IEEE

The journal for rapid open access publishing

Received December 29, 2014, accepted January 23, 2015, date of publication April 20, 2015, date of current version May 7, 2015.

Digital Object Identifier 10.1109/ACCESS.2015.2422833

Incremental Classifiers for Data-Driven Fault
Diagnosis Applied to Automotive Systems

CHAITANYA SANKAVARAM'2, (Member, IEEE), ANURADHA KODALI'-3, (Miember, IEEE),
KRISHNA R. PATTIPATI', (Fellow, IEEE), AND SATNAM SINGH*>, (Member, IEEE)

!Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA

2General Motors Global Research and Development, Warren, MI 48090, USA
3NASA Ames Research Center, Moffett Field, CA 94035, USA

4General Motors India Science Lab., Bangalore 560066, India

SCA Technologies, Bangalore 560017, India

Corresponding author: C. Sankavaram (chaitanya.sankavaram @ gmail.com)

This work was supported by the General Motors India Science Laboratory, Bangalore, India.

ABSTRACT One of the common ways to perform data-driven fault diagnosis is to employ statistical models,
which can classify the data into nominal (healthy) and a fault class or distinguish among different fault
classes. The former is termed fault (anomaly) detection, and the latter is termed fault isolation (classification,
diagnosis). Traditionally, statistical classifiers are trained using data from faulty and nominal behaviors in a
batch mode. However, it is difficult to anticipate, a priori, all the possible ways in which failures can occur,
especially when a new vehicle model is introduced. Therefore, it is imperative that diagnostic algorithms
adapt to new cases on an ongoing basis. In this paper, a unified methodology to incrementally learn new
information from evolving databases is presented. The performance of adaptive (or incremental learning)
classification techniques is discussed when: 1) the new data has the same fault classes and same features and
2) the new data has new fault classes, but with the same set of observed features. The proposed methodology
is demonstrated on data sets derived from an automotive electronic throttle control subsystem.

INDEX TERMS Adaptive learning, automotive systems, ensemble systems, fault diagnosis, incremental

classifiers.

I. INTRODUCTION
The complexity of automotive systems is increasing at a
rapid rate to improve vehicle performance, and to provide
the necessary convenience and safety features with increasing
levels of automation and control. Automobiles consist of huge
amounts of software embedded on micro-processors, also
termed electronic control units (ECUs), which continuously
interact with mechanical and electrical components through
sensors and actuators for vehicle operation and control. There
is also an increased dependence on ECUs for monitoring the
health condition of vehicular components. This is because
operational problems associated with degraded components,
failed sensors, and improperly implemented controls affect
the efficiency, safety and reliability of vehicles, which, in
turn, lead to potentially large warranty costs. Hence, it is
crucial to quickly detect and isolate (classify/diagnose) faults
in order to improve vehicle availability and customer
satisfaction.

Methods for fault diagnosis can be categorized into the
following three approaches: data-driven, model-based, and
knowledge-based [1]. The data-driven approach is preferred

when the system monitoring data for nominal and degraded
conditions is available. One of the common ways to perform
data-driven fault diagnosis is to employ neural network
and statistical machine learning techniques to classify data
into nominal (healthy) and a fault class or into different
fault classes [2], [3]. The former is termed fault (anomaly)
detection and the latter fault isolation (classification,
diagnosis). The model-based approach employs consistency
checks between the sensed measurements and the outputs of a
mathematical model. The expectation is that inconsistencies
are large in the presence of malfunctions and small in the
presence of normal disturbances, noise and modeling errors.
Two main methods of generating the consistency checks are
based on observers [4], [5] (e.g., Kalman filters, reduced-
order unknown input observers, interacting multiple models,
particle filters) and parity relations [6] (dynamic consistency
checks among measured variables stemming from hardware
or information redundancy relations). The knowledge-based
approach uses graphical models such as dependency
graphs (digraphs), Petri nets, multi-signal (multi-functional)
flow graphs, and Bayesian networks for diagnostic

2169-3536 © 2015 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 3, 2015

Personal use is also permitted, but republication/redistribution requires IEEE permission. 407

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE

The journal for rapid open access publishing

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

knowledge representation and inference [7]-[9]. This paper
presents a data-driven incremental learning approach for
fault diagnosis in automotive systems based on fleet
warranty data.

Automotive companies collect a variety of vehicle health
data from test fleet and production vehicles via telematics
and dealer diagnostics services. These data sources acquire
different types of vehicle data at different sampling rates. For
example, dealer diagnostic data is collected when a vehicle
comes for repair at a dealer shop; this warranty data, collected
infrequently, includes the diagnostic trouble codes (or fault
codes), freeze frame data (engineering variables or so-called
parameter identifiers (PIDs) collected from various sensors,
such as engine speed, temperature and battery voltage) at the
onset of a fault code, repairs/replacement actions specified
in terms of repair codes, and structured/unstructured text in
the form of customer verbatim. The fleet data is collected at
a much higher sampling frequency (e.g., every few ignition
cycles) for inferring the overall health of vehicle subsystems,
such as the engine and/or transmission system, emission
system, airbag system, anti-lock brake system, tire pressure;
this data is gathered even when the vehicle is functioning
normally. Thus, the test fleet data evolves over a period of
time with new fault classes added as they occur in the field.
As a result, a diagnostic classifier (model) trained on an
earlier data set may become inconsistent or even obsolete
with new data. In addition, with new software/hardware
content being constantly integrated into the vehicles,
a diagnostic model built for one vehicle type might not
always be appropriate across all vehicle ranges, because new
software/hardware leads to new fault codes/failure modes.
Therefore, periodic updating of the classifier structure and its
parameters is necessary.

Traditional data-driven techniques operate in a batch mode
and need to retrain the diagnostic model structure and param-
eters from scratch by combining the old and new instances.
If classifiers are trained infrequently, they may miss new
behavioral trends (the so called “concept drift” [10]). Batch
training also suffers from increasingly larger computational
complexity for training as the data is accumulated. In order to
overcome this limitation, it is essential to incrementally adapt
the classifiers to evolving data.

The problem of learning from evolving databases can be
divided into four major categories depending on how the data
evolves over time. They are: (/) The new data has the
same fault classes and same features; (ii) The new data has the
same fault classes, but with new features, (iii) The new data
has new fault classes, but with the same features, and (iv) The
new data has new fault classes and new features. In this paper,
we consider categories (i) and (iii), which are most common
in automotive systems because sensor suite is typically fixed
during vehicle design.

The contributions of this paper are as follows:

1) An age-based incremental learning methodology for

adaptive learning of classifier models with evolving
databases;

408

2) An ensemble of classifiers in an incremental learning
framework for accurate fault classification when new
data and new fault classes are present;

3) An application to datasets obtained from
GM’s electronic throttle control (ETC) subsystem;
the datasets represent vehicle health data and the
corresponding fault codes collected from model
year (MY) 2008 and MY 2009 vehicles; and

4) A systematic validation analysis of the incremental
learning classifier on a number of scenarios to demon-
strate diagnostic accuracy improvement as the data
evolved from one vehicle model year to the next.

A major advantage of the incremental learning approach
in an automotive application is that it minimizes or avoids
retraining of classifiers when a new model year vehicle is
released into the market. The methodologies and scenarios
presented in this paper provide insights for automotive
diagnostic engineers to determine if an existing classifi-
cation/diagnosis algorithm performs effectively across all
model years and all vehicle types; if not, how often should
these algorithms be adapted/learned? In addition, evolving
databases is a common concern in many areas, for instance,
facial recognition where incremental learning of various
facial expressions, lighting conditions, orientation etc., is
of vital importance; therefore, the work presented in this
paper has a wide range of real world applications, including
aerospace vehicles, medical equipment, cyber security, power
networks, semiconductor fabrication facilities, and social
networks, to name a few.

The paper is organized as follows. An overview of
the existing incremental learning techniques is provided
in Section II. The proposed data-driven adaptive learning
framework is described in Section III. The framework
is evaluated using the data derived from an automotive
ETC subsystem and the associated experimental results are
presented in Section IV. Finally, the paper concludes with a
summary in Section V.

