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ABSTRACT Variable stiffness actuation has recently attracted great interest in robotics, especially in
areas involving a high degree of human-robot interaction. After investigating various design approaches
for variable stiffness actuated (VSA) robots, currently the focus is shifting to the control of these systems.
Control of VSA robots is challenging due to the intrinsic nonlinearity of their dynamics and the need to satisfy
constraints on input and state variables. Contrary to the partially open-loop state-of-the-art approaches,
in this paper, we present a close-loop control framework for VSA robots leveraging recent increases in
computational resources and advances in optimization algorithms. In particular, we generate reference
trajectories by means of open-loop optimal control, and track these trajectories via nonlinear model predictive
control in a closed-loop manner. In order to show the advantages of our proposed scheme with respect to
the previous (partially open-loop) ones, extensive simulation and real-world experiments were conducted
using a two link planar manipulator for a ball throwing task. The results of these experiments indicate that
the closed-loop scheme outperforms the partially open loop one due to its ability to compensate for model
uncertainties and external disturbances, while satisfying the imposed constraints.

INDEX TERMS Robot manipulation, variable stiffness actuation, model predictive control, optimization

algorithms, embedded optimization.

I. INTRODUCTION

Despite recent technological advances, robots are still
outperformed by humans in tasks requiring dexterity, safety
and efficiency. Human-like performance would allow robots
to be further utilized in areas such as medical, search and
rescue, and social robotics. It would also allow industrial
robotics to shift to a new paradigm, where robots and
humans are working together collaboratively and safely
without the need of protective barriers. The potential of
achieving human level performance inspired researchers to
design anthropomorphic robots [1]. After initial attempts
focusing on the kinematic configuration of the robots, the
research focused on their dynamic behavior in situations
such as collisions, interaction with humans, objects and the
environment. One approach is the design of light-weight
robots with integrated torque sensors and active torque
control [2]. In spite of the presence of successful and already
commercialized examples, these robots have inherent

limitations [3]. Firstly, the actuators in the joints are not
decoupled from the links, and compliant behavior is achieved
by active control: therefore, short-lasting impacts might
exceed the torque limits of the gearbox and actuators, and
presumably damage the system. Secondly, on the contrary to
the human musculoskeletal system, these robots do not have
the ability to store energy induced in their link-side structure,
which limits their velocity and dynamic force in tasks such
as throwing, jumping and running.

Variable stiffness actuated (VSA) robots [4]-[10] have
recently emerged in order to cope with the challenges
faced by the actively torque-controlled light-weight robots.
VSA robots are usually intrinsically compliant, and elastic
elements in the joints are employed to store energy. In this
way, the robots can decrease energy consumption in repeti-
tive tasks, increase maximum force and velocity capabilities,
and easily absorb impacts. Moreover, the variable stiffness
behavior of the robot can protect both the robot joints and
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the human. However, these benefits are also accompanied by
certain disadvantages: the design gets more complicated due
to the need of incorporating elastic elements and their associ-
ated additional actuators, and the absolute position accuracy
and mechanical bandwidth are reduced due to the higher elas-
ticity. The parameter identification, task planning and control
of VSA robots are also challenging problems: due to coupled
nonlinear dynamics, actuation constraints and high number of
control inputs, intuitive tuning of the controllers cannot utilize
the full potential of VSA robots. This latter can be achieved
by exploiting the natural dynamics of the system, for which
the controller should optimally modulate the stiffness of the
actuators during operation. Controllers based on this idea
were used to decrease energy consumption, improve human-
robot interaction safety, and increase performance in explo-
sive movement tasks [11]-[14]. A general framework for
the optimal control of robots driven by compliant actuators
was presented in [15], in which firstly the motors with fast
dynamics are controlled in closed-loop. Then, the closed-loop
motor dynamics with actuation constraints are incorporated
into the complete dynamic representation of the VSA robot,
and a sequence of reference motor positions is determined by
solving an optimal control problem (OCP [16]) offline, with
the aim of carrying out a specific task.

As pointed out in [15], full closed-loop control would be
needed to deal with the presence of external disturbances and
imperfect knowledge of the model parameters (hereafter, we
will refer to both of them together simply as uncertainties).
A closed-loop control law for VSA robots should be able to
directly handle multivariable coupled nonlinear systems, at
the same time taking all the constraints into account, while
updating the control law at each sampling time based on
sensors measurements. The best candidate with such char-
acteristics is model predictive control (MPC) [17]. Given
the intrinsic nonlinear dynamics of VSA robots, nonlinear
MPC (NMPC) is needed, which, however, has the drawback
of requiring the solution of a non-convex optimization prob-
lem at each sampling time. Convex optimization problems,
for which faster and more reliable solvers are available, can
instead be formulated in case of linear MPC. For a general
overview on convex and non-convex optimization problem,
the reader is referred to [18]. Since solving a numerical
optimization problem is typically a computationally expen-
sive task, linear and nonlinear MPC have been traditionally
used to control slow processes, such as chemical plants, with
sampling intervals in the order of seconds or minutes (see,
e.g., the survey [19]). On the other hand, controlling robotic
systems typically requires much shorter sampling intervals.
The difficulties related to the combined presence of com-
putational complexity and short sampling interval probably
constitute the main reason why NMPC, to the best of our
knowledge, has never been experimentally implemented for
VSA robots.

Due to recent advances in efficient solvers and formula-
tions for fast MPC, and to the availability of more powerful
microprocessors, the described situation is changing.
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The use of MPC (especially for the simpler case of linear
systems) is now been extended from the classical process
control applications to applications requiring faster sampling
rates in areas such as mechatronics, automotive, and power
electronics [20]-[26].

In this paper, our main contribution is the development
and experimental verification of an NMPC-based framework
for controlling VSA robots. As a first step, after obtaining a
dynamical model of the robot, an OCP is generated similarly
to [15], in order to find the sequence of input and state values
that minimize the cost function associated to the consid-
ered task. However, instead of directly feeding the control
sequence into the system in an open-loop fashion, the time
evolution of the robot links generated via OCP (referred to as
ideal trajectory in the following) is used as a reference to be
tracked by an NMPC controller. The overall block scheme
of the proposed control law (the details of which will be
explained in the remainder of the paper) is shown in Fig. 1,
also in comparison with the partially open-loop approach
proposed in [15]. The NMPC controller, based on real-time
data from sensors, generates the closed-loop control action
by running an a-priori fixed number of iterations of a finite-
horizon optimal control problem (FHOCP) at each sampling
instant. The implementation of a fixed number of iterations
of the numerical solver, leading to inexact (typically,
sub-optimal) solutions, is usually sufficient to obtain a satis-
fying performance. This evidence is also supported by theo-
retical results on closed-loop stability using inexact numerical
solutions [27]-[29].

