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ABSTRACT As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of
future mobile communication systems, the question what could make up a 5G system, what are the crucial
challenges, and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent
of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous
attention in recent years. In this paper, we will describe a variety of scenarios in which signal sparsity arises
naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms
will thus be a viable source for innovation in 5Gwireless system design.Wewill also describe applications of
this sparse signal processing paradigm in Multiple Input Multiple Output random access, cloud radio access
networks, compressive channel-source network coding, and embedded security. We will also emphasize an
important open problem that may arise in 5G system design, for which sparsity will potentially play a key
role in their solution.

INDEX TERMS Compressed sensing, cloud radio acess networks, massive random access, embedded
security, source coding.

I. WHAT DRIVES 5G?
The introduction of 4G clearly marked a first peak of the
smartphones’ revolution, offering high bandwidth mobile
radio access almost anywhere and anytime. However, as it
becomes increasingly apparent that 4G will not be able to
meet the emerging demands of future mobile communication
systems, the question what could make up a 5G system,
what are the key drivers, is still open and part of intensive
discussions. Actually with 5G and related visions, we believe,
mobile communications research is on the brink towards a
new innovation cycle [1]–[3]:
• The Internet of Things (IoT) will connect billions of
devices, i.e., the things of our everyday life, which
is far more than 4G can technically and economi-
cally accommodate. This will then open up new ways
to monitor, assist, secure, control e.g. in the tele-
medicine area, smart homes, smart factory etc. In fact,
the IoT could change the way we see the Internet as

a human-to-human interface towards a more general
machine-to-machine (M2M) platform.

• Security, privacy, and data integrity will be a key issue
in the 5G market. Current security solutions e.g. for the
IoT fall short due to the sheer number of nodes which
must be flexiblymanaged and distributed in the network.

• Moreover, the Tactile Internet (TI) comprises a vast
amount of real-time applications with extremely low
latency requirements including industrial wireless appli-
cations such as Smart Grids. Motivated by the human
tactile sense, which requires round-trip times in the order
of 1ms, 5G can then be applied for steering and control
scenarios implying a disruptive change from today’s
content driven communications. This is far shorter than
current 4G cellular systems allow for, missing the target
by nearly two orders of magnitude.

• Gigabit wireless connectivity is required in large crowd
gatherings with possibly interactively connected devices
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using angle-controlled 3D video streaming, augmented
reality, etc.

These examplesmake it very clear that 5G networks are not
only just about providing higher rates for the next smartphone
generation (although certainly important!), but more about
enabling, integrating services and embedded security which
both implement very different (virtually contradicting)
application requirements. From a technical perspective it
seems to be utmost challenging to provide such uniform
service experience to users under the premises of
future heterogeneous networking and small cell scenarios.
Consequently, the radio access has to be flexible, scalable,
content aware, robust, reliable and efficient in terms of
energy and spectrum. Actually, with the limitations of current
4G system (i.e., high latency, very bulky control signalling
architecture, no embedded security etc.), this would put
further pressure on the common value chains on which the
operators rely in order to compensate for investment costs
for future user services. Hence, there is a clear motivation
for an innovative and disruptive re-design of current mobile
communication networks from scratch.

Having the short-comings of 4G in mind, we develop the
elements of a 5G research agenda based on sparse signal
processing (also called compressed sensing (CS)). Here,
sparsity typically means that only a few samples of the signal
are actually non-zero but their locations may not be known.
This new paradigm has been an intriguing topic in mathe-
matics and signal processing in recent years. Sparsity-based
concepts have also been succesfully applied in specific
communication problems, e.g. the peak power control
problem (see [4]). Moreover, in the context of 5G, [5]
has recently identified five disruptive technology directions
(device-centric architectures, massive Multiple Input Mul-
tiple Output (MIMO), mmWave, native support of massive
M2M, smarter devices). We will indeed argue here that spar-
sity in communication signals is a viable innovation source
for these technology directions and will, hence, appear as our
basic methodology.

II. ENABLING 5G TECHNICAL CONCEPTS
Let us first identify a series of enabling 5G concepts and
corresponding research challenges which shall be approached
with the new paradigm:

i) Fast and scalable random access is one 5G key concept
to handle the massive number of sporadic traffic gener-
ating devices (e.g. IoT devices, but also Smartphones’
Apps etc.) which are most of the time inactive but
regularly access the network for minor updates with no
human interaction. Sporadic traffic will dramatically
increase in the 5G market and, obviously, cannot be
handled with the bulky 4G random access procedures.
Two major challenges must be addressed to lever-
age successful 5G business models: i) unprecedented
number of devices asynchronously access the network
over a limited resource, ii) the same resource carries
control signaling and users’ payload. Dimensioning

the channel according to classical theory results in
a severe waste of resources which, even worse, does
not scale towards the requirements of the IoT (low-cost,
deep indoor coverage, long life time of devices). Yet,
since typically user activity [6], channel profiles [7] and
message sizes are compressible within a very large
receive space, sparse signal processing methodology
is a natural framework to support sporadic traffic,
cf. Sec. IV where we discuss a suitable “one shot”
approach.
In addition, the TI requires ultra-fast acquisition in the
order of 100µs on the physical layer to enable the
1ms round-trip time [1]. Notably, this implies that even
small, say 1kBit data bursts, result in a huge bandwidth
requirement. Again, we will argue that classical theory
requires that for each real-time connected device a
significant control signaling overhead is necessary to
allow for swift channel estimation, equalization and
demodulation. Since, in addition, this traffic class must
be also extremely reliable, control signaling must be
separated from the data which is very inefficient and
can bemuch better handled by sparse signal processing.

ii) Densification of cells together with cloud-powered
baseband processing and wireless network virtual-
ization (so-called Cloud-RAN ) is another 5G key
concept to increase spectrum and energy efficiency and
handle the projected traffic growth [1]. It is based on
the deployment of many light base stations with over-
lapping coverage, performing only signal conversion
to/from the digital domain, connected through a high
capacity link to a cloud of data centers. It is worth
emphazising that such architecture can be efficiently
realized in the mmWave frequency bands. Coordinated
processing of signals by multiple network nodes is
a key design element in such a virtualized cellular
network. Yet, it is still mostly overlooked in the
literature that existing cooperative designs do not scale
in terms of run time requirements and required control
information. In Sec. Vwe analyze existing schemes and
discuss a new control signaling architecture thereby
efficiently exploiting not only the compressible chan-
nels but also the number of effectively coordinated
nodes (out of the total number of nodes). We will
also discuss the beneficial interacting role of sparse
prediction and coordination in this scenario.