Il. BACKGROUND
The incremental learning techniques for evolving data
employ one of the following three approaches:
(i) Re-train with new instances and compressed represen-
tation of old instances,

(ii)) Remember the functional mapping between the old
features and fault classes and modify the map in light
of new data, or

(iii) Update the weighted metrics of each class with

new data.
Yamauchi et al. [11] proposed two methods, viz.,
incremental ~ learning with retrieving interfered

patterns (ILRI)-R, and ILRI-G, for learning new patterns
incrementally when the data has the same classes and same
features. In the first method, the incorrectly classified patterns
from the old database of instances are selected for subsequent
training with new data (reminiscent of AdaBoost [12]). In the
second method, the past patterns are reconstructed from the

VOLUME 3, 2015

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

IEEE

The journal for rapid open access publishing

previously trained classifier knowledge (for example, support
vectors in the case of a Support Vector Machine (SVM)).
This avoids remembering the entire database of instances.
However, both methods suffer from either requiring substan-
tial memory or severe sub-optimality. Clustering techniques
also can be employed to compress the past database of
instances [13]. However, this is not widely used because of
the behavioral differences of new data from the original data.

Incremental SVMs have been developed to adapt
classifiers to evolving data. In [14], the algorithm stores only
the support vectors instead of the entire database, thereby
reducing the storage space. A sequential (one instance at
a time) SVM learning algorithm is proposed in [15], where
the Kuhn-Tucker conditions for the old data are enforced
with the addition of every new instance. This is extended
in [16] by using an optimization technique called multi-
parametric programming to update the trained model with
multiple data points in a single step rather than a series of
optimization problems for each data point. Incremental fusion
techniques are also proposed using SVM as the base classifier
in [17], which employs Bayesian averaging. In [18],
ensemble SVM classifiers are developed using the boost-
ing strategy. An incremental version of probabilistic neural
network (PNN) is also proposed to classify new
classes [19]-[21]. Skocaj et al. [22] proposed an incre-
mental learning method by combining discriminant analysis
and principal component analysis to incorporate both new
features and new classes. A pattern recognition-based method
is proposed in [23] for detecting drifts in non-stationary
processes. This method tracks the changes observed in
classes’ conditional probability distributions after the clas-
sification of each new pattern and when the accumulated
changes reach a suitable predefined threshold, the classifier
parameters are adapted online.

Techniques based on decision trees are widely used to
construct incremental classification strategies. A series of
algorithms, ID4, ID5, and ID5R have evolved with successive
improvements made to the basic decision tree method,
ID3 [24], [25]. A disadvantage of these models is the need
to update the branches of the nodes with the inclusion of new
training instances. This sometimes equals the effort required
in constructing a new tree from scratch.

In [26], a heuristic hill-climbing search method is
employed to incrementally learn the structure of a
Bayesian network by adding/deleting links at each step.
The need to update the network structure is decided based
on a score at each step. In the same vein, tree-augmented
Naive Bayes (TAN) method incrementally adapts the net-
work structure when the new instances result in invalidated
branches [27]. An averaged tree- augmented Naive Bayes
method is discussed in [28] to improve the overall perfor-
mance of class probability estimation by averaging the class
membership probabilities from a set of TAN classifiers.

Fusion techniques combine the decisions from more
than one classifier for better performance. Learn++ [29],
inspired by AdaBoost, generates a new ensemble of

VOLUME 3, 2015

“weak classifiers” based on a weighted distribution of errors
on new data. This method is superior to compression because
of the inclusion of previously trained classifiers in the
decision process. An ensemble-based incremental-learning
algorithm for fault classification is discussed in [30] to learn
new relationships corresponding to new operational condi-
tions while keeping the previous classifiers to retain the
existing knowledge. Another variant of Learn++-, called
Learn++.NC is proposed in [31] with a new inference rule
to avoid the bias for old classes. Normally, there will be more
classifiers categorizing the old classes, thereby increasing
their corresponding weights in the inference rule. This can be
avoided by increasing the number of classifiers to categorize
new classes.

Although there is considerable literature on incremental
learning and ensemble classifiers, this paper presents an
automotive application of the age-based incremental learning
methodology. The scenarios presented in this paper are to
guide automotive engineers to determine whether or not a
classifier model needs adaptation and, if needed, to adaptively
learn the new classifier model. The subsystem considered for
the demonstration of the methodologies is the ETC subsystem
and the datasets pertain to vehicle health data and the corre-
sponding fault codes collected from MY 2008 and MY 2009
vehicles.

lll. METHODOLOGY
Our approach to developing adaptive classification strategies
is guided by the following criteria given in [29]:

a) Learn additional information from new data,

b) Not requiring access to the original data used to train

the existing classifier,

c) Preserve the previously acquired knowledge (avoid

“catastrophic forgetting”’), and

d) Accommodate new fault classes as they occur with

new data.

The proposed incremental data-driven classification
framework accommodates all the four evolving data types as
shown in Fig. 1. Firstly, when the features and fault classes
are the same, the existing diagnostic model is evaluated on
the new data. If this results in significant degradation in
diagnostic accuracy, the diagnostic model is updated via
incremental learning algorithms. Secondly, when new
features are observed, it is important to utilize the information
from these features and update the diagnostic model. This
is crucial because newly observed feature sets may become
salient for classification with higher predictive power than
the current ones. Incremental feature selection techniques
that can constantly update the set of features used for clas-
sification are needed. Thirdly, when the observed features
correspond to a new fault class, then the new instance is
classified as an “unknown” class and the model is updated
with the new class information. Lastly, when both new
features and new classes are observed, the considerations in
categories 2 and 3 are used to adapt the diagnostic model
over time [31]. In this paper, the discussion on incremental

409

IEEE Access

The journal for rapid open access publishing

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

Incremental/Recursive
system identification process

Same classes
(fault codes) and

‘ MNew features ‘

Select training patterns required for
sequential update of model

New classes (fault
codes) or new
features (PIDs)

features (PIDs) (PIDs)
| D — |
Data-driven = S Data-driven
. . - ata-driven —— f ;
diagnostic Model <=7 dia ! €~-=====—==> diagnostic model
. ; gnostic model | —= - _
“ed'. o T o 4 | — | _ Updat:’:_ Ilcl_assmerls_'mth new
o .{{\o’é“ﬁ \\?’%.’b,) ! utilize information from——___ - UNKlN':'"",N C'fassl" _”"frem&ma'
d\,ag,‘:/,x' \\f ,?9 I new features 1._ eaming ot new class
£ - /0 I
Diagnosis with \\? l' Incremental rank- Incremental
the existing order algorithms = classifiers or
model Model update (AdaBoost: (Select features) fusion technigues

Boosts the classifier
perfarmance with more data)

FIGURE 1. Adaptive (or Incremental) Data-Driven Reasoners.

learning of classifiers will be limited to the following
two categories because our application context is limited to
these two categories:
(i) New data with the same classes and the same features,
and
(i1) New data with new classes, but with the same features.
The diagnostic model comprises of ensemble of
classifiers including AdaBoost, bagging, and Learn++.NC
classifiers.

A. ENSEMBLE OF CLASSIFIERS FOR

INCREMENTAL LEARNING

Ensemble classifiers generally seek to improve the
classification accuracy by generating a set of classifiers, each
trained with samples from training data using a different
probability distribution. The outputs of these classifiers are
then combined to obtain the final classification rule. Some
examples of ensemble classifiers include the AdaBoost [12],
bagging [32], [33], Learn++ [29], Learn++.NC [31], and
so on. Here, we will briefly discuss the different ensemble
classifier techniques and the major differences/drawbacks
among them.