Partially open-loop scheme

wmotor sioz | 6,6 q,q

- 10
ocp d LINK SIDE 2>
(closed-loop)

solution

Fully closed-loop scheme

wvotor sioe |0, 0 q,4

- : 10
OCP | forMpC | MPC d LINK SIDE
(closed-loop)

solution controller

i

FIGURE 1. Comparison between the partially open-loop scheme of [15]
and the proposed NMPC-based fully closed-loop scheme.

In order to provide a general approach for running NMPC
in a framework that can be easily used for different VSA
robots, we specifically refer to the ACADO tool [30], [31].
This choice is dictated by different reasons: ACADO is open
source, implements high-performance numerical solvers,
provides a rather intuitive syntax in C++4-, and allows the
designer to generate the controller routine in C++-.

As a case study, we consider the control of a two-link
variable stiffness actuated manipulator actuated by
four motors via four nonlinear elastic elements, with the goal
of maximizing the distance at which a ball attached to the end
effector is thrown, given a fixed time interval available for
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the robot motion. Simulations and real-world experiments,
in which external disturbances or parameter variations are
introduced, are conducted to assess the effectiveness of our
approach compared to the scheme proposed in [15].

The paper is organized as follows: Section II introduces the
main notation used throughout the paper, while Section III
briefly recalls the main concepts related to the modeling of
VSA robots. The OCP is described in Section IV, while the
MPC problem is formulated and discussed in Section V.
Section VI presents the case study, while conclusions are
drawn in Section VII.

Il. NOTATION

Let R, R.o, Z>0, and Z-o denote the sets of reals, positive
reals, non-negative integers, and positive integers, respec-
tively. Given a vector a € R", @’ denotes its transpose, and
lla|l its Euclidean norm. Given a square matrix A € R"*"
A’ denotes its transpose. Given a symmetric matrix § = §’, its
positive and semi-positive definiteness are indicated as S > 0
and S > 0, respectively. Given a € R" and A € R"™",

the weighted Euclidean norm is defined as ||al|la £ (a’Aq) 3
A diagonal matrix M € R"*" whose diagonal elements are
my, my, ..., m, is referred to as M = diag(my, ma, ..., my).
IIl. MODELING OF VSA ROBOTIC SYSTEMS

In order to model VSA robots, two sets of coordinates have to
be considered. A first set ¢ € R" represents the joint angles
of the robot, like in standard rigid manipulators. In addition
to that, another set of coordinates & € R accounts for the
motor angles of the compliant actuators, reflected through
gear reduction. Vectors g and 6 are referred to as the link-side
and motor-side coordinates, respectively [15]. The link-side
dynamics is described, using the Lagrangian formalism, by

M(9)g + C(q. g + Dq + G(q) = t£(q. 0) ey

where M(g) € R"*" is the inertia matrix of the rigid part
of the robot (M = M’ > 0), C(q, g) € R"*" represents
the contribution of normal inertial forces and Coriolis forces,
Dqg € R™ and G(q) € R" account for the viscous friction
and gravity force terms, respectively. On the right-hand side,
te(q, 0) € R" are the joint torques generated by the elastic
elements that affect the link-side dynamics. Since the motor-
side dynamics is typically faster than the link-side dynamics,
and since the stiffness modulation depends on the value of 6,
a separate control loop is usually employed for the position
control of the motor side. The torque generated by each
motor, which would be the “physical” input to the system,
becomes a function of the motor variables & and 6, and of
the reference angular positions, namely 6; € R". Under the
standard assumption of high gear reduction, and/or of high-
gain feedback position controllers, it is well known that the
closed-loop dynamics of each motor can be represented by a
linear second-order model, as

O + 286 + k70, = k7644, i=1,...,ng )
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where 6; and 64; are the i-th components of 6 and 6,
respectively, while ¢;, k; € R.o are constants associated
to each motor dynamics. Their values can be related to the
parameters of the motors and of their position controllers
(see [15, Sec. III]). Typically, position control is already
implemented in the available commercial servomotors, and
it is tuned such that the closed-loop dynamics is critically-
damped, i.e., { = «, in order to obtain the fastest possible
response with no overshoot.

In order to obtain an overall nonlinear state-space model of
the system, we define the state vector

X £ [q/ q/ o’ 9‘/]/ c Rnx’ Ry L 21’lq + 2np,

and the input vector u = 6, € R™. Let B £ diag{2¢;} €
R™>X10 and K £ diag{/ciz} € R™>" Qverall, the state-space
model of the system is

X =f(x,u)
q
_ | =M1 (Cq. 9q + Dg+ G(q) = T£(q, 6))
0
—B6 — K6 + K6,

3

where f(-,-) is in general a continuously differentiable
function with respect to both its arguments.

IV. OCP FOR VSA ROBOTIC SYSTEMS

For the control of VSA robots, it is natural to define tasks
formulated as OCPs. The goal of the OCP is to deter-
mine the optimal realization u},() of the desired open-loop
input sequence u,(t) € R™ in a fixed time interval
[0, T), T € R-¢. In our approach, u,;(¢) is assumed to
be a piecewise-constant signal with fixed discretization step
Ts € R.o. More precisely, given k € Zxo,

uol(t) = uo1(kTs), Vt € [kT, (k + DTy). “

It is assumed that T is an integer multiple of Ty, i.e., there
exists N € Z¢ such that T=N Ts. As a consequence, the
whole information contained in u,;(¢) for t € [0, T) can be
summarized by the finite sequence

Ul 2 {Uo1(0), o (Ty), .. ., uot (N — DTy)}. ®)

By denoting the corresponding optimal sequence by uy,, the
OCP can be written as

uy = arg min J(x(-), Wo1) (6a)
x(0),u0
t

subject to x(¢) = x(0) +/ fx(t), ugi(r))dt (6b)
0

x(t) € X, Vrel0,T] (6¢)

uo(t) € U, Vi el[0,T). (6d)

The cost function is typically defined as

; T
J(X(-),llol)=h(X(T))+f0 g(x(1), upr(1))de.  (6e)
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Phase-1
One-step-ahead forecast via simulation

Phase-2
Calculation of NMPC control seque

Phase-3
Only first planned move will be applied

Phase-4
New measurement: one-step-ahead shift

Past y Past | Future \Q\:Fuire/ Past : Future
*,_; e o M. o o ; N_E
k=1 k k+1 k+N k=1 k k+1 k+N k=1 k k+1 k+N k=1 k k+1 k+N

FIGURE 2. Different phases of the NMPC control law computation for closed-loop control. Detailed explanations of the phases are presented

in Section V-A.

