingerprint.

An illumination ring is attached around the camera to enhance
the capture quality. The camera setup is mounted on a flexible
Manfrotto magic arm - an elbow arm, clamped to the camera
on one end using a Manfrotto super clamp and clamped to
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FIGURE 3. (a) The latent fingerprint capture setup utilizing a 0.5-inch CMOS sensor with a 8mm focal length CCTV lens mounted
on a Manfrotto magic arm that yields an image of size 3840 × 2748 and (b) a sample screen shot of the GUI based
software tool developed for fingerprint feature annotation.

a table or to any support (near the dusted fingerprint) on the
other end. Fig. 3(a) shows the camera setup used for capturing
latent fingerprints.

The volunteers deposit their simultaneous latent
fingerprints on a ceramic tile. Though the data collection
happens in a closed environment, the participants are
completely unconstrained, introducing a large amount of
variation and challenges in the deposited latent fingerprint.
Two different slabs of the same tile are used to capture the
left and right hands of the user during a single session.
Four impressions of both hands of the user are captured
during each session as follows:

1) thumb and index finger,
2) index and middle finger,
3) index, middle, and ring finger,
4) index, middle, ring, and little finger.

Fingerprints are then directly captured using the camera
apparatus. Thus, 16 instances of simultaneous latent
fingerprints are captured from each individual in two different
sessions. A total of 1600 simultaneous latent impressions
are captured constituting DB5. The simultaneous latent
fingerprints are manually cropped to get the individual latent
fingerprints, thus forming DB4. As shown in Table 2, there
are a total of 4400 latent fingerprints from 100 subjects with
1000 classes.DB4 contains two latent print instances of every
thumb and little finger, four instances of ring finger,
six instances of middle finger, and eight instances of
index finger.

C. LATENT FINGERPRINT ANNOTATION
Automatic feature extraction from latent and simultaneous
latent fingerprints is an important research challenge [33].
One of the major goals of FBI’s Next Generation
Identification (NGI) system is to develop a ‘‘lights-out’’ (fully
automatic) fingerprint matching algorithm. To evaluate auto-
mated algorithms, a large latent fingerprint database, with
manually annotated feature points, is essential. To facilitate

the evaluation of such systems,manuallymarked ground truth
feature points are provided for latent and simultaneous latent
fingerprints inDB4 andDB5, respectively. For every simulta-
neous latent impression fromDB5, three different features are
marked: (i) Region Of Interest (ROI) boundary around every
finger impression, (ii) singular points - core and delta (only
those found within the available impression) on each finger,
and (iii) minutiae on all fingers. Two different annotators1

independently marked the features, each annotating equal
number of images from DB5. The annotators marked these
features at the rate of 2 − 3 subjects per day and completed
the annotation task in 22 days. The annotators worked for
about 8 hours a day with regular breaks to avoid stress.
Using the manually marked ROI, individual fingerprints are
cropped from the simultaneous impressions and provided as
latent fingerprints in DB4. The corresponding features for
individual latent fingerprints are also separated and provided
along with DB4.

To enable simultaneous latent fingerprint annotation and
to ease the process, we have also developed a manual anno-
tation tool in Matlab. A screenshot of the tool is shown
in Fig. 3(b). The GUI based tool allows the annotator to mark
the singular (reference) points, minutiae, and ROI. Along
with the database and manually annotated feature points, the
tool for manual annotation will also be made available to
the research community. As the manually annotated features
are provided publicly, their accuracy could be improved by
further verification from experts.

D. AVAILABILITY OF DATABASE
All the fingerprints are available in compressed WSQ
(Wavelet Scalar Quantization) format and uncompressed
BMP format. Table 3 shows the naming convention of images

1The annotators are not certified latent experts. The authors request the
researchers in the biometrics and forensics community to improve the
annotation and make it publicly available.
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TABLE 3. The nomenclature followed for the five subsets of the
MOLF database.

in different subsets of the MOLF database. subjectID defines
the subject number (1-100) while captureID defines the
capture session instance number (1-4) where 1 and 2 belong
to the first session, while 3 and 4 belong to the second session.
fingerID defines the captured finger number (1-10)
with 1-5 from right thumb to right little finger and 6-10 from
left thumb to left little finger. handID defines the slap
fingerprint capture ID where 1 denotes the right
four fingers, 2 denotes the left four finger, and 3 denotes
the two thumbs. handCode defines which hand the simul-
taneous latent is captured from (L, R), and instanceID is
the particular instance of capture of the impression where
1-4 belongs to first session and 5-8 belongs to second
session. The total size of the database in WSQ format is
600 MB and in uncompressed BMP format is 18.2 GB.
The database is made available for research purpose at:
http://research.iiitd.edu.in/groups/iab/molf.html