1) ADABOOST

AdaBoost is a technique widely known to improve the
performance of moderately accurate (also termed weak)
classifiers. The training data D{(x;, y;),i = 1,2,...,N}is
sampled with replacement to create an ensemble of classifiers
{t =1,2,..., T} Theinitial distribution to sample the train-
ing patterns is assumed to be uniform over the training data
as in (1), i.e., the samples are chosen with equal probability

410

Model update: Accommodate new classes and features in inference

{e.g., Learn++.NC forlearning new classes)

from the training data.

1
D) = N’ Vi, N = total number of patterns @€))
The weight vector for each training pattern is initialized as,
D1()
1 1 .
Wiy=w_q YRy #Vi 2

where y; € Q@ = {1,2,...,C} and y is the predicted class.
The training samples are supplied to the classifier, and based
on the classifier performance, the distribution and weight
vectors are updated such that the patterns which are most
difficult to classify (or incorrectly classified) are likely to be
included in the next training set. The distribution update rule,
at any iteration, is given by,
t

. w;
D (i) = N 5

> Wi
i=1

t=1,...,T 3)
and W/ = 3 wj,. The weight vectors for each training
YEYi
pattern are updated as in (4),
+1 Wf_).ﬁl lfy =)i
" wi iy #yi

It can be seen from (4) that the weight of pattern i is multiplied
by the normalized error given by,

&y
P

“

(&)

- 1 —¢
when the pattern is correctly classified and left unchanged
when incorrectly classified implying that more weight is

VOLUME 3, 2015

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

IEEE

The journal for rapid open access publishing

given to the incorrectly classified instance and less
weight for the correctly classified instances. The error
(pseudo-loss, ¢) for the classifier ‘¢’ can be computed as,

N
a:ﬁp@. ©)
)’;)’i

When the training error is greater than 50% (or) when the
training accuracy is 100%, the training of the classifier
ensemble is stopped. Subsequently, when a test pattern is
given to the classifier ensemble, the final class label Ly is
decided based on the weighted voting rule given by,

T

1

Ly = arg max Z log —h:(x,y) @)
yeQ =1 :8t

where h;(x, y) represent the output class prediction from the
ensemble classifier 7. More details on the AdaBoost
algorithm can be found in [12].

2) BAGGING

Bootstrap aggregating (Bagging) is another widely used
ensemble technique to improve the classifier performance.
The algorithm generates multiple training subsets from the
original training set and classifiers are trained with each of
the training subsets. Given a training dataset D of size N, the
algorithm generates M bootstrap training subsets of size N;
here, the training dataset is sampled with replacement. There-
fore, some of the original training examples will not be
selected for inclusion in the bootstrap training set and oth-
ers will be chosen one or more times. The M individual
classifiers thus generated are combined together to form the
classifier ensemble. When a test pattern is presented to the
ensemble, the final class label is decided using the majority
voting rule, viz., the class that is predicted the most by the
trained classifiers is chosen as the class label for the test
pattern.

The primary difference between bagging, and boosting
is that, unlike AdaBoost, there is no distribution update or
pattern weight update rule based on classifier performance;
instead, bagging chooses training patterns at random with
replacement based on a uniform distribution. More details can
be found in [33].

3) LEARN-++
The Learn++ algorithm builds on the AdaBoost idea;
it generates a set of classifiers and the final classification
decision is obtained by combining the decisions of individual
classifiers in a majority voting scheme that is reminiscent of
the AdaBoost algorithm.

Given a dataset D {k = 1,2...K}, the pattern weights
and the pattern distribution are initialized to be,

1
wi()) =D1(i))=—, Vi, i=1,2,...,Ng. (8)
Ny

VOLUME 3, 2015

The distribution at any iteration is obtained by normalizing
the weights as,

Wt

Dy = 5——:
Z wy (@)
i=1

t=12,...Tk. 9

Subsequently, a training subset is drawn according to D; and
the classifier is trained with this training subset. The classi-
fier error is computed as the sum of distribution weights of
misclassified instances as in (10).

Nk
ef = Dy()hf (xi. y) (10)
i=1
where 4;(x;, y) is equal to 1 for incorrectly classified instances
(that is, h:(x;, ¥) # yi) and O otherwise. If this error is less
than 0.5, the classifier is considered for the ensemble, else
it is discarded. The classifier decisions obtained thus far are
combined using a weighted majority voting rule to compute
the ensemble decision as,

k k
H; = arg max Z log(1/8;), z={1,2,...,t}. (11)
zhE(x)=y

Similar to the AdaBoost algorithm, the normalized error
of an individual classifier error can be computed from (5)
using (10). Given the individual classifier decisions, the
ensemble error is calculated to be,

Ef = Y Di. (12)
iHf (xi)#yi
Subsequently, the normalized ensemble error is

obtained as,

Ek
Bf=—'"— 0<Bf <l (13)
1 —E;
This normalized error is used in updating the weight of
training patterns (see (14)). Here, similar to AdaBoost, the
weight associated with the correctly classified instance is
reduced and for the incorrectly classified instance, it is left
unchanged, meaning, it is more likely that the incorrectly
classified instance is chosen for training in the next iteration.

BX, if HF(x) = y;

1 otherwise

w1 (@) = we (@) X (14)

After generating T classifiers for each database Dy, the
final classifier decision of a test pattern is computed via a
majority voting rule — the class with the highest vote among
all the classifiers, and is given by,

K
Ly = arg max log(l/ﬂk). (15)
! Vet kX:; t:h%):—y t
The primary difference between Learn++ and AdaBoost is
that in Learn++, at each iteration, the pattern distribution
is updated based on the ensemble classifier
performance Htk(i.e., classifiers learned so far (see (14)),

411

IEEE

The journal for rapid open access publishing

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

whereas in AdaBoost, the distribution is updated based
on a single classifier performance at the previous
iteration (see (4)). In other words, Learn++’s pattern dis-
tribution rule is fine-tuned to accommodate the new data,
whereas in AdaBoost, the pattern distribution is adjusted to
improve the classifier performance. Accordingly, when a new
dataset is presented, Learn+-+ generates additional classifiers
to accommodate new data in the form of new instances
or new classes.

Suppose a new dataset with new classes is presented.
The algorithm generates a number of classifiers until the
decisions of previously trained classifier ensembles are
out-voted with the decisions of newly trained classifiers. This
is a major drawback of Learn++ algorithm because, since
all the old classifiers are guaranteed to misclassify the new
class, the algorithm has to generate a significant number of
new classifiers so as to out-vote the decisions from the old
classifiers. In order to address this issue of classifier
proliferation, Muhlbaier et al. [31] developed Learn++.NC
algorithm in which each classifier is assigned a voting weight
based on their performance on the training data and this vot-
ing weight is dynamically updated depending on whether or
not a classifier is trained on a particular class. The description
of the Learn++.NC is presented in the subsequent section.

4) LEARN-++.NC

The main idea of Learn++.NC is that the algorithm stores
the list of class labels on which each classifier is trained, and
depending on whether or not a classifier is trained on a partic-
ular class, the voting weight of the classifier is adjusted. This
is called dynamically weighted consult and vote (DWCAV)
scheme.

Given a dataset Dy {k = 1, 2, ... K}, the initial distribution
is selected as in (9) and the dataset thus obtained is used
to train the base classifier. The classifier performance is
computed using equations similar to (10) and (5) in Learn++
algorithm and the list of class labels (CLf) for which each
classifier is trained is stored. Subsequently, the DWCAV
subroutine is called to compute the ensemble classifier
decision. The ensemble error is calculated from the incor-
rectly classified instances and, consequently, the normalized
ensemble error is used to update the weights of classifier
instances. These steps are similar to Learn++ algorithm
except that Learn4+.NC keeps track of the class labels for
each trained classifier and accordingly updates the voting
weight of the classifier.

Initially, each classifier, i, is assigned a regular voting
weight, Wtk computed via normalized classification error
based on the classifier performance on the training dataset
as in (16).