iii) 5G source coding concepts for the massive number of
distributed sensors and actuators will be very different
as well. Shannon’s famous separation theorem states
that under appropriate conditions data compression
(source coding) and error protection (channel coding)
can be performed separately and sequentially, without
any performance loss. While the separation theorem
has has tremendous impact on the design of communi-
cation systems, in several practical scenarios the condi-
tions of the Shannon’s separation theorem neither hold
nor can be used as a good approximation. Naturally,

196 VOLUME 3, 2015



G. Wunder et al.: Sparse Signal Processing Concepts for Efficient 5G System Design

this raises the question whether and in which form
Shannon’s separation theorem holds true and can serve
as a guiding design principle for the communication
scenarios we expect to encounter in 5G. In Sec. VI we
discuss the related concepts and algorithms.

iv) Security will play a central role in 5G networks.
In today’s communication systems there is an archi-
tectural separation between data encryption and error
correction. The encryption module is based on
cryptographic principles and views the underlying
communication channel as an ideal bit pipe. The error
correctionmodule is typically implemented at the phys-
ical layer. It adds redundancy into the source bits
in order to combat channel impairments or multiuser
interference and transforms the noisy communication
channel into a reliable bit pipe. While such a separation
based architecture has long been an obvious solution in
most systems, a number of applications have emerged
in recent years where encryption mechanisms must
be embedded in the physical layer (called physical
layer security/or embedded security [8]). Embedded
security is a relatively new research area exploiting
the stochastic and physically unclonable nature of the
wireless channel including noise and the hardware,
e.g. for symmetric key and fingerprint generation. It is a
further 5G vision to embed security into the concepts
of Sec. IV – Sec. VI from scratch and to explore the
benefits and tradeoffs in such innovative designs to
enable scalable, fast security mechanism implemented
without user interaction, please see Sec. VII for a
discussion of new approaches in this regard.

FIGURE 1. Considered 5G deployment scenarios and respective
‘‘location’’ of CS entities.

The scenarios are depicted in Fig. 1. In the figure, we
also indicate where we possibly see the CS measurement
device. Note, though, that this does not at all imply that all
the processing is done in this location, e.g. for the C-RAN

“relay and compress” architecture described in Sec. V!
Clearly, in general, we have not said much about the
complexity yet and it is regarded as a crucial topic for futue
research when realizing the agenda outlined in this paper.
Notation: For a vector x ∈ Cn, ‖x‖p denotes standard

`p–norm and ‖x‖0 counts the number of non–zero elements
in x. For sets/matrices we use capital/calligraphic letters and
vec(X ) denotes the vectorization of the matrix X . For a
given vector x, diag(x) and circ(x) refer to a diagonal matrix
with x on its diagonal and to a circulant matrix (of appropriate
size) with x as its first row, respectively. The nuclear norm
‖X‖∗ of a matrix X is the `1–norm of the vector of its singular
values.

III. THE SPARSE SIGNAL PROCESSING PARADIGM
At the core of compressive sensing (CS) lies the discovery,
that it is possible to reconstruct a sparse signal exactly from
an underdetermined linear system of equations and that this
can be done in a computationally efficient manner via convex
programming [9]. Consider 8x = y, where 8 is an m × n
matrix of rank m with m < n. Here, 8 models the measure-
ment (or sensing) process, y ∈ Cm is the vector of obser-
vations and x ∈ Cn is the signal of interest. Conventional
linear algebra wisdom tells us that in principle the number
of measurements m has to be at least as large as the signal
length n, otherwise the system would be underdetermined
and there would be infinitely many solutions. Most data
acquisition devices of current technology obey this principle
in one way or another.

Assume now that x is k–sparse, i.e., x satisfies
‖x‖0 ≤ k � n but we do not know the locations of the
non-zero entries of x. Due to the sparsity of x one could
try to compute x via an exhaustive search, which however
is NP-hard. Instead, the CS paradigm tells us that that under
certain conditions on thematrix8 and the sparsity of x we can
reconstruct x from its measurements via linear or quadratic
programming techniques [9]. While x may not be sparse with
respect to the standard basis, in many cases we are dealing
compressible signals which are well–approximated by signals
which are sparse in some specific domain (e.g. in the Fourier
or wavelet domain). Thus, let 9 be a n × n matrix which
sparsifies x and y = 89x + z, where z is a noise vector.
To recover x we consider the convex optimization problem:

x̃ = argmin‖x‖1 s.t. ‖y−89x‖2 ≤ ε (1)

with ε depending on variance of z. Here, the `1–norm appears
as the convex relaxation of ‖·‖0.
A particularly important subject for the application in

multi-node/multi-terminal scenarios is the separation, respec-
tively demixing of multiple sparse signal contributions from
the compressed superimposed receive signal (compressive
demixing). Consider the model:

y = 8
P∑
p=1

9pxp + e (2)
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where each contribution 9pxp is compressible in its
own domain. Here, the synthesis matrices {9p} must
essentially ensure that there is no common intersecting
subspace. Following [10] a condition for exact (and/or
stable) recovery is to avoid nontrivial (well-separated)
intersections between the per-user `1-descent cones at the
true but unknown signals. See also [11] for a quite general
formulation of this problem.

In recent years, the idea of compressive sensing has been
extended and generalized in several ways. Adopting such a
more general viewpoint (see [12]) we may assume that the
objects of interest x (for example n–dimensional vectors or
n × n–matrices) can be well–approximated by superposi-
tions

∑
j cjψj of a few fixed atoms taken from an atomic

set A ≡ {ψj}. Compared to the full linear span of all atoms
A the feasible set of objects has then substantially reduced
complexity. In the standard CS problem A corresponds to 9.
A more advanced set A is given by the superposi-

tion of a few rank–one n × n–matrices. The nuclear
norm ‖·‖∗ will serve as convex relaxation of the
rank–function [13], [14]. Assume that we observe the
n×nmatrix x by takingmHilbert–Schmidt inner products of
the form (8X )l := 〈8l,X〉. In analogy to (1), we can attempt
to recover x via nuclear norm minimization, i.e., via:

X̃ = argmin‖X‖∗ s.t. ‖y−8X‖2 ≤ ε (3)

which can be solved e.g. by semidefinite programming.
While by now we have a fairly good theoretical under-

standing of such low-rank matrix recovery (LMR) problems
as in (3), only preliminary results are known for the practical
relevant combination of simultaneously low–rank and sparse
structures, as present for example in (sparse) compressive
phase retrieval or compressive blind deconvolution discussed
in Sec. V and Sec. IV. Multi-objective (`1 and nuclear norm)
convex programs for simultaneously sparse and low-rank
matrices are limited by the so called rank-sparsity inco-
herence and stable recovery cannot be achieved at the
theoretically optimal (for non–convex recovery) number of
measurements [15].