III. RESEARCH APPLICATIONS OF THE DATABASE
The MOLF database provides an opportunity to study
multiple challenging problems related to fingerprint recog-
nition. Major applications and new research challenges that
can be addressed using the database are discussed as follows:
• Intersensor Fingerprint Matching: DB1, DB2, and
DB3_A contain images captured from three different
live-scan fingerprint sensors. By having one of the
subsets as a gallery and any other as a probe, the
performance of a fingerprint matcher can be evaluated
for sensor interoperability. This also represents a practi-
cal scenario where the gallery and probe images are not
captured using the same sensor.

• Latent Fingerprint Feature Extraction and Matching:
Forensic applications require matching latent fingerprint
with live-scan fingerprints [33]. Extracting reliable
features from latent fingerprints is a challenging
task [34]. Given the ground truth minutiae annotations,
the performance of a minutiae extraction algorithm can
be evaluated with good confidence. Also, with an
exemplar gallery set (any one of DB1, DB2, or DB3_A)
and latent probe set (DB4), the performance of a latent
fingerprint matching system can be analyzed.

• Latent to Latent Fingerprint Matching: The DB4 subset
can be used for evaluating the performance of a latent
to latent fingerprint matcher for crime scene linking
applications [31]. Since the latent prints in DB4 consist
of multiple instances of the same finger, both gallery and
probe can be formed using latent prints in DB4.

• Simultaneous Latent Fingerprint Matching: The DB5
subset can be used for matching simultaneous latent
fingerprints [9], [35]. Simultaneous latent fingerprints in
DB5 can be matched with live-scan dap fingerprints in
DB1, DB2, or DB3_A, and slap fingerprints in DB3 to
evaluate the performance of the matcher.

• Simultaneous Latent Fingerprint Segmentation: As the
manual segmentation results for simultaneous latent
fingerprints inDB5 are provided, the ground truth can be
used to assess the proficiency of automatic segmentation
algorithms.

IV. EXPERIMENTAL EVALUATION
FOR BASELINE RESULTS
To establish the baseline performance on theMOLF database,
several experiments are performed. These experiments are
designed to demonstrate the challenges associated with the
proposed database and to highlight its usage. The baseline
results for livescan fingerprint experiments are computed
using two fingerprint matching algorithms: NBIS
(NIST Biometric Imaging Software) [32] and
VeriFinger [36]. NBIS is an open source minutiae based
matching algorithm developed by NIST whereas VeriFinger
is a low cost proprietary software by Neurotechnology.

Latent fingerprint matching is an open research problem
that the community is attempting to address. It is important
to note that there is no standard latent fingerprint matching
Software Development Kit (SDK) or commercial system
available in the public domain, using which baseline
performance can be established. In literature, we have
observed that localMinutiae Cylinder Code (MCC) [37], [38]
description for manually marked minutiae provides
state-of-the-art results [39]. Therefore, MCC descriptors are
utilized for establishing baseline results on the latent
fingerprint dataset.

First, a NFIQ-based [40] analysis is performed to
understand the quality distributions of different subsets of
the databases. Thereafter, three different sets of experiments
are performed to establish the baseline in different applica-
tion scenarios. The first experiment (Experiment I) evaluates
the performance of optical scanner fingerprints while the
other two experiments (Experiment II and Experiment III)
pertain to latent fingerprint matching. For Experiment I, both
identification and verification experiments are performed and
the results are reported using the Cumulative Match
Characteristics (CMC) curve and the Receiver Operating
Characteristics (ROC) curve, respectively. For Experiment I
and Experiment II, identification experiments are performed
and the results are reported in terms of the CMC curve.

A. QUALITY ANALYSIS
Quality of all the fingerprints captured is analyzed using
NFIQ (NBIS Fingerprint Image Quality) [40]. It is an open
source minutiae-based quality extraction algorithm that
provides a quality value {1, 2, 3, 4, 5}, with 1 representing
the best quality and 5 the worst. NFIQ quality distribution
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FIGURE 4. NFIQ quality score distribution of (a) DB1 (Lumidigm) images,
(b) DB2 (Secugen) images, (c) DB3_A (CrossMatch) images, and
(d) DB4 (latent) images. In NFIQ measure, 1 denotes the best
quality score while 5 denotes the worst.