Wk =1og (1/8}) (16)

This classifier weight is dynamically adjusted based on the
classifiers’ decision on current instance x;. The dynami-
cally updated voting weight of classifier ¢ for instance x; is

412

given by,

WE. (1= Pex)), t:oc¢CL
k

Wk =
() wk, t:we € CL,.

a7

Here P.(x;) is the class-specific confidence that represents
the confidence of classifiers trained on class @, in choosing
class w, for an instance x;. If a classifier ¢ is not trained on a
particular class label w,, the voting weight of that classifier is
reduced. Formally,

Y r W
oo " k t:hlt‘(x,-):wu
Class-specific confidence P.(x;) = — (18)
c
and Z. = Y. > WF. The final ensemble classifier
k rweecLk

decision for an instance x; is the class with the largest sum
of adjusted voting weights (see (19)).

K
Ly =argmax > Y0 WG (19)

k=1 t:hf (xj)=w,

More details about the algorithms can be found in [31].

Several statistical and pattern classification techniques,
such as support vector machines, k-nearest neighbor, partial
least squares, probabilistic neural network and relevance
vector machine, can be employed as the base classifiers in
an ensemble learning framework.

B. BASE CLASSIFIERS FOR INCREMENTAL LEARNING

1) SUPPORT VECTOR MACHINE (SVM)

Support vector machine is one of the most widely used
supervised learning algorithms for classification. Given a set
of training samples belonging to different classes, support
vector machines find an optimal decision boundary (also
called hyperplane) that maximizes the margin between the
classes [34]. Therefore, SVM is also known as the maximum-
margin classifier. The vectors that define the optimal
separating hyperplane are known as the support vectors.
These support vectors lie closest to the decision surface and
can be used to estimate the fault class of a test feature vector.
In the case of non-linear classification, where a linear bound-
ary is not appropriate, a kernel function is used for mapping
the data onto a higher dimensional feature space and the
optimal hyper-plane is then constructed. Some of the kernel
functions that are commonly used are polynomial, Gaussian,
radial basis functions, and hyperbolic tangent [3].

2) k - NEAREST NEIGHBOR (KNN)

The KNN classifier is a simple non-parametric method that
classifies test vectors based on the samples from the training
data [2]. The classifier finds the k-nearest points to a test
vector from the training data, and the class with the maximum
a posteriori probability within those k points is declared as
the most-likely class. Normally, & is chosen as an odd number

VOLUME 3, 2015

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

IEEE

The journal for rapid open access publishing

to avoid ties. Mathematically,
probabilities P(c;|xyew) are given by,

—Kipe 20
—Z (ci) (20)

the posterior class

P (Ci |x new)
where k; is the number of vectors belonging to class ¢; within
the k—nearest points. P(c;) is the prior probability of class c;.
A new test sample X, is assigned to the class ¢; with the
highest a posteriori class probability P(c;|Xew)-

3) PARTIAL LEAST SQUARES (PLS)

PLS is a conjugate gradient-based regression technique used
to find a set of components that explain the covariance
between the independent training data matrix X
(of size N x J, N — number of patterns and J — number
of measurement variables or features), and the dependent
matrix Y (of size N x M, M- number of fault classes).
Both matrices X and Y are decomposed into a number of
components, which is known as the model reduction order
plus residuals. Each component captures certain amount of
variation in the data. This reduction order is determined by
cross-validation [35].

The decompositions are given by,

E ERNXJ

F e RN><M
2D

P e R
QGRMXL

X=TPT +E T eRV*L,
Y =UQ" +F U eRV*E,

where L is the model reduction order, 7 and U are score
matrices, and P and Q are loading matrices, while E and F
are residuals. The goal of the PLS algorithm is to determine
highly correlated latent variables (or the score vectors) that
not only capture the variations in the input data X, but also the
variations that are most predictive of the output data Y. Once
the latent variables are extracted, a least squares regression
is performed to estimate the fault class. The score vectors
are determined using nonlinear iterative partial least
squares (NIPALS) algorithm [36].

4) PROBABILISTIC NEURAL NETWORK (PNN)

PNN is a supervised method that computes the likelihood of
an input vector belonging to a specific class based on the
learned probability distributions of each class [3]. The learned
patterns can also be weighted with a priori probability
(relative frequency) of each category and misclassification
costs to determine the most likely class for a given input
vector. If the relative frequency of the categories is unknown,
then all the categories can be assumed to be equally likely and
the determination of category is solely based on the closeness
of the input feature vector to the class distribution function.

5) RELEVANCE VECTOR MACHINE (RVM)

RVM is a supervised machine learning algorithm that has
the same functional form as SVM, but employs a Bayesian
approach to learning. The algorithm provides probabilistic
outputs for the class membership, given an input x; based on

VOLUME 3, 2015

the training data. The idea of RVM is to learn a dependency
model of the targets Y and input data X, and subsequently
make accurate predictions of class labels for any unseen or
new pattern. Similar to SVM, RVM employs kernel functions
to describe the input-output relationship and the output
(or class) predictions are based on the functional map-
ping F(X) learned from the training data.
The targets are assumed to be of the form,

Yn=F (xp;w) + & (22)

where, ¢ is assumed to be Gaussian process noise with zero
mean and variance o2, and w = (Wo, Wi, W2, ..., W)l is a
weight vector. Assuming the conditional independence of y,,
the likelihood of the training data is given by,

_ 1
pOIw, 0?) = 2ro?) N/zexp{—p ||y—<1>w||2} (23)

where prior on w is assumed to be Gaussian and is given by,

N
pwle) = [T Nowul0. o, "). (24)
m=0
Here ¢ = {«ay,} is a vector of hyper-parameters, with one

hyper-parameter ¢, assigned to each model parameter w,,
and ® = [p(x1), p(x2), ..., d0n)]T in which ¢p(x) =
[1, K (%, x1)s KX, X2), ++ ooy K, x0)]17 and K (x,,x;) is a
kernel function.

With the prior density (24) and the likelihood function (23),
the posterior density over the weights, p(w|y, o, 02) can be
computed using Bayes rule [37]. Then, given a test point x;,
the output class prediction in the form of probability density
function is given by,

pOsly) = / pOslw, @, 0) pw, @, o |y)dw da do®. (25
More information on RVM can be found in [37].

IV. APPLICATION OF INCREMENTAL LEARNING
METHODOLOGY TO AN AUTOMOTIVE ELECTRONIC
THROTTLE CONTROL SYSTEM

The methodology for adaptive learning is validated using a
dataset derived from an automotive electronic throttle con-
trol (ETC) subsystem. The subsystem details and the experi-
mental results are discussed in the following subsections.

A. ELECTRONIC THROTTLE CONTROL

SYSTEM DESCRIPTION

The electronic throttle control system mainly comprises of
throttle pedal assembly, electronic throttle body, throttle
position sensor, and vehicle electronic control module or
powertrain control module (ECM/PCM). Fig. 2 shows the
block diagram of electronic throttle control subsystem. The
ETC subsystem determines the necessary throttle opening
using various input sensors (for e.g., accelerator pedal
position, engine speed, vehicle speed, etc.) and is responsi-
ble for controlling the servomotor (actuator) to achieve the
required throttle position via a closed-loop control algorithm
in the ECM. The ECM is also responsible for monitoring the

413

IEEE

The journal for rapid open access publishing

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

Throttle pedal
position sensor

Vehicle ECM

Electronic
Throttle body

Throttle pedal

FIGURE 2. Electronic Throttle Control Subsystem [38].

health of the subsystem by processing parameter identifier
data (PIDs) collected from various sensors. The parameter
identifier data contains valuable information about vehicle
operating condition — e.g., engine speed, engine coolant
temperature and so on.

ETC System Data Description: The ETC subsystem data
for model year (MY) 2008 and MY 2009 vehicles is obtained
from the dealer diagnostic datasets. The data consists of
fault codes, parameter identifiers or status parameters (PIDs)
collected from various sensors and the age of the vehicle
when the parameters are recorded. The total number of cases
(or records) collected for MY 2008 and MY 2009 were
1932 and 655, respectively, with 27 distinct fault codes and
638 PIDs. The age of the vehicles extend up to 1084 days
(i.e., approximately 3 years and 1 month in service). We also
observed that MY 2008 vehicles had 26 fault codes; of which
4 fault codes were not present in the MY 2009 vehicle data.
Similarly, MY 2009 cases had 23 fault codes with 1 new
fault code that was not present in the data collected from
MY 2008 vehicles. The list of fault codes is included in the
Appendix.