The term h(-), called Mayer term, is related to the terminal
state: it can be used, for instance, to impose the minimization
of the distance at time T of the end effector with respect to
a reference value. On the other hand, g(-, -), called Lagrange
term, accounts for the behavior of the robot during the task,
and can be used in order, for instance, to minimize the energy
consumption, or the actuators wear. The sets X and U are
in general constructed in order to take into account limits on
angular positions and velocities of the motors, displacement
of the elastic elements, angular positions and velocities of
the links. The guarantee of satisfying such constraints is of
paramount importance for VSA robots: a control strategy
which did not consider them could easily lead to permanent
damage of the robot components. The optimal open-loop
input signal ujl(t) is obtained for t € [0, T) from the
sequence uy,, together with the corresponding evolution of
the state variables x,;(z).

Remark 1: In order to numerically solve the OCP, the
evolution of the state is obtained by discretizing its
continuous evolution with a given number of sub-intervals,
and by employing numerical integration algorithms, such as
Runge-Kutta methods [32], which are implemented in
ACADO. A nonlinear optimization problem needs to be
solved in order to obtain the OCP solution, for which different
approaches exist [16]. In this paper, exploiting the structure of
the discretized nonlinear optimization problem, the so-called
multiple shooting approach is used, together with condensing
techniques [33]. Even though different numerical solvers
could be employed, we limit our brief description to those
implemented in ACADO [30], which make use of sequential
quadratic programming (SQP) based on quasi-Newton
Hessian approximations. The underlying quadratic programs
are solved using the tool qpOASES [34].

V. CLOSED-LOOP CONTROL FRAMEWORK

A. NMPC FORMULATION

The solution here proposed consists of introducing a
closed-loop controller for the overall robot dynamics. The
evolution of the variables of interest obtained with the OCP
(ideal trajectory) is used as reference by the NMPC controller.
After reading the measured values of all the state variables,
the controller runs a finite number of iterations of a FHOCP
at each of the fixed time instants t = kT, where Ty is the
sampling interval (coinciding with the discretization step of
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the OCP), while k € Z>¢. The generated control variable u(t),
as in the case of the OCP control variable, is assumed to be a
piecewise-constant signal, i.e.,

u(t) = u(kTs), YVt e kT, (k+ DTy). )

A conceptual diagram of how the NMPC control law is
computed is shown in Fig. 2, in which all time indices are
normalized by T and a single state and control variable are
present for clarity. A detailed explanation of each phase is
given in the following.

1) ONE-STEP AHEAD FORECAST VIA SIMULATION

For robotics applications, the time intervals needed to obtain
the state value from the sensors (7ys), determine the value
of the next control move (7,;,), and transmit the computed
input command to the actuators (T34y,), are not negligible
with respect to the sampling interval 7. Therefore, it is not
possible to assume that u(k7) be computed based on the
measurement of x(k7s) and instantaneously applied to the
system at time k7. Instead, we propose that the control law,
computed using the state value at time (k — 1)T, be applied
at time k7 under the reasonable assumption that

Tsens + Tmlv + Ttran = Ts- (8)

Directly applying the control law with a delay of T without
taking into account the evolution of the system states during
the sampling time would degrade the system performance.
Instead, we follow the solution shown in Fig. 2 (Phase 1). The
green line represents the ideal state trajectory (from OCP) to
be tracked, shown as a solid line. The grey band on the left
represents the past: the red dots are the measured past values
of the state variable, while the piecewise-constant red signal
represents the past control moves applied to the system. When
time enters the yellow band, which represents the current
sampling interval, a control move is applied (black constant
signal within the yellow band), which had been computed
during the previous sampling interval through NMPC. As a
particular case, at k = 0, since no NMPC move was computed
before, one can apply u(t) = wuy(¢) for t € [0,Ty), in
the reasonable assumption that x(0) = x,;(0). In general,
at the beginning of each sampling interval, a measurement
of the state variable x((k — 1)Ty) is acquired (black dot
in Fig. 2 (Phase 1)). Instead of starting computing the NMPC
law that will be applied at time k7 from the measured
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state value, the control routine simulates the system dynamics
for one sampling interval, which is typically a computa-
tionally negligible effort. The simulation is represented as a
purple line in Fig. 2 (Phase 1), which ends at the blue dot
representing the estimate of x(k7), computed as

kT
Jfx(@), u((k — DTs)dr.
©))

This is a very simple strategy to effectively handle time delays
in NMPC (the reader is referred to the introduction of [35] for
a discussion of the topic).