In several applications we are confronted with nonlinear
measurements, such as intensity or quantized measurements.
Thus, we may consider the more general case where we get
information about the object x by taking m non–adaptive,
linear or nonlinear noisy observations of the form
(y)l = f (〈φl, x〉)+ (z)l . The famous phase retrieval problem
falls in this setting, here f (〈φl, x〉) = |〈φl, x〉|2. Recently
it has been shown [16] that the phase retrieval problem
can be casted as a linear matrix–estimation problem under
rank–constraints and exploiting the LMR framework with
further cone constraints, i.e., A is the set of rank–one
positive–semidefinite matrices. The approach in [16], called
PhaseLift, proceeds by lifting the absolute–square map on
vectors to a linear map on rank-one matrices. To be explicit,
with 8l = φlφ

∗
l and X = xx∗ one has (y)l = 〈8l,X〉 +

(z)l = (8X)l + (z)l which matches the LMR model,
i.e., algorithms related to (3) can be used for recovery.

An even more constrained form of (noisy) phase retrieval
problem is to recover a sparse complex vector from noisy
intensity measurements. See [17] for some recent theoretical
results and further references.

IV. COMPRESSIVE MULTI-ANTENNA RANDOM ACCESS
In this section we will introduce a general compressive
multiple antenna random access. In this model each
device asynchronously accesses the network thereby carrying
overlapping data and control signals. In such a system, data
detectability becomes increasingly erroneous the more the
control is interfering with the data. Yet, the control must
somehow interfere with data in order to allow for (swift)
estimation of the channel. This seems to be a contradicting,
irresolvable task at first sight. However, we show how we can
cope with this task by exploiting sparse signaling principles.

A. RANDOM ACCESS: A KEY APPLICATION
FOR SPARSE SIGNAL PROCESSING
A key 5G application of the sparse signal processing
paradigm is the evolution of the random access chan-
nel (RACH) with asynchronous short–message support
which explicitly exploits compressibility. In RACH, sparse
structures are present in many directions: (i) due to user
activity and the near/far–behavior only a small but unknown
subset of users participate in the random access at a particular
base station (ii) the mobile channels (its spreading function)
from the terminals to base stations are sparse in delay and
Doppler and (iii) MIMO channel matrices are often low–rank
due to collocation of antennas and (iv) sporadic traffic with
short-message type payload is intrinsically sparse.

On the other hand, multiple challenging tasks have to
performed simultaneously in such an improved compressive
RACH architecture. Firstly, (i) the active user set has to be
identified. Then, (ii) the associated channel coefficients for
these users have to be estimated. The separate determina-
tion of the channel characteristics is important for possible
resource assignment for successive high data rate uplink.
Finally, (iii) the RACH data payload for each active user
has to be reconstructed. Without explicitly exploiting the
sparse structures discussed above, it seems to be practically
impossible to achieve steps (i), (ii), and (iii) in a single or few
transmission steps. Therefore, traditionally, only step (i) is
accomplished in the RACH and steps (ii) and (iii) are
postponed to a synchronized uplink channel which comes
then with the already mentioned control overhead. Thus,
exploiting the system sparsity can be a key enabler
for IoT and, by similar reasons as we pointed out in Sec. II,
for the TI on the physical layer.

Sparse reconstructionmethods have been used here already
in all these steps separately. For example, step (i) user
activation—also known as on-off RACH—can be cast as
a CS problem [18], [19]. Multipath channel estimation is
meanwhile a classical field for CS methods [7]. Compressive
demodulation or demixing of superimposed signals, step (iii),
is a further field of research [10], [11].
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Let us discuss suitable detection strategies in the
following. We will distinguish between coherent concepts
and incoherent concepts where the receiver estimates the
multi-antenna channel separately prior to data demodulation
or not, respectively.

B. COHERENT MULTIANTENNA RECEIVER CONCEPTS
Our target system to be investigated is described as follows:
We adopt a general model where multiple receive antennas
nr are incorporated from scratch. Transmission is on a frame
by frame basis where the signal space dimension nwithin the
frame can be very large, say several thousands samples due to
large bandwidth or large observation times. The time-space
(rows-columns) signal to be compressively sensed in some
slot is given by the matrix Y ∈ Cn×nr . Let us assume that
the channel coherence time is essentially larger than the slot
time. There are three sources for sparsity or compressibility
that should be exploited:
• Sporadic (Sparse) Traffic: The communication in
random access is sporadic so that out of nt nodes only
an unknown small subset of size k0 are actually active.
Alternatively, we can assert certain probabilities to each
node. This is our primary source for sparsity within the
receive space Cn×nr.

• Multipath Channels: Communication is over a
multipath channel with delay spread nd . For each
p-th/ q-th transmit/receive pair, the channel vector
hpq contains the nd coefficients of the channel impulse
response (CIR) which form the matrix:

Hp =


...

...
...

(hp1)i · · · (h
p
q)i · · · (h

p
nr )i

...
...

...

 ∈ Cnd×nr (4)

We assume that out of the nd channel coefficients in
each column, only k1 in the CIRs are non-zero and
the exact positions of the coefficients within Hp are
unknown. This sparsity assumption is fulfilled in most
wireless communication scenarios and, indeed, channel
estimation was one of the first CS applications here [7].
Meanwhile, CS estimation methods have been extended
towards sparsity in the delay-Doppler domain (see [20]).
Large bandwidth channels tend to exhibit sparsity only
in the delay domain where the support of the pathes
is invariant though [21]. This is our second source for
sparsity.

• Compressible Short Messages: Each user transmits a
sequence xp = Cpdp where dp ∈ M ∪ {0} ≡ M0 is
from some modulation alphabet which, by the activity
model includes a zero energy symbol as well. Thematrix
Cp ∈ Cn×n is some designed or random code matrix.
We assume that k2 data symbols out of the n are actually
non-zero. This is our third source of sparsity. Note that in
the random case the transmitter has to be informed about
the code matrices. Further reasoning for this assumption
follows when taking intrinsic compressibility of the data

payload into account as it will be explained, for example,
in Sec. VI.

• Spatial corelations: Another source of sparsity is the
spatial domain particularly when the number of antennas
is large (the so-called massive antenna regime). In this
situation the covariance matrix is sparse but in some
domain which is typically unknown; only in some
special cases this matric can be decomposed in
the Fourier domain, e.g. for the linear array [22].
A natural question is then how to measure this
such (huge) covariance matrix or alternatively how to
select a proper basis to exploit the sparsity in the process.
Additionally, this cannot be done independent of the data
detection process.