B. FEATURE SELECTION FOR FAULT DIAGNOSIS

To decrease the implementation complexity of classifica-
tion approaches, information gain (IG) algorithm [39] is
employed to rank order the PIDs and the optimal number
of PIDs are then selected for classification/diagnosis. The
idea of IG algorithm is to evaluate the amount of informa-
tion contributed by each feature to a particular class; and
the subset of features with high information content is used
for classification. In the current application, IG algorithm is
employed on 638 status parameters and the top 16 PIDs are
chosen based on the diagnostic accuracy on test data. Fig. 3
shows the value of mutual information for each of the status
parameters and the top features are circled in red.

C. RESULTS AND DISCUSSION

After selecting the top-ranked PIDs, the MY 2008 and
MY 2009 cases are arranged in an age-ordered sequence for
incremental learning analysis. The age-ordered datasets are
divided into training and testing subsets for experimentation
with the age-based incremental learning scenarios
discussed below. Throughout our experimentation process,
the base classifiers discussed earlier are employed in a
Learn++.NC ensemble framework. The performance of
incremental ensemble classifier is illustrated using four

414

Selected features

Information Gain“alue

U 1 1 1 1 1
0 100 200 300 400 500 600 700
Feature Number

FIGURE 3. Plot of Mutual Information for 638 Status Parameters.

age-based scenarios. The following subsections briefly
discuss the scenarios and experimental results:

Scenario 1 - Window Method: MY 2008 and MY 2009 data
are arranged in sequential order w.rt. age, but the data is
partitioned according to a certain window size.

In the Window method, each model year’s data is arranged
in the increasing order of age, and the data is divided into
four subsets based on the age of the vehicle. So, MY 2008
data is divided into four datasets (D1—D4) and MY 2009 is
partitioned into another four datasets (Ds—Dg). Each dataset
within a model year has approximately the same incremental
age (e.g., 271 days for MY 2008). Refer to Fig. 4 for the data
partition and window sizes for each window of a model year.
Specifically, the data items collected from MY 2008 vehicles
with ages between 0 to 271 days are placed in dataset D1, and
similarly the data items with age between 272 to 542 days
are placed in dataset D, and so on. Therefore, for MY 2008,
the patterns/cases in dataset D have least age, whereas the
cases corresponding to highest age belong to Dy4. In the same
way, for MY 2009 cases, dataset D5 has the least age whereas
Dsg has the highest age. Another important aspect is that no
two datasets have all the fault codes the same. MY 2008
cases have 26 distinct fault classes and 4 of these fault classes

MY 2008
",
et P . Tm—
r‘_‘"—"_'_lr‘__“_‘ [St __"-}___I
; Window 1 ;1 Window 2 J } Window 3 J | Window 4 K
Oy) (D2) :_"-. D) (Dy |
. Yy W - . / .
(0-271)days (272-542)days (543-813)days (214-1084)days
MY 2009
N,
—— e — _—— o — - . N — - ——

f f
| Window1 | | Window2 | | Window 3 } 1 Window 4)

FIGURE 4. Data Partition for Window Method.

VOLUME 3, 2015

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

IEEE

The journal for rapid open access publishing

SCEMNARION
100

80 i | [
60
40
20
0

D1 D1D2 D1-D3 D1-D4 D1-D5 D1-D6 DI-DT
Validation of Dataset D8 on Incremental Datasets D1 through D7

Classification Accuracy (in %)

SCEMARIO3
100 T .

80 1 1 1
60
40
20
0

D1 D1-D2 D1-D3 D1-D4 D1-D5 D1-D6 01-D7

Classification Accuracy (in %)

SCENARIOZ
100

60

40

20

Classification Accuracy (in %)

D1 D1+D2 D1+D2+D3 MY 2008
Validation of MY 2009 Datasets (D5-D8) on MY 2008 Datasets (D1-D4)

I sV
I K
[PN
[rLs
[IRWM

Block vs Rest: Leamn from a Block of Data D1 or D1-D2 and Validate on the Rest

FIGURE 5. Ensemble Classifier Performance for Scenarios 1-3.

are different from MY 2009 cases; similarly, MY 2009 has
23 fault classes with 1 fault class different from that of
MY 2008 cases. Table 1 shows the data distribution
(Refer to Appendix for fault class description).

TABLE 1. Data distribution.

Model Dataset Number of | Number of

Year Patterns Classes

D, 98 14

D, 310 22
2008 Ds 915 24

D, 609 21

Ds 97 14
2009 Dg 221 14

D, 229 20

Dy 108 14

Once the datasets Di-Dg are available, the adaptive
methodology is validated using three experimental runs. The
experimental setup consisted of different classifiers in a
Learn4+.NC framework. First run is performed by training
the ensemble classifier using MY 2008 datasets alone. Here
classifiers are incrementally trained from datasets D1, D7, D3;
and the classifier performance is validated using dataset Dy.
Similarly, a second run is made by training the classifiers
with MY 2009 datasets D5, Dg and D7 incrementally and
the classifier performance is tested using dataset Dg. Finally,
in the third run, the classifiers are trained incrementally with
datasets Dy through D7 and tested on Dg.

VOLUME 3, 2015

The three experimental runs are summarized below:
(i) Train on {Dj, D>, D3} incrementally and test on D4
for MY 2008
(i1) Train on {Ds, D¢, D7} incrementally and test on Dg
for MY 2009
(iii) Train on {D1, D, ..., D7} incrementally and test
on Dg for combined MY 2008 and MY 2009 datasets.
The top left corner of Fig. 5 shows the performance of
different classifiers on testing dataset Dg by learning incre-
mentally from datasets D1 through D7 (i.e., run (iii)). Here,
classifiers SVM, KNN and PNN achieved diagnostic accu-
racy of approximately 85% when they are trained with at least
two datasets. Except for PLS, all other classifiers performed
poorly when Dg is validated on Dj. However, SVM and
other classifiers (KNN, PLS, RVM) performed better when
Dy is validated on other datasets after incremental learning.
The classification results of SVM for different experimental
runs are provided in Table 2 (Note that SVM consistently
performed well in Scenarios 1 to 4 and hence only SVM
results will be provided in detail from now on for different
experimental runs. More details on classification techniques
and their performance on other real world applications and
synthetic datasets can be found in some of our previous
work [40]-[42]). It can be seen that the classification per-
formance improved after incrementally learning with each
of the datasets when compared to learning from D; alone.
Initially, the evaluation of testing dataset Dg (MY 2009 cases
with highest age) on D1 (MY 2008 cases with least age)
was only 31.6% (run (iii) in Table 2), but with incremental
learning of new information with new datasets,

415

IEEE

The journal for rapid open access publishing

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

TABLE 2. Classification performance of incremental ensemble of SVM classifiers - scenariol.