of DB1, DB2, DB3_A, and DB4 are shown in Fig. 4.
In live-scan fingerprints, it can be observed that the images
from DB1 (Lumidigm) have the best quality images high-
lighting the robustness of multi-spectral images.
Lumidigm Venus sensor captures the fingerprint in multiple
spectrums andwhile fusing them, enhances the image quality.
Also, CrossMatch L-Scan Patrol has an in-built quality con-
trol mechanism and captures only those fingerprints that pass
the quality threshold. However, no such quality constraint is
imposed on Secugen Hamster-IV scanner, thus some of the
fingerprints in DB2 have relatively lower quality scores, as
shown in Fig. 5. As expected, latent fingerprints in DB4 are
poor quality fingerprints with almost 96% of them having
a quality score of 5. However, NFIQ is not designed to
evaluate the quality of latent fingerprints and a standard (open
source) latent fingerprint specific assessment algorithm is
still a research challenge [41]. Similarly, there is no exclusive
quality measure for simultaneous latent fingerprints (DB5)
as well. Therefore, this is a high impact research challenge
which could be addressed using this database.

B. SENSOR INTEROPERABILITY ANALYSIS
This experiment (termed as Experiment I) is performed to
establish the baseline accuracy with fingerprints captured
in different sessions using multiple sensors. In all
three subsets, the first two instances captured during the
first session are taken as gallery and the fingerprints captured
during the second session are used as probe. Thus, the
gallery and probe both contain 2000 images pertaining to
1000 (100×10) classes. Datasets DB1, DB2, and DB3_A are
used. Since DB3 contains slap fingerprints, it is not used for
this experiment. NBIS [32] and VeriFinger SDK [36] are then
used for feature extraction and matching. Both identification

FIGURE 5. Sample images showing quality variations across the
three sensors (a) Secugen Hamster-IV, (b) CrossMatch L-Scan Patrol,
and (c) Lumidigm Venus. It can be observed that some of the
images captured using Secugen Hamster-IV have poor capture
quality because of its unconstrained capture mode.

and verification experiments are performed and the results
are reported in Table 4. The corresponding CMC curves are
shown Fig. 6, Fig. 7 and the ROC curves in Fig. 8, Fig. 9. The
key observations are:
• In Experiment I, VeriFinger is observed to yield higher
accuracies compared to NBIS on all three subsets of
the database. VeriFinger provides same-sensor rank-1
matching accuracy in the range of 96%-98% whereas
NBIS is at least 7% lower in performance.

• FromExperiment I, it can be observed thatmatching per-
formance is high when the gallery and probe fingerprints
are captured using the same sensor. However, when
the gallery and probe fingerprints are captured using
different sensors, performance is reduced significantly
for both NBIS andVeriFinger. This highlights that cross-
sensor fingerprint matching, especially when one sensor
is a multi-spectral sensor, is a research challenge.

• Verification experiments performed using NBIS show
the clear impact of cross-sensor matching, having
about 40% more errors than same-sensor matching.
However, VeriFinger reduces the effect of cross-sensor
matching to great extent showing a difference of only
about 3%. Nonetheless, in large scale applications such
as India’s Aadhaar project, 3% is a significant error and
might have a greater impact.

C. LATENT FINGERPRINT MATCHING
This experiment is performed to establish the baseline accu-
racy of latent fingerprint matching. There are two different
experiments performed on latent fingerprint matching:
(i) latent fingerprint matching using manually annotated
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TABLE 4. Rank-1 identification accuracy and equal error rate (for verification) pertaining to experiment I (sensor interoperability analysis). Equal Error
Rate (EER) is the value where false accept rate and false reject rate are equal.

FIGURE 6. CMC curves using NBIS for experiment I. (a) DB1 (Lumidigm) as gallery, (b) DB2 (Secugen) as gallery, and (c) DB3_A (CrossMatch) as gallery.
For all three cases, probe is also varied to study the effect of interoperability.

FIGURE 7. CMC curves using VeriFinger for experiment I. (a) DB1 (Lumidigm) as gallery, (b) DB2 (Secugen) as gallery, and (c) DB3_A (CrossMatch)
as gallery. For all three cases, probe is also varied to study the effect of interoperability.

minutiae (termed as Experiment II), and (ii) latent fingerprint
matching using automatically extracted minutiae (termed as
Experiment III). In Experiment II, 4400 latent images in
DB4 are used as probes and matched against three different
galleries ofDB1,DB2, andDB3_A. The results are computed

with two different approaches (a) MCC descriptor and
(b) Bozorth3 (an open source matcher) available as a part
of NBIS. The results are reported in Table 5 and the
CMC curves are shown in Fig. 10. In Experiment III,
both MINDTCT (NBIS) and VeriFinger are used for
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FIGURE 8. ROC curves using NBIS for experiment I. (a) DB1 (Lumidigm) as gallery, (b) DB2 (Secugen) as gallery, and (c) DB3_A (CrossMatch)
as gallery. For all three cases, probe is also varied to study the effect of interoperability.