• Topology: Due to sparse connectivity, users will be
separated by their received transmission powers. This
is e.g. a possible way to inherently distinguish
relevance of certain nodes in a cooperative design
(see also the Sec. V).

As we outlined before, our goal is to achieve “one shot”
transmission, i.e., user detection, channel estimation and
data detection in one time slot. Therefore, for each node p,
a control sequence sp ∈ Cn drawn from some pool
of sequences known to the access, and an unknown data
sequence xp ∈ Mn

0 is transmitted. Each transmit sequence
has some individual power and the power is split between the
control and the data. The sampling equation for the receiver
q can be mathematically expressed with (4) as1:

y = 8

 nt∑
p=1

(
Sp + Xp

)
Hp + Z

 =: 8(Y ) (5)

whereby, for the sake of exposition, we use a circular matrix
model Sp = circ(sp) and Xp = circ(xp) to represent all
circular convolutions between transmit signals sp + sq and
channel impulse responses hpq. The matrix Z denotes addi-
tive white Gaussian noise with variance σ 2 per component.
Measurement on this matrix signal Y is performed with a
linear mapping 8 giving the sample values y = 8(Y ).
If the same sampling is used independently for all receive
antennas, one could take also8 ∈ Cm×n as the measurement
(compression) matrix. Compared with compressive demixing
in Sec.III, the dictionary matrices 9p are now related to a
circulant model. In CS for a single signal with a random
measurement matrix model 89p where 8 is isotropically–
distributed this is sometimes called the anisotropic case.
Noteworthy, in the classical setting this model resembles
closely the overloaded multiple access channel which is well
understood. In the overloaded case, optimal mean squared
error designs can be achieved [23] which is very different
from the compressive case considered here where such
problems have not yet been touched.

1It is important to note that this “underlay” signal model does not exclude
the case where control and data signalling are completely separated, e.g. by
FDMA in the frequency domain.
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The model in (5) is actually general enough to include
several recent models and once Hp is assumed to be known
or Xp is zero the determination of the remaining unknowns
under sparsity assumptions reduces (up to the anisotropy) to
a standard CS problem. For example, if Hp is already known
at the receiver, user activity and data demodulation can be
performed with CS–based multiuser detection methods [6]
and further references in [19]. However, in general Hp itself
has to be estimated within the same transmission framewhich
is a challenging task both from the algorithmic side as well
as from the design point of view. Random codebook and/or
pilot assignments and spreading, respectively, could be a
possible strategy for this problem [19]. The limits of such
compressive demixing strategies by convex methods has been
characterized for the random orientation model in [10] in a
quite general setting. According to [10] reliable demixing is
possiblewhenever the numbermeasurementsm is sufficiently
above the total sum of all contributing statistical dimen-
sions. In the sparse case the statistical dimension of a single
signal contribution amounts for the effective dimension of
`1-descent cones at the unknown signal and scales linearly
with signal sparsity. A greedy approach to demixing for more
general signal manifolds is contained in [11].

A different strategy could be the combination of illumina-
tion and subsampling as proposed for the random demod-
ulator in [24] and used for random access in [25]. Using
the different cancellation properties of stochastic i.i.d. data
with deterministic pilots, it is possible (i) to cumulate suffi-
cient pilot power for sparsity–aware channel estimation in a
fixed window at the output of the random demodulator and
then (ii) to demodulate the whole data payload. To show
the potential of such approach let us consider a simple
example using LTE-A 4G parameters2:
An LTE-A 4G frame consists of a number of

subframes with 20MHz bandwidth; the first subframe
contains the RACH with one “big” OFDM symbol of
m = 839 dimensions located around the frequency center
of the subframe. The FFT size is n = 24578 = 24k corre-
sponding to the 20MHz bandwidth whereby the remainder
bandwidth outside PRACH is used for scheduled transmis-
sion in LTE-A, so-called PUSCH. The prefix of the OFDM
symbol accommodates delays up to 100µs (or 30km cell
radius) which equals 3000 dimensions. In the standard the
RACH is responsible for user aquisition by correlating the
received signal with preambles from a given set. Here, to
mimic a possible 5G situation, we equip the transmitter with
the capability of sending information in “one shot” i.e., in
addition to user aquisition, channel estimation is performed
and the data is detected. For this a fraction of the PUSCH
is reserved for data packets of users which are detected
in the PRACH. Please note the rather challenging scanrio
of only 839 subcarrier in the measurement window versus
almost 24k data payload subcarriers.

2Of course this is a simple preliminary example as no 5G setting is
available yet.

FIGURE 2. Averaged BPSK SER in 5G ”one-shot” random access in a
20MHz LTE-A standard setting at (overall) SNR=20dB. In the first setting
(upper curves), m = 839 dimension out of n = 24576 dimensions are used
for CS. This limits the control overhead to below 5%. In the second case,
pilots and data are fully separated so that the performance is greatly
improved at the expense of a slightly increased control overhead (<14%).
Note that the curves do not cross for the same number of active users so
the performace is always better with separation.

In our setting, a limited number of users is detected
out of a maximum set (here 10 out of 50). We assume
that the delay spread is below 300 dimensions of which
only a set of 6 pathes are actually relevant. Each active
user sends 1000 bits in some predefined frequency slot.
This is uniquely achieved by mapping the sequences to a
slot. Hence, in the classical Shannon setting 50 users ×
(300 pathes + 1000 bits) = 65000 dimensions are needed
while there are only 24k available! The performance
results are depicted in Fig.2 where we show symbol
error rates (SER) over the pilot-to-data power ratio α.
Moreover, in Fig.3 we depict false detection probabil-
ity PFD (some user is detected while not active) over
missed detection probability PMD (user is active while not
detected). We observe that, although the algorithms might
not yet capture the full potential of this idea, reason-
able detection performance can be achieved by varying α.
In the 4G LTE-A standard a minimum PFD = 10−3 is
required for any number of receive antennas, for all frame
structures and for any channel bandwidth. For certain SNRs
a minimum PMD = 10−2 is required. It can be observed
from the simulations that the requirements can be achieved.
Actually, compared to 4GLTE-Awhere the control signalling
can be up to 2000% [1] of a single resource element the
control overhead is in the CS setting down to to 5% (let alone
the huge increase in latency) in the best case!