Expelgllf:lental Classification Accuracy (CA in %)
(i) MY 2008 alone D4 on D, D4on D, and D, D4 on Dy, D, and D;
54.7 84.6 97.6
(ii) MY 2009 alone Ds on Ds Ds on Ds and Dy Dg on Ds, Dg & D,
88.9 95.3 98.6
(i) (C];n[r;l;tonoe;l and Dsg on Dg on Dg on Dsg on Dg on Dg on Dg on
MY 2009) D, D, -D, D\-D; | Di-Ds | D,-Ds | D,-Dg D, -D,
31.6 84.5 98.9 98.7 98.9 99.2
the classification accuracy increased from 31.6% to 99.2%.
In the case of MY 2008 data alone, the classification perfor- MY 2008
mance on Dy increased from 54.7% to 97.6% with classifiers Training -
incrementally learning new information with new datasets 7 :_‘_ T
(run (i) in Table 2). Similarly, for MY 2009 data alone, the : Window 1 ! : Window 2 : Window3 | | Windowd !
classification accuracy of Dg increased from 88.9% to 98.6% it et Rl
(run (ii) in Table 2). D,)| (D,) D,) D,
The results also showed that the classifiers built for each ~— | ~—~ — —

model year when trained with at least two datasets from the Training
same model year could achieve classification accuracy of MY 2009
approximately 84%. For instance, when the classifier model
is trained with datasets D and D, from MY 2008, the valida- Testing N
tion on Dy, produced a classification accuracy of about 85% == —e== - _Zf.. - N |' = -
(see experimental run (i) in Table 2). Similarly, validating Dg Window 1 |(SSWIROWERR | Window3 | | Windowd |
on Ds for MY 2009 alone resulted in a classification accuracy ——~ 7 N —
of about 89% (see experimental run (ii) in Table 2). Also, '_EE_//' AR, P
at least two datasets from MY 2008 (D; and D;) are
required to estimate the fault classes in the last dataset of Testing

MY 2009 (Dg) with an accuracy of 84% (experimental run
(ii7) in Table 2). In other words, classifiers learned with at
least two datasets from a previous model year (i.e., cases
corresponding to an age of at least 542 days) could be used
for fault diagnosis in subsequent model year vehicles.
Scenario 2 — Block Method: MY 2008 and MY 2009 data
with the same features is arranged in sequential order w.r.t.
age. The experimentation is carried out by training the clas-
sification algorithms with blocks of data from MY 2008, and
testing the algorithms with the corresponding blocks of data
from MY 2009 (see Fig. 6). In this scenario, the data distri-
bution and the data partition is similar to the previous case
(see Table 1 for data distribution). Here, the classification
model is built using MY 2008 datasets i.e., {{Dq, ..., D;j}:
i =1,2,3,4}, and validated using datasets from MY 2009
{{Ds.Ds, ..., D;}:j=35,6,7, 8} as shown in Fig. 6. In this
scenario, similar to the previous scenario, the performance
of classifiers, except for PLS classifier, is poor when trained
with dataset D alone, and the diagnostic accuracy improved
significantly when trained with subsequent datasets (see top
right figure of Fig. 5). Table 3 shows the SVM classifier
performance in the Block method. The classification perfor-
mance increased from 36.1% to 97.7% with increase in the
number of datasets. This again shows that in order to use

416

FIGURE 6. Block Method.

the classifiers built on previous MY data, the classification
techniques should be trained with at least two datasets
(approx. 542 days for MY 2008) to achieve a classification
accuracy of 93.4% in the subsequent year (i.e., MY 2009).

TABLE 3. Classification performance of incremental ensemble of SVM
classifier - scenario2.

Classification Accuracy (in %)
D5 on D1 36.08
D +D on D +D 93.4

5 6 1 2
Dst+D¢t+D,0on Dy+D,+D; 97.42
MY 2009 on MY 2008 97.69

Scenario 3 — Block versus Rest: MY 2008 and MY 2009
data with the same features is arranged in sequential order
w.r.t. age. We call this the ‘Block versus Rest’ because we
are training on a block of data and testing on the rest of
the data. In the Block vs Rest method, the partitioning of

VOLUME 3, 2015

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

IEEE

The journal for rapid open access publishing

the data is similar to Scenario 1 (see Fig. 4) except that
the training of the classification algorithms is done using
data {{D1, D>,...,D;}: i = 1,2,...,7} and tested using
the remaining datasets {Djt1, Diy2, ..., Dg}. Here, when
the classifiers are learned using D; alone and tested on
datasets from D, to Dg, the diagnostic accuracy was very
poor, but it gradually improved to 97.1% when trained with
datasets D1, Dy, and D3, and tested on the rest of the datasets
({Da, Ds, ..., Dg}). This again demonstrates that, in order
to use the classification model built with MY 2008 cases for
the next model year, the classification techniques need to be
trained with at least two datasets in the increasing order of
age to achieve a diagnostic accuracy of 81% (see Table 4).
The performance of different classifiers is provided in Fig. 5
(bottom left corner). Once again, SVM performed better than
the other classifiers compared here.

TABLE 4. Classification performance of incremental ensemble of SVM
classifiers - scenario3.

Experimental Runs Classification
p Accuracy (CA) in %
CA of datasets {D,, D5, ..., Dg} on 35.47
model from D,)
CA of datasets {Ds, Da, ..., Dg} on 81.26
model on {D;,D,} ’
CA of datasets {Da, Ds, ..., D} on 97.08
model from {D,, D, D5} ’
CA of datasets {Ds, Ds,...,Ds} on 9791
model from {D, D»,... ,Ds} ’
CA of datasets {Ds,...,Dg} on model 93.02
from {Dl,Dz, Ds} ’
CA of datasets {D;,Ds} on model 99.41
from {Dl,Dz, ...,D@} ’
CA of dataset {Dg} on model from 99.19
{D\, Dy, ..., D7})

Scenario 4 — Block versus One: MY 2008 and MY 2009
data with the same features is arranged in sequential order
w.r.t. age. We call this the ‘Block versus One’ because, here,
we are training on a block of data from MY 2008 and/or 2009
and testing on each of the remaining datasets. In this scenario,
the data partitioning is similar to Scenario 1 (Fig. 4) but
here the classifiers are trained using data {{D1, D3, ..., D;}:
i=1,2,...,7}andtestedon {{D;}:j=i+1,i+2,...,8}
individually. Here, the classifiers need to be trained with
at least two datasets to achieve a diagnostic accuracy of
approximately 80% on the subsequent datasets. When the
classifiers are learned with only one dataset, i.e., D alone,
the classification performance on D, was 72% whereas the
performance on all the other subsequent datasets is very poor
(approx. 35%). This is in conformance with the assertion
on other scenarios that at least two windows of datasets are
required for the training of classifiers in order to achieve
good diagnostic accuracy on subsequent datasets. Table 5
summarizes the classification performance.

Thus, the different age-based scenarios presented here
for incremental learning of classifiers consistently showed

VOLUME 3, 2015

TABLE 5. Classification performance of incremental ensemble of SYM
classifiers - scenario4.

Training

Testing Dataset
Dataset

Dz D3 D4 D5 Dg D7 Ds
D, 718 60.7 535 459 3476 343 336
D; D, Ds D; D, Dy

D, D, 859 832 834 847 854 857

D, Ds D D, Dy

D,D,D; | 987 985 985 984 983

Ds Ds D, Dy

DDy Ds | 994 995 992 992
D,
D D, Dy
Dy, Dy, Ds,
D, D, 99.9 994 993
D, Dy
Dy, Dy, Ds,
D Do Dy 99.6 99.6
Dy
Dy, Dy, Ds,
Dy, D5, Dg, | 98.7
D

improved performance with new datasets. Also, it is evident
from the presented scenarios that, partitioning the data based
on window size (as in Scenarios 1 through 4) and training the
diagnosis algorithm using the approach described in either
Scenariol or Scenario 4 enables us to use least amount of data
and yet achieve good diagnostic accuracy (Scenario4: >83%;
and Scenario 1: 84%) on the subsequent datasets.

V. CONCLUSION

In this paper, we briefly discussed the incremental learning
techniques and validated the performance of an ensemble
of classifiers on an automotive system via four incremental
learning scenarios. The different scenarios presented here
enable us to train the classifiers incrementally with one model
year (e.g., MY 2008) data and use the resulting classifiers
to diagnose faults in the subsequent model year vehicles
(e.g., MY 2009). In all of the scenarios, a variety of statis-
tical and pattern classification techniques, such as support
vector machines, k-nearest neighbor, partial least squares,
probabilistic neural network and relevance vector machine,
are employed as the base classifiers in an ensemble learn-
ing framework. The performance of the classifiers improved
when they are incrementally trained with new datasets. The
increase in accuracy shows that the classifiers are able to
learn the behavioral trends captured in the new data. However,
among all the classifiers, SVM consistently performed well
in all the scenarios 1-4. Another empirical finding is that if
we need to achieve a diagnostic accuracy of approximately
90% on data from a subsequent model year, the classifier
must be trained with at least two of the datasets (each with
a window size of approx. 271 days) from the prior model
year. The scenarios presented also provide insights to
automotive diagnostic engineers to determine whether
an existing diagnosis algorithm is efficient across all

417

IEEE

The journal for rapid open access publishing C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

MY vehicles; and if needed, allows incremental learning of
the classifier ensemble. The approach is suitable for a
wide-range of real-world applications where a large amount
of data is anticipated to evolve with time and accordingly
continuous learning is needed. In the future, we plan to
investigate the incremental learning approach with respect to
the evolving data with new features.