X(kTy) = x((k — 1D)Ty) +/

(k—=DT;

2) CALCULATION OF NMPC CONTROL SEQUENCE

The goal of the FHOCP, based on X (kT) as initial condition, is
to determine a realization of u(¢), namely u*(¢), in the interval
t € [kTy, (k + N)Ty), where N € Z-o (N < N) is called
prediction horizon. Given the piecewise-constant nature of
the control law, the whole information contained in u(t) for
t € [kTs, (k+N)T;) can be summarized by the finite sequence

w(kTy) £ {u(kTy), u((k + DTy), ..., u((k + N)Ty)}.  (10)

Using a standard notation, the corresponding control
sequence u*(kTs) is determined by running a finite number
of iterations of the FHOCP defined in the following:

minimize ®(x(-), u(kTy)) (11a)
F(KTy),u(kTy)
t
subject to x(¢) = x(kTy) + / fx(1), u(t))d,
KTy
(11b)
x(t) e X, V¥t e kT, (k+ N)Ty], (11c)
u(t) ed, Vte [kTs, (k + N)Ty). (11d)

The sequence u*(kTy) can be seen in Fig. 2 (Phase 2) as
a piecewise-constant blue signal, while the corresponding
predicted evolution of the state is represented by the solid
blue line starting at x(kTy), in which the blue dots repre-
sent the values of the state corresponding to the changes of
sampling intervals. In order to better react to uncertainties,
it is advisable to impose slightly looser constraints in the
FHOCP as compared to the OCP, i.e., X D X and U ) U.
In this way, the NMPC controller can use the additional
freedom to reduce the deviations from the ideal trajectory.
The cost function in (11a) is defined as

O(x(). u(kTy)
£ |tk + N)Ty) — xa((k + N)T)I5
(k+N)T;
[ (0 = 5O + 1) — a1
o (12)

where § € R=**" 0 € R™*" R € R"™*" are chosen
such that S, QO > 0, and R > 0. The signals x4(¢) and uy(z),
defined for ¢ € [0, T'], represent the desired evolution of the
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system variables. A possibility could be to completely draw
them from the OCP solution, i.e. x7(t) = x,(t), and uy(t) =
uo(t). As an alternative, we propose the following approach:

o The state variables of the link-side dynamics (i.e.,
q and §) are typically related to the task performance,
and their evolution determined in the OCP should be
tracked as closely as possible. Therefore, the values of
the first 2n, components of x4 (the reference values for
g and g) should coincide with the first 2n, components
of x,1(2).

o The state variables related to the motor-side dynam-
ics (i.e., 0 and 6) are usually “intermediate variables”
between the control inputs and the link-side state vari-
ables. For this reason, the values of the last 2ny com-
ponents of x4 (the reference values for 6 and 9) can be
set as constant signals, corresponding to those leading to
the minimum wear of the robot elements. For instance,
the reference position for a motor can be the one for
which a spring connected to it is uncompressed, while
the corresponding reference velocity can be set to zero.

o The reference control variables u, (reference angular
positions given to the servomotors) can also be set as
those which cause the minimum wear and/or energy
consumption of the system.

The last ingredients of (12) to be described are the weight
matrices Q, R, and S. It is a common practice to choose
them as diagonal matrices, and we follow this approach. For
example, Q £ diag{7, . . ., qn, } implies

() = xa OB = > & (1) = x0.4())°

i=1

meaning that every element of the diagonal determines the
weight of the corresponding state variable. The elements
of the diagonal matrix R are referred to as 7;, and those
of § as s;. Since the main purpose of the NMPC controller
is to track the ideal evolution of the link-side state variables,
theng; fori =1, ..., 2ny, should be chosen much larger than
gi fori = 2ny +1,..., ny, in order to obtain small tracking
errors. The same values of g;, i = 2ny +1,...,2n, + ng
(i.e., those relative to 9) can be replicated inry, i = 1, .. ., ng.
Larger values of s; would lead to a greater importance of the
tracking error at the end of the prediction horizon, whereas
larger values of g; would reduce the tracking error during
the prediction horizon. In order to weight the tracking error
at (k + N)Ts as the tracking error in one of the sampling
intervals of the prediction horizon, one can impose S = 70,
but different formulations can be chosen depending on the
specific task.

3) ONLY FIRST PLANNED MOVE WILL BE APPLIED

The whole determined sequence is not directly used: instead,
following the so-called receding horizon principle, only the
first control move calculated for ¢ € [kT, (k + 1)T§), namely
upy (kTy), is applied to the system (Fig. 2 (Phase-3)).
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4) NEW MEASUREMENT: ONE-STEP-AHEAD SHIFT

As the new measurement is acquired, the control move just
computed by NMPC is applied, and the time window used
for the prediction is shifted one sampling interval ahead
(as can be seen by the time indices in Fig. 2 (Phase-4)).
A new one-step simulation will be run, together with a
new FHOCP. The name receding horizon, that provides the
name for what is realized in steps 3 and 4, derives from the
one-step-ahead shift of the prediction window. This is a
key concept, that makes MPC a closed-loop technique: for
this reason, MPC is also referred to as “‘receding horizon
control”. The black dot representing the measured state
in Fig. 2 (Phase-4) has been placed on purpose at a different
value than its corresponding value expected from the one-step
simulation: this means that the actual evolution of the system
dynamics, due to the presence of uncertainties, is slightly
different than expected.

Remark 2: In order to solve the FHOCP, the employed
method is in principle similar to the one used for solving
the OCP, i.e., the state evolution is discretized, and a fixed
number of iterations of the resulting nonlinear optimization
problem is run by multiple shooting using SQP, running,
in turn, a fixed number of iterations of the underlying
quadratic program with qpOASES. However, while in the
OCP case the optimization procedure could take, in principle,
as long as required, in a closed-loop NMPC implementation
for robotic systems, few milliseconds would be typically
available. However, by warm-starting the FHOCP (i.e., using
information on the solution at the previous sampling time
to initialize the optimization problem) and using relatively
small values of N, an acceptable solution can be obtained
in the available computation time. In case a solution of the
FHOCP is not provided within the sampling interval, due to
problems in reading the sensors, or computational issues, the
second NMPC move computed at the previous sampling time
can be applied to the system. This constitutes an intrinsic
fault tolerance of the control scheme, which can run in open
loop for a few consecutive iterations. We refer the reader
to [35]-[37] for further details on the real-time iteration
scheme implemented in ACADO.

B. REMARKS ON THEORETICAL GUARANTEES

In order to use a simple and non-conservative NMPC formu-
lation, we follow a standard practice in MPC applications,
that is applying a strategy that does not give any theoretical
guarantees on recursive feasibility and closed-loop stability
in the presence of uncertainties, and experimentally test
its effectiveness (as it will be shown in the case study).
Nonetheless, we prove in the following a simple result, which
guarantees perfect tracking in the ideal case.