A great challenge is the link between CS estimation and
information-theoretic rates. In [25] we have recently shown
that the rate error per subcarrier i is lower bounded by

1ri (α)≤ log
(
1+

m · c2(δ2k1 )
2

n

(
SNR ·

(1− α) β
α

+
1
α

))
(6)
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FIGURE 3. PFD = 10−2 over PMD = 10−2 for the 5G ”one-shot” random access with same parameters for the first setting in Fig.2.
It is observed that the LTE-A detection (in yellow) can be achieved for certain α. For the second setting in Fig.2 almost no detection
errors are observed at overall SNR=20dB.

mimicking the curves’ shape in the simulations. Here, the
system parameter c2(δ2k1 ) = 4

√
1+ δ2k1/(1− (1+

√
2)δ2k1 )

depends only on the restricted isometry property δ2k1 of the
measurement matrix for k1 sparse channels which is “small”
with high probability provided that m ≥ O

(
k1 log5(n)

)
and

β > 0 is a constant not depending on m, n.
Finally, we mention that we have used a simple FDMA

random access strategy for the data which was recently
discussed in [26] along with another more sophisticated slot-
ted ALOHA access scheme employing a multiuser detector.
Yet, no sparsity is involved. Similarly in [27] a random access
scheme called coded slotted ALOHA is proposed investigat-
ing the interaction of advanced multiuser detection based on
CS and successive interference cancellation. In both works
the effect of channel/data estimation errors and error propa-
gation in the interference cancellation scheme is crucial [27]
and must be carefully considered as it is done in eq. (6).

C. INCOHERENT MULTIANTENNA RECEIVER CONCEPTS
The situation is even more intricate if both the sequence
set and the channel are unknown during sampling. For the
purpose of exposition we consider the single user/single

antenna case and use the short–hand notation ∗ for circular
convolution. In such a blind reference model the signals to
be sampled are given, for example, as h ∗ x of two unknown
but sparse vectors x and h with ‖h‖0 ≤ k1 and ‖x‖0 ≤ k2.
The goals are (i) sample h ∗ x with minimal number of
measurements and (ii) determine from h ∗ x the pair (x, h)
up to indissoluble ambiguities. Compressive sampling via
8 ∈ Cm×n of such type of bilinear combinations in the
strongly undersampled regime (the number of measurements
m scales with k1 + k2 although ‖h ∗ x‖0 ≤ k1k2) can
be achieved under additional stability assumptions [28] and
references therein. This bilinear recovery problem can be
lifted again to an LMR problem, since circular convolu-
tion h ∗ x = B

(
vec(hxT )

)
can be expressed as linear

mapping B applied on the (vectorized) rank–one matrix
X = hxT. More precisely, B is a suitable matrix with elements
(B)i,(jk) = δi,j⊕k . A convex recovery algorithm not taking
sparsity into account follows then from (3). Such a nuclear
norm minimization has been considered by some authors for
linearly random encoded data x, see for example [29], [46]
and further reference therein (also related independent
component analysis). Indeed, there it has been shown that this
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approach is successful with overwhelming probability when
certain oversampling is used. It has to be expected that this
situation improves if sparsity will be taken into account and
even undersampling can then be used. For example, nuclear
norm minimization could be `1–penalized:

min ‖X‖∗ + λ ‖vec(X )‖1 s.t. ‖y−8B(X )‖2 ≤ ε (7)

for some regularization parameter λ > 0. Yet, such
multi-objective convex methods will not scale better then the
best separate optimization [15]. Thus, it is of fundamental
importance to find recovery algorithms which (i) can operate
at the optimal, additive (k1 + k2) scaling of measurements
and (ii) can be easily extended to the case with multiple
interferers.

D. MASSIVE MIMO REGIME
The system in eq. (5) in the non-coherent setting culminates in
amany tomassive antenna designwhen the number of receive
antennas is scaled up. The standard setting for the massive
MIMO case is the flat fading case.

The standard setting for the massiveMIMO case is the flat-
fading case where all hpq contain a non-zero element at their
first position only so that we have Hp = (h1p, ..., h

q
p) = hTp .

The model can be written as

Y =
Nt∑
p=1

sphTp + Z (8)

It can then be shown that an SNR optimal detector is given
by a singular value decomposition of Y when sparsity is not
involved. Very recently, [30] has linked this to the so-called
pilot contamination problem in a multi-cell scenario using
random matrix theory showing that eigenvalue sets related
to pilot signals in different cells appear in fact in disjoint
intervals so that they can be separated. Hence, by this non-
linear detector the pilot contamination problem disappears,
however, at the cost of high receiver complexity involving
“big” matrix decomposition, of course. Notably, the general
case involving sparsity and multipath fading is an important
open problem and can be possibly tackled with the incoherent
concepts outlined before.

V. CLOUD RADIO ACCESS NETWORKS
In our target architecture, virtual base stations located in
the data centers control a scalable number of nodes (and
terminals) for which transmission/reception is coordinated by
sharing control information and/or even messages (so-called
cooperative designs or coordinated multipoint (CoMP)).
While it is appealing to exploit existing designs we describe
the short-comings of such approach in this section, and how
sparse signal processing concepts will enable such designs.

A. STATE-OF-THE-ART COOPERATIVE DESIGNS:
A CRITICAL VIEW
A summary of state-of-the-art cooperative designs in
multi-cell networks can be found in [31]. However, existing
cooperative designs, as they are available at present,

are not scalable, i.e., operational regions and switching points
depending on the available channel state information (CSI)
as well as suitable transitions between different technologies
are not clearly defined yet. A prominent coordinated beam-
forming technique is e.g. interference alignment (IA) [32]
which essentially aligns the signal space so that multiple
interferer appear in the same subspace. In some scenarios,
closed-form solutions are available while in others only
iterative solutions exists; rigorous convergence analysis or
relevant stopping criteria are still missing. In this context,
a scalable control signaling architecture in uplink (feedback)
and downlink (feedforward) is a major requirement. In the
existing designs, each point-to-point link is treated separately
using orthogonal resources. Consequently, with densification
of cells it becomes virtually impossible to provide CSI to all
coordinated nodes (or antennas). For this small cell scenario,
it is an intriguing idea to superpose and compress the control
signals suitably, and let the (virtual) base stations recover their
own channels by exploiting sparsity of channel profiles and
effectively coordinated nodes.