APPENDIX
LIST OF FAULT CODES (OR) FAULT CLASSES

Fault
Code

P0068 | MAP/MAF - Throttle Position Correlation (F1)
P0101 | Mass or Volume Air Flow Circuit Range/Performance (F2)

Fault Code Description

P0102 | Mass or Volume Air Flow Sensor Circuit Low Input (F3)

P0121 | Throttle Position Sensor A Circuit Performance (F4)

P0122 | Throttle/Pedal Position Sensor/Switch A Circuit Low (F5)
P0123 | Throttle/Pedal Position Sensor/Switch A Circuit High (F6)
P0222 | Throttle/Pedal Position Sensor/Switch B Circuit Low (F7)
P0223 | Throttle/Pedal Position Sensor/Switch B Circuit High (F8)

P0562 | System Voltage Low (F9)
P0563 | System Voltage High (F10)

P0601 | Internal Control Module Memory Checksum Error (F11)

P0604 | Internal Control Module RAM Error (F12)

P0606 | Control Module Processor (F13)
PO62F | Internal Control Module EEPROM Error (F14)

P1516 | Throttle Control Module Actuator Performance (F15)

P1631 | Theft Deterrent Fuel Enable Signal Not Correct (F16)

P1682 | Ignition 1 Switch Circuit 2 (F17)

P2101 | Throttle Control Motor Circuit Performance (F18)

P2119 | Throttle Control Throttle Body Performance (F19)

P2122 | Throttle/Pedal Position Sensor D Circuit Low (F20)

P2123 | Throttle/Pedal Position Sensor D Circuit High (F21)

P2127 | Throttle/Pedal Position Sensor E Circuit Low (F22)

P2128 | Throttle/Pedal Position Sensor E Circuit High (F23)

P2135 | Throttle Position Sensor A/B Voltage Correlation (F24)

P2138 | Throttle/ Position Sensor D/E Voltage Correlation (F25)

P2176 | Throttle Control Sys.Idle Position Not Learned (F26)

P2610 | ECM/PCM Engine Off Timer Performance (F27)

ACKNOWLEDGMENT
Any opinions expressed in this paper are solely those of the
authors and do not represent those of the sponsors.

REFERENCES

[1] K. Pattipati et al., “An integrated diagnostic process for automotive
systems,” in Computational Intelligence in Automotive Applications
(Studies in Computational Intelligence), vol. 132. Berlin, Germany:
Springer-Verlag, 2008, pp. 191-218.

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York, NY, USA: Wiley, 2001.

418

[3]

[4

[5

—

[6

—

17

—

[8]

[9

—

(10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]
(27]

(28]

(29]

C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer-Verlag, 2006.

G. Ciccarella, M. D. Mora, and A. Germani, “A Luenberger-like observer
for nonlinear systems,” Int. J. Control, vol. 57, no. 3, pp. 537-556, 1993.
Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation With Applications
to Tracking and Navigation. New York, NY, USA: Wiley, 2001.

J. Gertler, “Fault detection and isolation using parity relations,” Control
Eng. Pract., vol. 5, no. 5, pp. 653-661, 1997.

J. Luo, H. Tu, K. Pattipati, L. Qiao, and S. Chigusa, ‘“‘Diagnosis knowledge
representation and inference,” IEEE Instrum. Meas. Mag., vol. 9, no. 4,
pp. 45-52, Aug. 2006.

C. Sankavaram, A. Kodali, D. F. M. Ayala, K. Pattipati, S. Singh, and
P. Bandyopadhyay, “‘Event-driven data mining techniques for automotive
fault diagnosis,” in Proc. 21st Int. Workshop Principles Diag., Portland,
OR, USA, Oct. 2010, pp. 1-8.

C. Sankavaram et al., ““Model-based and data-driven prognosis of automo-
tive and electronic systems,” in Proc. 5th Annu. IEEE Conf. Autom. Sci.
Eng., Bangalore, India, Aug. 2009, pp. 96-101.

G. Widmer and M. Kubat, “Learning in the presence of concept drift and
hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69-101, 1996.

K. Yamauchi, N. Yamaguchi, and N. Ishii, “Incremental learning methods
with retrieving of interfered patterns,” IEEE Trans. Neural Netw., vol. 10,
no. 6, pp. 1351-1365, Nov. 1999.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119-139, Aug. 1997.

T. Yoneda, M. Yamanaka, and Y. Kakazu, “Study on optimization of grind-
ing conditions using neural networks—A method of additional learning,”
J. Jpn. Soc. Precis. Eng., vol. 58, no. 10, pp. 1707-1712, Oct. 1992.

N. A. Syed, S. Huan, L. Kah, and K. Sung, “Incremental learning with
support vector machines,” in Proc. IJCAI, San Diego, CA, USA, 1999.
G. Cauwenberghs and T. Poggio, “Incremental and decremental support
vector machine learning,” in Advances in Neural Information Processing
Systems, vol. 13. Cambridge, MA, USA: MIT Press, 2001.

M. Karasuyama and I. Takeuchi, “Multiple incremental decremental learn-
ing of support vector machines,” IEEE Trans. Neural Netw., vol. 21, no. 7,
pp. 1048-1059, Jul. 2010.

Y.-M. Wen and B.-L. Lu, “Incremental learning of support vector machines
by classifier combining,” in Proc. 11th Pacific-Asia Conf. Adv. Knowl.
Discovery Data Mining, 2007, pp. 904-911.

Z. Erdem, R. Polikar, F. Gurgen, and N. Yumusak, “Ensemble of SVMs
for incremental learning,” in Multiple Classifier Systems (Lecture Notes in
Computer Science). Berlin, Germany: Springer-Verlag, 2005.

N. Bhattacharyya, A. Metla, R. Bandyopadhyay, B. Tudu, and A. Jana,
“Incremental PNN classifier for a versatile electronic nose,” in Proc. 3rd
Int. Conf. Sens. Technol., Tainan, Taiwan, Nov./Dec. 2008, pp. 242-247.
P. M. Ciarelli, E. Oliveira, and E. O. T. Salles, “An evolving system based
on probabilistic neural network,” in Proc. 11th Brazilian Symp. Neural
Netw., Oct. 2010, pp. 182-187.

P. M. Ciarelli, E. Oliveira, and E. O. T. Salles, “An incremental neural
network with a reduced architecture,” Neural Netw., vol. 35, pp. 70-81,
Nov. 2012.

D. Skocaj, M. Uray, A. Leonardis, and H. Bischof, “Why to combine
reconstructive and discriminative information for incremental subspace
learning,” in Proc. Comput. Vis. Winter Workshop, 2006, pp. 1-6.

L. Hartert and M. Sayed-Mouchaweh, “Dynamic supervised classifi-
cation method for online monitoring in non-stationary environments,”
Neurocomputing, vol. 126, pp. 118-131, Feb. 2014.

D. Kalles and T. Morris, “Efficient incremental induction of deci-
sion trees,” in Machine Learning. Boston, MA, USA: Kluwer, 1996,
pp. 231-242.

A. S. Al-Hegami, “Classical and incremental classification in data mining
process,” Int. J. Comput. Sci. Netw. Security, vol. 7, no. 12, pp. 179-187,
2007.