Proposition 1: Assume that the solution of the OCP (6),
namely uy(t) and x,(¢) for t € [0, T], has been obtained
for system (3). An NMPC controller is then used to track
the link-side dynamics, by solving the FHOCP (11) online,
fork =0,..., N — N. Assume, for the sake of simplicity,
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that x;(t) = x,(t), uq(t) = uy(t), and that the number of
iterations of the FHOCP is large enough so that its optimal
solution is achieved at each sampling time. Also, X 2 X and
UDU.If x(0) = x(0), and x(¢) is generated by solving the
FHOCP (11), then x(r) = (1), for all t € [0, T].
Proof: During the time interval ¢t € [0, Ty), the input
u(t) = uy(t) is applied to the system. Since the system
dynamics is exactly represented by (3), one has x(¢) = x,;(¢)
for t € [0, T]. Being &(Ty) = x%(Ty) and X 2 X,
U D U, then upy (Ts) = u}(Ty) is a feasible solution
of (11) for k = 1. Moreover, setting uy, (Ts) = u}(Ty)
leads to ®(x(:),u*(0)) = 0, meaning that u,(Ty) is the
global minimizer for the FHOCP that will be ideally deter-
mined by the optimization algorithm. The application of this
solution leads to perfect tracking of the state variables in
t = [T, 2T], and, in particular, yields x(275) = x(2T;). The
same reasoning can be applied in sequence to all subsequent
steps. The proposition is therefore proved by induction. W
In case only the link-side components of the state are
taken as references from the OCP solution, and the weight
terms g; and s; associated with them are much larger than the
other weight terms, we expect a nearly perfect tracking of the
link-side variables in the nominal case, while the evolution
of the motor-side variables and the input signals can follow
a different pattern as compared to the OCP solution. Also,
in the perturbed case, we expect that the tracking performance
be slowly degrading as the importance of the uncertainties
increases, but we also expect better performance than apply-
ing the OCP control sequence in an open-loop fashion.

\
Distance '\

FIGURE 3. Schematic drawing of the two-link planar manipulator.

VI. CASE STUDY

A. SYSTEM MODELING

The considered robot is a two-link planar manipulator, with
a ball attached to the end effector (Fig. 3) actuated by
four servomotors connected to an equal number of nonlinear
elastic elements (NEEs). The link-side dynamics (1) is ana-
lyzed first, and the vector of link-side angles is defined
as ¢ = [q1 q»] € RZ. The inertia matrix M(q) has the
following form

M(g) = [’"“ ”“2} (13)

mi2  mz2
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with

miy = I +mL} 4+ L +my(L? + 2L L cos ga + L)
+m3(L? +2L1Ly cos qp + L3)

miz = b+ ma(L3 + L1Lep c08 q2) + m3(L3 + L1 L cos ¢2)

my = I + mszz +m3L3

where I;, m;, L, L.; are correspondingly (for link i = 1, 2)

its moment of inertia around the center of mass, its mass, its

length and the length from the joint center of the link to the

center of mass of the link, while m3 is the mass of the ball.
Also,

—q1 0

b O
D= [0 bz]’ s)
where b; and by represent viscous damping constants.
Finally,

. . 2q /
C(q.§) = —(maLey + m3La)Ly squ[ i ‘”} (14)

and

_ |81
Glg) = [gz]’ (16)

where g1 £ g(miLcy + maLy + maLy)cosqy + gimaLe +
m3L) cos(q1 +q2), and g2 = g(maLea +m3Ly) cos(qr + ).

Motor 1 (3) NEE 1 (3) 5, (59

0,0 ( RS
0%
7 (r,
\

Joint 1 (2)

0,0

Motor 2 (4)

4T

NEE 2 (4)
FIGURE 4. Schematic drawing of an antagonistic joint, connected to two

motors via nonlinear elastic elements (NEEs). Parameters outside and
inside of parentheses are for joint 1 and joint 2, respectively.

Antagonistic configuration of the NEEs is considered for
each of the two joints in order to achieve variable-stiffness
behavior: therefore, each joint has two NEEs (Fig. 4). The
vector of elastic joint torques Tz can be represented as

T (T —T2)

= [Tz] = [(T4 - T3)] {17)
where T;, i = 1, .., 4 is the tension in each of the four tendons,
and p is the joint radius, which is the same for both joints.
As can be seen from Fig. 4, NEE 1 and NEE 2 are attached
to the first joint, while NEE 3 and NEE 4 are attached to
the second joint. NEEs are designed such that the tendon
tensions are quadratic polynomial functions of the tendon
displacements: T; = ;82 + Bidi + vi,i = 1,...,4, where
o;, Bi, yi are coefficients and §; is the tendon displacement.
The values of §; can be calculated from joint geometry
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and system parameters as 61 = &y — p(q1 + %) + ppb1,
b2 = 8o+ plq1 + 5) — ppb2, 83 = do + pq2 + ppb,
84 = 80— pg2 — ppb4, 8 and pp being the initial displacement
of NEEs and the radius of pulleys on motors (which is the
same for all motors), respectively. Antagonistic configura-
tion and nonlinear behavior of the NEEs ensure variable
compliance actuation. Overall, the system in form (3) has
12 state variables and four input variables.

Motor 1

Motor 3 ‘\

FIGURE 5. Experimental setup of the two link planar robot with variable
stiffness actuators. D1 and D2 show the attachment points of the
disturbance magnets to links 1 and 2, respectively. P indicates the extra
mass connection points for parameter variation experiments.

B. EXPERIMENTAL SETUP

In order to conduct real-world experiments to show the per-
formance of our scheme, the robot described in the previous
section was built as a prototype and is shown in Fig. 5. The
design was accomplished using SolidWorks. Links and joints
were machined from textolite (a type of composite epoxy
material) and steel, respectively. Motor holders, motor and
joint pulleys were printed using Objet Connex 260 3D printer.
Four Dynamixel MX-28T motors with 2.4 Nm stall torque
and 67 revolutions per minute no-load speed were used
as actuators. Communication between the motors and the
control computers was accomplished via a USB2Dynamixel
module connected to the USB port of the control computer.
Six AMT-102V capacitive incremental encoders with a
resolution of 1024 pulses per revolution were used to measure
joint and motor angular positions. The encoder measurements
were acquired by three National Instruments (NI)
PCI-6221 cards. BK Precision 1761 DC Power supplies were
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used to provide 12 V to the motors and the electromagnet
and 5 V to the encoders. A simple circuit containing a power
transistor was used to drive the electromagnet for attaching
and releasing the ball. This circuit is controlled via a digital
output of one of the PCI-6221 cards. The experimental
setup was assembled on an aluminium breadboard
(Thorlabs PBH51506). The connections between the motors
and the NEEs, and between the NEEs and the joint pulleys
were made using polyethylene fibers (Spectra) rated for aload
of 400 N.