There is another major point which, we think, basically
stems from the lack of robustness in existing designs: Indus-
trial field trials show rather disappointing throughput gains
of CoMP algorithms [33] far away from the beforehand
highlighted information-theoretic limits [31], whereby the
major limiting factor is again properly sharing CSI and other
overhead among cells. This so-called limited feedback prob-
lem has been greatly analyzed in [34] (for multiuser MIMO)
and recently in [35] (for joint transmission) and [36]
(for IA) in terms of the rate distance1ri of node i to capacity
subject to some offset independent of SNR. Hence, these
results essentially provide a systems’ degrees-of-freedom
analysis, i.e., assuming infinite SNR regime. To be specific,
let p and b = b(p) denote the SNR and feedback budget
(in bits/channel use) as a function of SNR, respectively, then
the per-node capacity degradation for any scaling in p is
(using order notation O(·)):

1ri( p, b) = log(1+ p · 2−
b

nt−1 )+O(1) (9)

Very recent studies [37] indicate that these results are fragile
and that, in fact, the tradeoffs actually behave very different
in more practical regimes. It is shown that for any finite
SNR point p and for any scaling in b the per-node capacity
degradation is:

1ri( p, b) = O
(
log(1+ p · 2−

b
2(nt−1) )

)
(10)

which actually doubles the required number of bits compared
to (9). Classical analysis falls short due to several reasons:
i) It assumes infinite SNR regime where achieving DoF is
optimal. In this operational regime interference mitigation
instead of signal enhancement is the primary goal. ii) It asserts
that the transmitter can optimally allocate rates while, in prac-
tice, the transmitter allocates rates according to the available
CSI and corresponding scheduler decisions (real versus ideal
link adaption). iii) The optimal scheduling decision is known
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a priori which is unrealistic since limited feedback not only
affects the choice of spatial precoding but also user selection
and resource allocation.

Obviously, the problem even worsens if a frequency-
selective channel is considered and also persists with alter-
native time domain quantization. Altogether, the classical
analysis renders the performance estimation overly optimistic
and it is safe to say that the relevant tradeoffs in a dense
C-RAN architecture are not yet well understood. This calls
again for a highly efficient control signaling architecture
which then considers robustness from scratch as outlined
next.

B. TOWARDS A SPARSE ARCHITECTURE: ANALOG RELAY
AND LINEARLY COMPRESS
Let us introduce a control signaling architecture where the
feedback generating terminals receive the pilot signals from
several nodes at different receive antennas at once and act
as simple relay and linearly compress nodes. Linear com-
pressing means that instead of the complete set of pilot
measurements across time and spatial domain only a linear
combination of them is (separately) fed back (possibly in
analog form). All cooperating nodes collect these compressed
control signals from the terminals and makes suitable esti-
mates of the channels.

There are several key features of this scheme: The pilot
patterns from the set of cooperating nodes are superposed
and can be separated by advanced processing exploiting
CIR compressibility. The overhead does not scale with the
number of nodes joining, so that every node can join the
cooperating set if it wishes. Each cooperating node receives
the same signal reflecting the C-RAN architecture where
the baseband processing of different nodes is in the same
place. Inherently by the linear compressing, only the most
relevant subset of nodes are effectively coordinated. Since
this step is independent of the used pilot pattern the base
station can change it without informing the terminals (so that
it can be even random). Altogether, the base station takes
over all the processing which is affordable in a centralized
C-RAN architecture. From the terminals’ point of view,
neither do they need to know which nodes are cooperating
nor do they need to quantize any information of the channels.
By contrast, in simple time domain quantization, it is still
assumed that the paths of each antenna of each node is
treated the same way which becomes quickly inefficient in
a highly dense C-RAN architecture where only the most sig-
nificant paths across all base stations should be compressed.
Moreover, the required communication resources should
scale along this number rather than all antennas and nodes.
Finally, the terminals could even make use of the same
processing principles (only few might be active). Note that
our design is efficient and scalable such that it meets the
number of essentially unknown parameters (but not the
sampling theorem) which is typically much smaller.

Mathematically, the scheme is expressed similar to the
multiple access scheme in eq. (5). Denoting the number

of nodes again by nt , the received signal at each of the
cooperating nodes y is:

y = 8

 nt∑
p=1

SpHp + Z1

+ z2 (11)

Here, the inner bracket is what the terminal receives on
multiple antennas similar to eq. (5). Themain difference is the
additional relay component resulting in two different noise
sources Z1, z2 which complicates the analysis and perfor-
mance limits are not known. Another significant challenge
is to make such sparse designs robust within the C-RAN.
In [37] and [38], we sketch a robust design at finite SNR
guided by the intuition to improve the overall performance
by suitable metrics (which capture the effects of e.g. schedul-
ing) and transmit/receive strategies (guaranteeing worst-case
performance nomatter what the scheduling decision is) rather
than simply approximating the channel. Combining such
robust design with the sparse signal processing paradigm
essentially requires to fully understand the tradeoffs between
number of measurements and the actual regarded (new) per-
formance metrics. This is actually far away from current
achievements in the respective literature. A good starting
point is the rate expression in eq. (6) though with suitable
estimates for the RIP parameters.

FIGURE 4. Mean spectral efficiency of CoMP schemes over feedback
load using IQ quantization or CS based techniques: BD is block
diagonalization, ZF is zero forcing and Rate Approximation is the scheme
from [38]. Note that the number of users is small but, in principle, only
limited by the processing capabilities of the access point.

Let us consider again a simple example with LTE-A
4G parameters in Fig. 4. Here, we compare the analog relay
and linearly compress scheme with standard IQ quantization,
a genie scheme and the robust schemes described in [38] in a
LTE-A 4G setting. We consider 3 base stations with nt = 4
transmit antennas located in 3 adjacent cells with 10 users
(nr = 1) uniformly distributed over the network area (radius
of 250meter around the center of the base stations). The phys-
ical layer is configured according to 4G. The channels are
modeled by the spatial channel model extended (SCME) [15]
using the urbanmacro scenario. It can be clearly observed that
the CS provides a much better scaling compared to simple
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IQ quantization. Note, that we have not incorporated any
sparse topology yet.

C. SPARSE PREDICTION: UNEXPLORED GROUND
CSI aging and corresponding CSI mismatch due to asyn-
chronous signaling is another serious problem in a CRAN.
In [34] it was shown that classical prediction is ben-
eficial for zeroforcing beamforming (ZF) in cooperative
designs such that the systems are actually not fundamentally
interference limited. In case of just stale CSI retrospec-
tive interference alignment [39] is another technique to be
explored within the developed sparse and robust context.
Typically it is argued that retrospective IA interference align-
ment is actually outperformed by ZF over a wide range of
velocities [40]. However, under the robustness paradigm this
might not be necessarily true as we proved that the perfor-
mance estimation for ZF is overly optimistic!

So far, the inherent sparsity is not considered in the
prediction literature. Clearly, sparsity provides additional
structural information which can be explored. The problems
are intricate: the system (5) might evolve on a complicated
manifold not in a vector space. The simplest approach is then
to assume for the time evolution the same support of the path
coefficients for all times, which is reminiscent of block- or
structured CS, and to iteratively estimate the correct subspace
and make a optimal prediction on the estimated support next.
Another approach is to let the process truly vary on a sparse
manifold where the simplest one is the union of all k-sparse
canonical subspaces in Cn. However, so far, neither specific
models to enable e.g. advanced Kalman prediction nor any
respective algorithms have been developed.