J. R. Alcobe, “Incremental augmented Naive Bayes classifiers,” in Proc.
16th Eur. Conf. Artif. Intell., 2004.

J. R. Alcobe, “Incremental learning of tree augmented Naive Bayes clas-
sifiers,” in Proc. 8th Ibero-Amer. Conf. Artif. Intell., 2002, pp. 32-41.

L. Jiang, Z. Cai, D. Wang, and H. Zhang, “Improving tree augmented
Naive Bayes for class probability estimation,” Knowl.-Based Syst., vol. 26,
pp. 239-245, Feb. 2012.

R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn™*: An incremen-
tal learning algorithm for supervised neural networks,” IEEE Trans. Syst.,
Man, Cybern. C, Appl. Rev., vol. 31, no. 4, pp. 497-508, Nov. 2001.

VOLUME 3, 2015

C. Sankavaram et al.: Incremental Classifiers for Data-Driven Fault Diagnosis Applied to Automotive Systems

IEEE Access

The journal for rapid open access publishing

[30] P. Baraldi, R. Razavi-Far, and E. Zio, “Classifier-ensemble incremental-
learning procedure for nuclear transient identification at different oper-
ational conditions,” Rel. Eng. Syst. Safety, vol. 96, no. 4, pp. 480488,
Apr. 2011.

[31] M. D. Muhlbaier, A. Topalis, and R. Polikar, “Learn™+.NC: Combining
ensemble of classifiers with dynamically weighted consult-and-vote for
efficient incremental learning of new classes,” IEEE Trans. Neural Netw.,
vol. 20, no. 1, pp. 152-168, Jan. 2009.

[32] E. Bauer and R. Kohavi, ““An empirical comparison of voting classifica-
tion algorithms: Bagging, boosting, and variants,” Mach. Learn., vol. 36,
nos. 1-2, pp. 105-139, 1999.

[33] L. Breiman, “Bagging predictors,” Dept. Statist., Univ. California,
Berkeley, CA, USA, Tech. Rep. 421, 1994.

[34] C.]J.C. Burges, “A tutorial on support vector machines for pattern recog-
nition,” Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 121-167, 1998.

[35] J. E. Jackson, A User’s Guide to Principal Components. New York, NY,
USA: Wiley, 1991.

[36] P.Geladi and B. R. Kowalski, ‘““Partial least-squares regression: A tutorial,”
Anal. Chem. Acta, vol. 185, pp. 1-17, 1986.

[37] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Mach. Learn. Res., vol. 1, pp. 211-244, Sep. 2001.

[38] Electronic Throttle Control. [Online]. Available: http://www.picoauto.
com/applications/electronic-throttle-control.html, accessed Sep. 14, 2014.

[39] R. Battiti, ““Using mutual information for selecting features in supervised
neural net learning,” IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 537-550,
Jul. 1994.

[40] K. Choi et al., “Novel classifier fusion approaches for fault diagnosis
in automotive systems,” IEEE Trans. Instrum. Meas., vol. 58, no. 3,
pp. 602-611, Mar. 2009.

[41] W. Donat, K. Choi, W. An, S. Singh, and K. Pattipati, “‘Data visualization,
data reduction and classifier fusion for intelligent fault diagnosis in gas
turbine engines,” J. Eng. Gas Turbines Power, vol. 130, no. 4, p. 041602,
Apr. 2008.

[42] C. Sankavaram, B. Pattipati, K. R. Pattipati, Y. Zhang, and M. Howell,
“Fault diagnosis in hybrid electric vehicle regenerative braking system,”
IEEE Access, vol. 2, pp. 1225-1239, Oct. 2014.

CHAITANYA SANKAVARAM (M’11) received
the B.Tech. degree in electrical and electronics
engineering from Sri Venkateswara University,
Tirupathi, India, in 2005. She received the M.S.
degree from the University of Connecticut, Storrs,
CT, USA, where she is currently pursuing the
Ph.D. degree in electrical and computer engi-
neering. She was a Project Engineer with Wipro
Technologies, Bangalore, India. She has been a
Researcher with the Vehicle Systems Research
Laboratory, General Motors Global Research and Development Center,
Warren, MI, since 2013. Her work involves research and development of
diagnostics, prognostics, and health management solutions for automo-
tive systems. Her research interests include fault diagnosis and prognosis,
machine learning, data mining, pattern recognition, reliability analysis, and
optimization

theory.

ANURADHA KODALI received the B.E. degree
in electronics and communications engineering
from Andhra University, Visakhapatnam, India,
in 2006, and the Ph.D. degree in electrical and
computer engineering from the University of
Connecticut, Storrs, in 2012. She is currently with
the NASA Ames Research Center. Her research
interests include data mining, pattern recognition,
' W 'ﬂ fault detection and diagnosis, and optimization

. theory. She served as a Reviewer in several

V.

IEEE journals.

VOLUME 3, 2015

KRISHNA R. PATTIPATI (S’77-M’80-SM’91-
F’95) received the B.Tech. (Hons.) degree
in electrical engineering from IIT Kharagpur,
in 1975, and the M.S. and Ph.D. degrees in sys-
tems engineering from the University of Con-
necticut (UCONN), Storrs, in 1977 and 1980,
respectively. He was with ALPHATECH, Inc.,
Burlington, MA, from 1980 to 1986. He has been
with the Department of Electrical and Computer
Engineering, UCONN, where he is currently the
UTC Professor of Systems Engineering and serves as the Interim Director of
the UTC Institute for Advanced Systems Engineering. His current research
activities are in the areas of agile planning, diagnosis and prognosis tech-
niques for cyber-physical systems, multiobject tracking, and combinatorial
optimization. A common theme among these applications is that they are
characterized by a great deal of uncertainty, complexity, and computational
intractability. He is the Co-Founder of Qualtech Systems, Inc., a firm
specializing in advanced integrated diagnostics software tools (TEAMS,
TEAMS-RT, TEAMS-RDS, and TEAMATE), and serves on the Board of
Aptima, Inc.

Dr. Pattipati is an Elected Fellow of the Connecticut Academy of Science
and Engineering. He was a co-recipient of the Andrew P. Sage Award for
the Best IEEE Systems, Man, and Cybernetics (SMC) Transactions Paper
in 1999, the Barry Carlton Award for the Best AES Transactions Paper
in 2000, the NASA Space Act Awards for A Comprehensive Toolset for
Model-Based Health Monitoring and Diagnosis, and Real-Time Update of
Fault-Test Dependencies of Dynamic Systems: A Comprehensive Toolset
for Model-Based Health Monitoring and Diagnostics in 2002 and 2008, and
the AAUP Research Excellence Award at UCONN in 2003. He received the
best technical paper awards at the 1985, 1990, 1994, 2002, 2004, 2005, and
2011 IEEE AUTOTEST Conferences, and the 1997 and 2004 Command and
Control Conference. He was selected as the Outstanding Young Engineer by
the SMC Society in 1984, and received the Centennial Key to the Future
Award. He served as the Editor-in-Chief of the IEEE TRANSACTIONS ON
SySTEMS, MAN, AND CYBERNETICS-PART B from 1998 to 2001, the Vice President
of Technical Activities of the IEEE SMC Society from 1998 to 1999, and the
Vice President of Conferences and Meetings of the IEEE SMC Society
from 2000 to 2001.

SATNAM SINGH (S’00-M’08-SM’13) received
the B.E. degree from IIT Roorkee, the master’s
degree in electrical and computer engineering
from the University of Wyoming, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Connecticut. To his
credit, he holds eight granted patents, 15 patent

ﬂ applications, and has authored 32 journal and
E.} conference publications. He is a speaker in various

Big Data and Data Science Conferences.

He spent nearly five years with General Motors Research as a
Senior Researcher, with responsibility for conceptualizing and developing
data products from scratch for several verticals.

As a Data Geek, Researcher, and Business and Team Builder, he has
a 10-year track record of successfully building data products from con-
cept to production. As a Data Scientist and Team Leader with Samsung
Research India, Bangalore, he built data science team and developed several
analytics features in smartphone. He is currently a Data Scientist with
CA Technologies.

419