In order to determine the parameters of the system, all
the components of the robot were weighed using electronic
weight scale before the assembly. SolidWorks was used to
determine the dimensions, volume, moment of inertia and
center of mass of different parts of the robot. The friction
coefficients (b1 and by) of the joints were determined
experimentally. Experiments were performed to characterize
each NEE. Specifically, in these experiments each NEE was
being pulled by the Dynamixel MX-28T motor by fixed small
step-size increments, while a force gauge sensor
(Extech Instruments 475055) was used to record force
measurements at each step. The obtained experimental force-
displacement measurements were used to fit a quadratic
curve, the parameters of which were used in OCP and MPC
formulations.

Accordingly, the values of the link-side system parame-
ters were found to be: L1 = 0.330 m, L, = 0.433 m,

Ly = 0116 m, L, = 0222 m, m; = 0.674 kg,
my = 0.307 kg, m3 = 0.074 kg, I; = 5.08 - 1073 kg-m?,
L = 6921073 kgm?, by = 00124 N.ms,

by = 0.0064 N-m-s, ¢y = 12400 N/m?, B; = 1360 N/m,
ar = 13600 N/m2, g = 1350 N/m, a3 = 5320 N/m?,
B3 = 1500 N/m, ay = 13700 N/m?, B4 = 1410 N/m,
vi = 0,i = 1,.,4,p = 0013 m, o, = 0.026 m,
Ly = 0.025 m, §6¢ = 0.005 m. As for the motor-
side dynamics, the parameters in (2) for the Dynamixel
MX-28T motors were determined by system identification to
be {; = k; = 40.0.

C. OCP FORMULATION

The main objective of the OCP is to maximize the distance d
at which the ball is thrown, given a fixed time interval
T = 4 s for the motion (which, with the given sampling time
Ts; = 20 ms, leads to N = 200). The value of d for any time
instant during the robot motion is

Ve Y+ 280 + H)
d (18)

=Xy + X ,
8

where H = 0.813 m is the height from the ground to the
frame origin, g = 9.81 m/s2, and

xr = Ly cos(q1) + Lz cos(qr + q2)
yr = Ly sin(g1) + La sin(q1 + g2)
Xy = —Lysin(g1)q1 — Lz sin(q1 + q2)(g1 + g2)
¥r = Ly cos(q1)g1 + La cos(q1 + q2)(q1 + G2).
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While trying to maximize d(T'), we would like to limit the
energy consumption during the robot motion. As each motor
velocity 6; and torque 7; = Tipp increases, the energy
consumption of a motor also increases, since the elastic
potential energy of each NEE is & = [ Tid§;. Therefore,
quadratic terms relative to motor velocities and torques are
also considered in the OCP cost function (6e), as follows

Fo/ 4
J(x(-), ug) = / (Z (6T7;2(t) + ewéf(;))) dt —d(T)
0 \iz
(19)

where we set €, = €, = 5 - 1072 in order to suppress
high-frequency oscillations of the links (higher values for
these parameters would lead to more conservative solutions,
while lower values would lead to energetic and impulsive
behavior). The sets X in (6¢) and U in (6d) are expressed
in the following, where we directly refer to the physical
quantities. As for the state constraints,

—1707/180 < g1 < —107/180  [rad]
—907/180 < g» < 907/180  [rad]

X £ xeR?: 0<7;<14 [Nm]
—-5<6; <5, [rad/s]
0.005 < §; <0.025, [m]
where i = 1, ..., 4. The inequalities are imposed to prevent

exceeding physical joint motion limits, to limit motor torques
and velocities (the imposed values are compatible with the
Dynamixel MX-28T motor, and verified experimentally), and
to limit spring compression. Notice that all these inequalities
can be directly expressed as only depending on the state
vector. The set of input constraints

dé[ueR4 1 0<64i<2m [md]’iZI*“’4}

is formulated to avoid multiple motor rotations. The initial
condition x(0) for the OCP was obtained by setting vertical
hanging position of the two links (g1 = —7,q2 = 0),
zero link and motor velocities, initial motor and reference
motor positions corresponding to initial NEE displacements.
For our task, we used the ACADO toolkit (Version 1.2.0)
with the solver options described in Remark 1, setting the
KKT tolerance (used for the termination criterion of the
SQP algorithm) to 10~>. The computation time of the OCP on
a desktop computer with 2.4 GHz Intel Xeon E5620 processor
and 16 GB of memory was approximately 22 minutes.

D. NMPC FORMULATION

As described in Section V-A, the primary objective of the
NMPC controller is to track the OCP evolution of the
link-side variables. In order to formulate the NMPC law, we
set a prediction horizon N = 10, which implies a prediction
time of 200 ms. The desired evolution of state and control
variables needed for the definition of the cost function (12)
has been defined as follows. The components of x,
relative to ¢ and ¢ for the two links are used as refer-
ence for the corresponding variables of the MPC problem,
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since the evolution of the link-side variables is strictly related
to the throwing task. As for the other state variables, the
references for 6; and 6 were set to values corresponding to
minimum spring compression, while the reference values for
6 were set to zero, in order to limit energy consumption and
wear of the springs. The weight matrices have been defined
as Q = diag{1,1,0.1,0.1,107%,107%, 107°, 1076, 1074,
1074,107%,1074}, R = diag{107%,107%,107°, 107},
and S = T;Q.

The OCP determines an evolution of input and state vari-
ables that is often close to the boundaries of sets ¢{ and X
Due to the presence of uncertainties, these bounds can be
violated in practice. Therefore, in order to give additional
flexibility to the MPC controller to compensate the effect of
uncertainties, some of the boundaries used for the OCP solu-
tion were expanded in the MPC formulation, as mentioned
in Section V-A2:

—2107/180 < ¢ < 307/180  [rad],
—1207/180 < ¢ < 1207/180 [rad],
0 <7; < 1.6 [Nm],
—5 < 6; <5, [rad/s],
0.003 < &; < 0.025, [m].