The performance of classical short-time prediction
algorithms suffer from the poor granularity in the frequency
domain and coarsely quantized complex CSI due to limited
feedback problem as well. Another key idea is, hence, to
develop a new framework based on sparsity where the sparse
CIR is calculated from simple real-valued measurements,
cf. Sec.VI for a strong motivation of this assumption. Even
though such an approach may not be supported by a physical
meaning in all cases, the new process is in any case “slower”
and therefore intuitively better predictable. Phase retrieval
algorithms can be used for such problems which we outlined
in Sec. III. A special case are the Fourier measurements where
the problem is related to factorization theory. Alternative
methods using so-called symmetrized Fourier measurements
have been recently proposed in [28] which, subject to the
sign, theoretically allow stable reconstruction of the complex-
valued CIR. Yet again, suitable algorithms incorporating
multiple antennas and nodes exploring the sparsity of the
CIRs are not known.

VI. COMPRESSIVE CHANNEL-SOURCE-NETWORK
CODING
In this section we carry over the concepts to the terminal side
following the idea that sparsity may be already beneficial in
the terminals’ encoding process.

A. BEYOND THE SEPARATION THEOREM
5G networks, in particular the IoT component, will
contain a large number of relatively simple devices that need
to operate at a very energy-efficient level and with fairly
limited memory. Hence these device can neither afford to
employ energy-hungry encoding or compression algorithms,
nor can they support high data rates. Thus power budget and
communication rates become two main design constraints for
5G networks. These constraints naturally suggest the use
of sensors that are built based on the compressive sensing
paradigm. Using compressive sensing devices (CSDs), one
can avoid the need for power-consuming compression algo-
rithms, while still being able to transmit images of sufficient
quality without having to resort to transmitting images pixel
by pixel. Instead of recording data at a high resolution (which
requires memory and energy) and then throwing away most
of the data during the compression step (compression again
requires energy), such CSDs collect data directly in the
“compressive domain”. The computational burden is shifted
from the transmitter to the receiver. Yet, deploying CSDs
in a wireless network will impact the entire communication
system design. Understanding this impact and taking full
advantage of it will be an important aspect for efficient
5G network modeling.

A variety of interesting challenges arise in such
“compressive sensor” situations. Unlike in the “classical”
communication scenario, where Shannon’s separation the-
orem is one of the guiding principles for designing com-
munication systems (even though the idealized conditions
on which the separation theorem is based are hardly met
in practice), we are now faced with a different setup. The
situation depends strongly on which constraints we put on
the complexity of the encoding step. For example, if we
equip our simple CSD with a fairly complex encoder, then
we find ourselves back in a classical communication sce-
nario. This is due to the fact that in this case we could
incorporate both the reconstruction of the original signal
from its compressive samples and a standard source coding
step into the encoding procedure. But it is clear that such
a complicated encoder would be detrimental to our goal
of having simple, power-efficient sensing devices. Instead
let us look at the other extreme, where we deal with a
sensor that does not permit any encoding at all. The only
way to add redundancy (and thus to add error protec-
tion) in that case is to increase the number of compressive
measurements.

Following the CS paradigm such compressive measure-
ments have to be slightly redundant to allow for numeri-
cally efficient signal recovery (compared to the number of
measurements for an NP-hard reconstruction algorithm). For
ideal CS matrices the number of measurements m for a
k-sparse signal x ∈ Cn has to be at least O(k log(n/k)).
Hence, to increase robustness, we may take
m > O(k log(n/k)). Clearly, m should depend on the SNR.
A simple CS-based source coding scheme might look
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as follows: An instructive numerical simulation illustrates the
efficacy of this simple scheme. Similar to [41] we consider
the following setup:

(i) Encoding: The encoding step consists of taking m ≤ n
measurements of a signal x ∈ Cn via w = 8x, where
we assume that x is k-sparse in a known basis 9.

(ii) Transmission: The measured signal w is transmit-
ted through a noisy channel. The received signal is
y = w+ z = 8x + z, where z is AWGN.

(iii) Decoding: At the receiver we attempt to recover
x via the LASSO, i.e., by solving min 1

2‖9x‖1 +
λ‖8x − y‖2.

Simulation examples can be found in [41].

B. SPATIALLY CORRELATED NETWORKS
Let us now consider a sensor network where the source
signals are sparse with respect to some known basis and
in addition are spatially correlated. Instead of decoding
each signal individually, it is natural to try to exploit the
spatial correlation between the sensors. There are various
ways to accomplish this. In [41] an elementary sequential
reconstruction algorithm is proposed to exploit the spatial
correlation between signals, based on the fact that the differ-
ence between two sparse signals is again sparse. A different,
more flexible and robust approach consists of setting up a
low-rank optimization problem. By interpreting the signals
as columns of a data matrix X , the spatial correlation sug-
gests that one may attempt to find, among all the matrices
consistent with the observed data, that with minimal rank.
We can try to improve upon this decoding procedure even
further by attempting to combine the powers of compressive
sensing with those of matrix completion. Hence we may
consider an optimization problem that combines the sparsity
and the low-rank structures, as e.g. in (7). While [15] shows
(in the noiseless case) that such mixed-convex optimization
approaches cannot lead to significant improvements over an
approach that optimally exploits one of the individual sparse
properties, numerical simulations nevertheless indicate that
the improvements can still be worthwhile from a practical
viewpoint - in particular in the noisy case. Recovery problems
that combine sparsity and low rank as penalty function have
been proposed recently in the literature, but their careful use
and investigation in wireless communications is unchartered
territory.

So far we have not made use of the fact that, unlike in the
usual compressive sensing scenarios, the coefficients of the
signals we try to reconstruct belong to some finite alphabet,
such as e.g. QPSK. Hence, an important open problem is to
extend standard decision feedback equalization schemes to
the situations described in this section. How can we optimally
exploit the sparsity of the signals and the spatial correla-
tion across sensors in a decision feedback scheme? A pos-
sible approach might be to try to combine recent advances
in mixed integer optimization [42] with sparse recovery
methods.

Many variations of the theme are possible. We have
ignored the role and effect of quantization so far.
Moreover, the sensors may allow for very simple encoding
in addition to, or instead of, increasing the number of com-
pressive measurements. How does an analog of Shannon’s
separation theorem look like for such a scenario?