FIGURE 9. ROC curves using VeriFinger for experiment I. (a) DB1 (Lumidigm) as gallery, (b) DB2 (Secugen) as gallery, and (c) DB3_A (CrossMatch)
as gallery. For all three cases, probe is also varied to study the effect of interoperability.

TABLE 5. Rank-50 identification accuracy of experiment II (latent matching with manually marked minutiae) and experiment III (latent matching
with automatically extracted minutiae).

feature extraction and matching. Latent fingerprints in DB4
are matched with live-scan fingerprints in DB1, DB2, and
DB3_A, individually. The gallery-probe splits used are the
same as in Experiment II. Two sets of experiments are per-
formed: (a) using all probe images in DB4, and (b) after

removing the Failed To Process (FTP) latent fingerprints
from DB4. The results of all latent fingerprint matching
using automatically extracted minutiae are reported in
Experiment IIIa. During automatic minutiae extraction
in Experiment IIIa experiments, the minutiae extractor
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FIGURE 10. CMC curves for experiments IIa, IIb and IIIb. The results are computed with (a) manually marked minutiae matched using Minutiae
Cylinder Code, (b) manually marked features matched using BOZORTH3, (c) NBIS, and (d) VeriFinger.

(MINDTCT or VeriFinger) failed to extract even one minutia
from several latent probes. In Experiment IIIb, these images
are excluded from the probe set and considered as Failed To
Process error [7]. The identification results are reported
in Fig. 10 and Table 5. The following key observations are
made:
• Experiment IIa exhibits that state-of-the-art MCC
descriptor provides very low rank-50 identification
accuracy of about 5%-7%, showcasing the challenging
nature of latent fingerprints in this database.

• Experiment IIb shows that with manually annotated
minutiae, rank-50 matching accuracy of latent
fingerprints is in the range of 31%-34%. This indicates
that even after manual annotation of minutiae, latent
fingerprint matching has a scope for designing robust
algorithms for minutiae matching in partial fingerprints.

• For Experiment III withDB4 subset, MINDTCT (NBIS)
extracts an average of four minutiae per latent finger-
print, while VeriFinger extracted almost 42 minutiae per
latent fingerprint. On the other hand, an average

of 11 minutiae per latent fingerprint are marked during
manual annotation. This indicates that MINDTCT
produces too few minutiae while VeriFinger extracts too
many spurious minutiae for latent fingerprints.

• Experiment IIIa shows the results of matching latent
and live-scan prints using an automated feature extractor
and matcher. The results obtained are in the range
of 6%-11%, which shows that automated feature
extraction requires a significant amount of research.
Similar to Experiment II, the best matching perfor-
mance is obtained for NBISmatcher while usingDB3_A
(CrossMatch) as gallery.

• After removing the FTP latent fingerprints from DB4,
the performance improves and the accuracy of
Experiment IIIb is found to be in the range
of 42%-56%. It is interesting to note that NBIS shows
a very high FTP rate of almost 78% while the FTP
rate for VeriFinger is approximately 17%. However, we
would like to emphasize that VeriFinger and NBIS are
not meant for matching latent fingerprints.
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• NFSEG in NBIS is used to crop slap fingerprints
captured using CrossMatch sensor. A segmentation
accuracy of 98.4% is obtained for segmenting 1200 slap
fingerprints into 4000 individual fingerprints, failing to
segment 64 fingerprint images. These images are
further manually cropped for our experiments. However,
NFSEG fails to perform segmentation in simultaneous
fingerprints, segmenting only 134 latent fingerprints
from a total of 4400 prints (with ∼ 3% accuracy).

Since there is no automatic algorithm for establishing
simultaneity or automatic simultaneous latent fingerprint
matching, baseline results are not computed for DB5.

V. CONCLUSION
Fingerprint matching with live-scan fingerprints is a well
studied research problem. However, the academic research in
latent fingerprints is in nascent stages. The primary reason for
this is the lack of a large publicly available database. In this
research work, we have developed a newfingerprint database,
the Multisensor Optical and Latent Fingerprint (MOLF)
database, that addresses this limitation. This database also
acts as a very important resource to address diverse
challenges in fingerprint recognition including interoperabil-
ity between optical and multi-spectral sensors, latent to slap
fingerprint matching, latent to latent fingerprint matching,
and simultaneous latent fingerprint matching. It is our
assertion that the availability of such a database will promote
further research in the community and improve the
state-of-the-art in these challenging and important research
problems.
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