X2 xeR"?:

Using these settings, the MPC controller is generated through
ACADO in the form of C++ code and Matlab/Simulink
block variants. In both cases, the MPC controller is
synthesized according to Remark 2, and the fixed number of
iterations of the FHOCP solver in each sampling interval is
set to 10.

E. SIMULATION RESULTS

In order to compare the proposed approach with the
framework proposed in [15], we test both schemes of Fig. 1
in Simulink environment. For the open-loop case, we feed
the input signals obtained from the OCP solution to a
Simulink model of the plant. For the closed-loop case,
a specific Simulink block generated by ACADO implements
the MPC controller, which interacts with the Simulink block
modeling the planar VSA manipulator. In both cases, the
ODE4 (Runge-Kutta) solver of Simulink is employed with
fixed-step size set to 0.2 ms, while the piecewise-constant
control signals are defined with 75 = 20 ms.

As a first example, both schemes are applied to the system,
which is simulated using exactly the same state equations (3)
employed in the OCP and in the MPC controller. These
results are not shown, but in this nominal case the open-loop
scheme perfectly tracks the link-side references, while the
closed-loop scheme generates a negligible error. Indeed, per-
fect tracking even in the nominal case would be obtained only
if x4(t) = x,(¢t) and ugy(t) = uy(t): in our implementation,
instead, the reference x; for the motor-side variables in the
MPC controller does not coincide with the OCP solution.
This also leads to obtaining reference positions u;, i = 1,.., 4,
which are not the same as in the OCP, but this occurs because
a different solution is obtained, which leads to a similar
evolution of the link-side variables. For the open-loop
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scheme, we obtain the thrown distance d = 3.80 m, while for
the closed-loop scheme d = 3.77 m is obtained (due to the
imperfect tracking).

As a second example, the action of additive disturbance
terms is considered. In particular, two disturbance torques
D1 (t) and D»(t), of constant but different magnitude, are
applied simultaneously in the interval + = [0.2, 0.6] s to
joints 1 and 2, respectively. The amplitude of the disturbance
torques were varied for different simulation instances in order
to get a map of d as a function of disturbance magnitudes
and direction. Each external torque magnitude is varied from
—0.5 N'm to 0.5 N-m in 21 intermediate values. The mag-
nitude of these disturbances is in the same range as the joint
torques generated by the actuation system, and can represent
for instance the interaction of the robot with an external
object during the task. The results of d versus disturbance
torques are shown in the upper row of Fig. 6. Despite the
fact that, in the open-loop case (Fig. 6a), the thrown distance
slightly exceeds that of the nominal case for a few disturbance
combinations, d is in general lower than the nominal value
of 3.80 m. Moreover, in some simulations the link positions
exceeded the imposed constraints, which in real life might
damage the system. As shown in Fig. 6b, the closed-loop
system achieves the nominal d for most combinations of
disturbances. This is especially apparent for combinations of
disturbances with the same direction and with values close
to maximum 0.5 N-m, where d is 3.80 m, while for the
open-loop system it is close to 1.50 m. Only for distur-
bance combinations with opposite sign and with magnitude
close to 0.5 N-m the performance of the closed-loop sys-
tem is slightly worse than the performance of the open-loop
system.

As a third example, a parameter variation was taken into
account: the masses of the first link (m21) and of the second
link (my) were varied in a range of £25% with respect to
their nominal value with 21 intermediate values in order to
obtain d as a function of parameters. Fig. 6¢, obtained for the
open-loop case, shows distance values lower than the ideal d
for most combinations. For some values of parameters (i is
large while my is close to nominal), d achieves the ideal
value or even exceeds it slightly. This might be explained
as increasing mj leads to higher inertia of the first link, and
thus to higher kinetic energy at the last swing before ball
release. Fig. 6d shows d obtained using the MPC controller,
where in most conditions the nominal distance is achieved,
except for parameter values when mj is at the lower and
my is at the higher end of the range, for which d decreases
to 3 m. Similar to the second example, it was observed that
the open-loop control caused constraint violation for some
parameter combinations, whereas this was not the case for
the closed-loop control.

As expected, the proposed scheme manages to limit the
performance degradation as compared to the open-loop
scheme. For each point of the graphs in Fig. 6 the difference
between the nominal distance from OCP and the distance
obtained in the simulation was computed. The root mean

243



IEEE Access

i The journal for rapid open access publishing

A. Zhakatayev et al.: Closed-Loop Control of VSA Robots via Nonlinear MPC

a) Open-loop (Disturbance)

Distance [m]
N

0.5

D,®INm] o5 -05 D, [Nm]

¢) Open-loop (Parameter)

o Distance [m]

o]
D

b) Closed-loop (Disturbance)

Distance [m]

0.5

D,®INm] 05 -05 D,(t) Nm]

d) Closed-loop (Parameter)

o Distance [m]
o N b

oo
D

0.38

0.67 0.31

m, [kg] 051 023 ™M [kl

FIGURE 6. Distance thrown as a function of external disturbances applied at two joints (a,b) and of added parameter variation (c,d).

squares of this differences are 0.62 m, 0.29 m, 0.66 m, 0.16 m
for the results shown in Figs. 6a, 6b, 6c, and 6d, respectively.

F. EXPERIMENTAL RESULTS

Open-loop and closed-loop implementations of the robot task
were written in C4++ for real-world experiments. In both
programs, the control task is run every 20 ms, which
is enforced using high-resolution native timer routines of
Microsoft Windows (QueryPerformanceCounter API). In the
open-loop case, the input signals obtained from the OCP
solution are read at every time step and sent directly over
the USB2Dynamixel module to the motors. At each sam-
pling time of the closed-loop experiments, firstly motor
and link encoders are read, secondly the robot model is
simulated for one sampling time to compute the one-step
ahead forecast (Section V-Al), thirdly the NMPC control
sequence is computed using the ACADO generated code
block (Section V-A2), fourthly the first move of this sequence
(Section V-A3) is applied to the system by sending the motor
commands via USB2Dynamixel module. In both cases, the
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electromagnet is turned off to release the ball at T = 4 s.
The system can maintain the 20 ms control loop, if the
condition in (8) is satisfied. In order to check this condition
during closed-loop experiments, Tsens, Tsory and Tyq, were
recorded at each sampling time of six experimental trials
resulting in 1200 instances of these three time intervals. Their
sum constitutes the total execution time (i.e. Teps + Tson +
Ttran) of the closed-loop controller at each sampling time.
A histogram generated using these data is shown in Fig. 7.
The maximum execution time is less than 20 ms, which sat-
isfies (8), and shows the real-time feasibility of our approach
for the specific task.