VII. EMBEDDED SECURITY
Embedded security together with sparse signal processing
promoting simultaneously secrecy and reliability can funda-
mentally change the way we approach the design of security,
authentication and integrity mechanisms, specifically in the
IoT and the TI. In this section, we show that sparse signal
processing can be naturally incorporated within the concept
of embedded security and exhibits indeed a new degree of
freedom in the design of algorithms, naturally entailing new
interesting tradeoffs considering compressibility and secrecy.

A. 5G SECURITY CHALLENGES
One example where current security solutions fall far short
is the IoT due to the scalability problem: Nodes must be
flexibly managed and distributed in the network and asym-
metric schemes used at the application layer are too complex
as well as too computational- and energy intensive for the
typical battery driven low-complex wireless transceivers of
IoT devices. Symmetric key schemes are 100 to 1000 times
less complex (“lightweight security”) but assume a
common secret key for the nodes so that that there is a key
distribution problem instead. A detour of this problem is to
distribute unique keys already in the chip sets’ manufacturing
process [43]. However, the overall security architecture still
requires Internet server access and lacks some flexibility.

An alternative concept is embedded security aiming at
physical layer integration of confidential services in wireless
networks [8]. Here, classical wiretap coding can achieve
provably non-zero secrecy rates within the imposed (often
idealistic) channel model, where it is then impossible for
an eavesdropper to extract any information about the sent
message from the overheard signal. The concept of wiretap
coding is somewhat detrimental to the scalability and low
complexity requirements in the IoT similar to the argument
in Sec. VI. A much simpler method is to exploit the reci-
procity and fading nature of CSI and to establish a common
secret between sender and transmitter from the CSI measure-
ments [44]. Since keys are then automatically installed, key
distribution in these systems is easy to manage and requires
no user interaction; moreover beyond the spatial decorre-
lation length of antenna elements such keys are virtually
impossible to recover. Two major practical problems occur
though: i) imperfect reciprocity of CSI ii) insufficient entropy
of the generated keys due to static channels. In order to handle
the imperfect reciprocity, typically a so-called information
reconciliation procedure over a public channel is run, careful
not to unveil any information about the secret key bits. Imper-
fect reciprocity and insufficient entropy depend on each other
because “coarse” quantization and stronger codes improve on

VOLUME 3, 2015 205



G. Wunder et al.: Sparse Signal Processing Concepts for Efficient 5G System Design

key agreement rate but reduce the keys’ entropy. Both aspect
affords additional control signaling, yet again bringing up
the issue of reliability, complexity, nodes’ lifetime, and new
security threats in the IoT.

Another example is the ultra-low latency requirement in
the TI. Each and every element of the communication and
control chain must be optimized and, obviously, fast authen-
tication and secure communication is a “must” for the TI then.
We also emphasize the role of data integrity due to the
high reliability constraints, e.g. in the context of Industrial
Wireless. Applying standard security mechanisms on the
application layer is not feasible. Moreover, wireless channel
secret key generation is highly limited in the rate of the
generated key bits, which is at most 44bit/s by today so that
at least roughly 3s are required to generate e.g. a secure
128bit key [44]. Too slow for the TI!

To overcome such limitations, security shall be built in the
compressive CSI control signaling architectures developed
in Sec. IV and Sec. V from scratch. Here, in contrast to
the robust design by taking sufficently many compressive
measurements, the opposed direction is taken to disguise the
CSI, which shall be discussed next.

B. MAKING SECURITY FAST AND SCALABLE
In our concept, a secret key is periodically generated from
CSI and acknowledged between transmitter and legitimate
receiver. Let us assume that information reconciliation is part
of the “relay and compress” control signaling architecture
in Sec. V. Then, since the legitimate receiver can reliably
recover the channel, reciprocity and key entropy is preserved
which advantageous in case of static channels. In addition,
similar to the discussion in Sec. V the transmitter can change
the control pattern without informing the receiver. Further-
more, since this is a full duplex scheme the scheme is faster
making it a candidate for the TI (standard wireless channel
secret key generation schemes typically run in half duplex
time division scheme). The catch is though that potentially
the eavesdropper can recover the key itself when he/she is
able to collect all the control information.

In order to make such schemes workable in practice, addi-
tional measures should be taken to ensure that an eaves-
dropper cannot reveal the message. Actually, this sets a
limit to the number of measurements publicly discussed such
that slightly erroneous or incomplete information about the
control signaling patterns as well as about the compressive
measurements make it impossible to extract the original
messages. Clearly, one can think of an ocean of possible
communication protocols to improve on this line of thinking.
Interestingly, by using the wireless channel as the secret key
source we have a new interesting trade off between compress-
ibility and secrecy: good compressibilitymeans small entropy
in the key, hence longer observation times and vice versa.

To illustrate an example of such “built-in” security we
consider the following scenario. Let us assume that the relay
and compress scheme from Sec. V is used in a point-to-
point link to inform the transmitter (Alice) about the channel

FIGURE 5. MSE performance of the relay and compress scheme under
‘‘perturbations’’ for 1) Bob having ideal measurements and 2) Eve having
perturbed measurements with a) phase errors and, worse, b) rank-one
distortion.

of its legitimate receiver (Bob). The purpose is to extract
a common key from it in order to conceal the information
from an eavesdropper (Eve). Clearly, if Eve knows all the
control signalling it can recover the information from the
measurements. In practice, by the physical nature of wireless
transmission, these measurements are only available subject
to some unknown phase shift for each measurement. The
simulation in Fig. 5 then clearly indicates that Eve is not able
to recover the information while Bob can still get some rea-
sonable performance. The MSE performance is even worse
for rank-one distortion. We would like to emphasize that any
analytical approach for the such “perturbations” is not known
to the best of our knowledge.

Allowing fast, efficient, and flexible key distribution are
desirable principles in the TI as well. However, to achieve
fast authentication evenmore advancedmethodsmust be used
ranging from wireless fingerprinting [45] which can include
e.g. the individual sparsity patterns as well as cooperative
jamming approaches [44].

VIII. CONCLUSION
We have shown that sparse signal processing is a viable
source for an innovative 5G system. To exploit the benefits
fundamental research is required addressing the many open
questions regarding tradeoffs, performance limits, algorith-
mic framework etc. We have only touched the surface of
this research agenda, where one of the many further fields of
exploration is to include newwaveforms at the physical layer.
We also emphasize that sparsity appears not only as a physical
reality, e.g. in the wireless channels, but also by design of
the network topology, traffic conditions etc. It is therefore
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an important future task to measure the degree of sparsity in
a system and adapt the signaling architecture acccordingly.
We also remark that the simple simulation examples have
not been limited by fundamental performance bounds but
by the processing capability of the simulation environment.
Consequently, lowering the complexity of the CS algorithms
is another important furture task.
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