Open-loop and closed-loop controllers were tested for
three scenarios: nominal case (i.e., without uncertainties
except those intrinsically present in the modeling inaccura-
cies), with external disturbances and with added parameter
variation. In the nominal case, the thrown distances for the
open-loop and closed-loop control were 2.05 m and 3.22 m,
respectively, compared to the 3.80 m ideal distance. Refer-
ence, open-loop and closed-loop control joint positions and
velocities along with the corresponding motor positions for
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FIGURE 7. Histogram of execution times needed to run the NMPC control
routine in the real world experiment. Notice that the maximum execution
time is significantly smaller than the sampling interval Ts = 20 ms, which
constitutes the upper bound.
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FIGURE 8. Reference, open-loop and closed-loop joint positions and
velocities, and motor positions in the nominal case.

the nominal case are shown in Fig. 8. It can be observed
that the closed-loop controller tracks the joint positions and
velocities, which are the link-side parameters enforced by the
controller and also directly effecting the task performance,
closer than the open-loop variant. On the other hand, the
motor positions in the closed-loop case deviate from their
references (not directly affecting the task performance) more
than in the open-loop case, so as to achieve better link-side
tracking under uncertainties. The superior performance of the
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closed-loop system can be attributed to its inherent robustness
to these uncertainties.

For the experiments aiming to assess the performance
of both schemes in the presence of external disturbances,
both links were disturbed independently in the first 1.5 s
of the experiments. The disturbances were generated using
neodymium magnets. One magnet was rigidly attached to
each link. Each of these magnets was connected to another
identical magnet inside a plastic structure. The plastic struc-
ture was connected to the rigid part of the experimental setup
using a tendon similar to the ones used for motor connections.
The slack on these tendons was used to tune the timing
of the disturbances. The application of the disturbances using
the magnets is shown in the supplemental material video.
The force at which the magnets detach from the link was
measured between 1.2 N and 1.6 N, which results in max-
imum disturbance torques of nearly 0.5 Nm applied to the
joints. The weight of the cubic neodymium magnets with
5 mm edge dimension is around 1 g, which can be considered
negligible compared to the weights of the links. The per-
formance of both schemes degrades due to the disturbance.
Specifically, the thrown distance in the open-loop experiment
was 1.63 m (0.42 m less than the real-world experiment in the
nominal case), while this distance is 3.04 m for closed-loop
(0.19 m less than the real-world experiment in the nominal

.............. Open-loop -~ Closed-loop

Reference Constraints
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q, [rad]

dq1/dt [rad/s]
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FIGURE 9. Reference, open-loop and closed-loop joint positions and
velocities, and motor positions when external torque disturbances are
applied at the joints from 0.2 s to 0.6 s.
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case) almost doubling the open-loop case. Figure 9 shows the
reference, open-loop and closed-loop control joint positions
and velocities along with the corresponding motor positions
for the disturbance case. After the disturbance is applied,
the deviation of the open-loop controlled system from the
reference link-side trajectories is higher than the closed-loop
one. The compensatory action of the closed-loop controller
against the disturbance can be observed from the motor posi-
tions. This example demonstrates the advantage of NMPC for
disturbance rejection over the open-loop control.

Constraints
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q q
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L o o~
o o .
© ©
T T
£ £
~ o
=] 3
T T
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o ~
= 3
2

Time [s] Time [s]

FIGURE 10. Reference, open-loop and closed-loop joint positions and
velocities, and motor positions when extra mass is added to the second
link as parameter uncertainty.

Finally, both schemes were tested to determine their
performance in the presence of parameter variation. The
weight of the second link was increased by attaching
four M8 screws with nuts to the specially designed slots
(see Fig. 5). Each screw and nut couple weights around
18 g, resulting in 72 g weight increase of the second link
(which is approximately 23% of the original link weight). The
open-loop experiment with this parameter variation results
in d = 1.57 m, while for the closed-loop experiment
d = 2.71 m is obtained. Link and motor side trajectories
for the open-loop case display increased deviations from the
optimal trajectory, compared to the nominal case (Fig. 10).
For the closed-loop experiment, link and motor positions
still closely follow the reference trajectories. Compared to
the nominal case, the decrease of the thrown distance due
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to added parameter uncertainty is more than the one due
to external disturbances. This can be explained by the fact
that the external disturbances act only for a finite period of
time, and, given enough time to compensate for it, the MPC
controller steers the system back to the nominal trajectory.
On the other hand, the added parameter variation is similar
to the effect of disturbances that act all time when the robot
motion is happening.

TABLE 1. Open-loop and closed-loop thrown distance d (m) for the ideal
case (from simulation), and the three real-world experiments (nominal,
external disturbance and parameter variation).

Ideal Nominal Disturbance  Parameter
Open loop 3.80 2.05 1.63 1.57
Closed loop ~ 3.77 3.22 3.04 2.71

Table 1 summarizes the thrown distances for the consid-
ered scenarios. One can notice that, even though the closed-
loop MPC scheme achieves larger thrown distances than the
partially open-loop approach, the ideal distance (obtained
from simulation) is not reached. We speculate that this might
be due to oversimplification of the system model (e.g., the
intrinsic dynamics of the NEEs, such as friction and hys-
teresis, are not considered), or due to errors in obtaining
the parameters of the model. These issues might be alle-
viated developing system identification methods geared for
VSA robots, and/or adaptive control schemes for on-line
parameter estimation.

A video containing the real-world experiments is included
in the supplemental material, which also qualitatively con-
veys the performance of our approach.

VIl. CONCLUSIONS

A framework for the closed-loop control of VSA robots
based on NMPC has been introduced and analyzed. It has
been shown that the proposed scheme presents a lower sen-
sitivity to uncertainties with respect to the state-of-the-art
approach [15]. Basic theoretical results in the nominal case
have been proved, and a case study including simulation and
real-world experiments has been presented to demonstrate the
practical applicability of the presented work.
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