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ABSTRACT Nonsmall cell lung cancer is a prevalent disease. It is diagnosed and treated with the help of
computed tomography (CT) scans. In this paper, we apply radiomics to select 3-D features from CT images
of the lung toward providing prognostic information. Focusing on cases of the adenocarcinoma nonsmall cell
lung cancer tumor subtype from a larger data set, we show that classifiers can be built to predict survival time.
This is the first known result to make such predictions from CT scans of lung cancer. We compare classifiers
and feature selection approaches. The best accuracy when predicting survival was 77.5% using a decision
tree in a leave-one-out cross validation and was obtained after selecting five features per fold from 219.

INDEX TERMS Computed tomography, CT 3D texture features, support vector machine, Naive Bayes,
decision tree.

I. INTRODUCTION
We explore the idea of radiomics being applied to computed
tomography scans of non-small cell lung cancer (NSCLC).
Radiomics [1] is the extraction of quantifiable and mineable
data from medical images. Here, the focus is on extracting
features that can be used to predict whether patient survival
time will be long or short.

In this work, computed tomography (CT) images of
patients from the Moffitt Cancer center were collected. These
images were obtained when the patient was diagnosed. The
images were used in making the diagnosis. The images all
have a different field of view and many have different recon-
structions including slice thickness. The variability makes
this a challenging data set.

Ganeshan et al. showed that features extracted from
CT images of lung tumors correlate with glucose metabolism
and stage information [2]. The work by Samala et al. [3]
sought the optimum image features to represent lung nodules.
Those features were then used in a classification module
of a computer-aided diagnosis system. Way et al. [4] tried
to distinguish benign nodules from malignant ones using
only texture based image features. Lee et al. [5] also per-
formed a detailed study on the usefulness of image features
in the classification of pulmonary nodules based on CT-scan
images. The work by Zhu et al. [6] showed the effectiveness

of a support vector machine in classifying benign and
malignant pulmonary nodules. Work has also been done by
Al-Kadi and Watson [7] in differentiating between aggres-
sive and non-aggressive malignant lung tumors using texture
analysis applied to Contrast Enhanced (CE) CT scan images.
The use of fractal image features in tumor analysis can be
found in the work of Kido et al. [8]. The high level informa-
tion within CT scans was highlighted by correlating imag-
ing features with global gene expression in hepatocellular
carcinoma [9]. They showed that combinations of twenty-
eight image features obtained from CT images of liver cancer
could reconstruct 78% of the global gene expression profiles.
In this paper we predict survival time from CT images.

Section II, contains a description of the data set and the
features we used to develop the predictive models. Section III
has a discussion of the classifiers. In Section IV, the feature
selectors are described in detail, and the results are presented
in Section V, followed by conclusions in Section VI.

II. DATA SET AND FEATURE EXTRACTION
In this section, we discuss the data set as well as the
methods of image pre-preprocessing, segmentation, and fea-
ture extraction. Descriptions of the features are also given.
The workflow we used to develop predictive models is repre-
sented in Figure 1 and is based on work by Kumar et al. [1].
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FIGURE 1. Schematic representation of the workflow involved in preparing data for predictive models.

A. DATA SETS
The data set used consisted of de-identified CT-scan images
from theMoffitt Cancer Center, Tampa. The images are in the
DICOM (Digital Imaging and Communications in Medicine)
format. The data set consists of patients with tumor types of
Adenocarcinoma and Squamous-cell Carcinoma. This paper
focuses on the adenocarcinma patients. CT-scans of 81 adeno-
carcinoma patients were used for survival time analysis. The
slice thickness of the acquired CT-images ranged from 2.5mm
to 6mm with an average thickness of 4.75mm. There were
32 cases in stage one, 20 in stage two, 25 in stage three, and
4 cases in stage four. The mean survival time was 879 days.
The adenocarcinoma cases were divided into the upper and
lower quartiles of survival. The lower quartile consisted of
20 cases surviving from 103 to 498 days with an average
survival of 288 days. The upper quartile consisted of 20 cases
surviving from 1351 to 2163 days with an average survival of
1569 days. These two classes were chosen in the expectation
that their image features would be the easiest to differentiate,
provide some information on the possibilities, and the training
set is balanced. The class distribution of survival time is as
follows:
• patients with a survival time in the highest quartile
[Class1] = 20

• patients with a survival time in the lowest quartile
[Class− 1] = 20.

B. IMAGE PRE-PROCESSING
The initial CT segmentation, separating the lung region from
the rest of the body, was done using the algorithm pro-
vided in the Lung Tumor Analysis (LuTA) software suite of

Definiens, [10]. On completion of the lung field segmenta-
tion, tumor identification was manually conducted by one
of the radiologists at the H. Lee Moffitt Cancer Center or
another person with expertise in identifying lung tumors.
Upon identification, the tumor was segmented out using
the region-growing algorithm developed by Gu et al. [11].
An expert provided the initial seed point for the algorithm.
The algorithm finds the tumor boundary across the image
sequences. This boundary contains the tumor objects in each
slice of the CT-image sequence. Figure 2(a) shows the initial
CT image, Figure 2(b) shows the segmentation of the lungs,
and Figure 2(c) shows the tumor segmentation after region
growing.

C. IMAGE FEATURE EXTRACTION AND FEATURE LIST
In a previous study by Basu et al. [12], a large set of
2D and 3D image features were evaluated for their effec-
tiveness in building a classifier model to distinguish between
Adenocarcinoma and Squamous-cell Carcinoma. The study
concluded that there was no clear advantage in accuracy
between 2D and 3D features, but 3D features simplified
constructing classifiers. Thus for this study, only 3D image
features were considered.
The image feature extraction algorithms were writ-

ten in C++ and the executables were embedded into
the LuTA software. The image feature extraction was
done on only the tumor objects after segmentation by
seed growing. The features were normalized from −1 to 1.
The major feature types we evaluated are as
follows:

FIGURE 2. Sample CT-image slice. (a) Initial CT image. (b) Lung segmentation. (c) Tumor segmentation.
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• Texture features: Co-occurrence Matrices, Laws
Features.

• Geometric features: Volume, Rectangular Fit,
Compactness, Relative distance measure from pleural
wall.

• Intensity based features: mean brightness measure in
terms of Hounsfield units (HU), a complete list can be
found in the paper by Balagurunathan et al. [13].

III. CLASSIFIERS
The classifiers were selected to test a range of techniques, and
to determine those that provide the best predictive accuracy.
Below is a brief overview of them.

A. DECISION TREE
The decision tree classifier developed by Quinlan [14] con-
sists of leaves, indicating a class, and branches, specifying a
test to be carried out on a single attribute value. Gain-ratio is
the performance measure used to decide what test to use at
an internal node when building the tree. In a decision tree,
a case is classified by starting at the root of the tree and
then traversing through the branches until one reaches a leaf.
At each branch the case is tested and the outcome decides
which subtree to traverse. This process continues until a leaf
node is reached and the class is predicted to be the class
associated with the leaf. The decision tree used in this study
was Weka’s J48, [15], which is an implementation of C4.5
release 8 code developed by Quinlan [16]. The decision tree
was pruned to make it smaller and more generalizable. The
confidence factor for pruning the decision tree was set to 0.25
and the minimum number of cases per leaf was set to 2.

B. RULE BASED CLASSIFICATION
The rule based classifier used was Weka’s JRIP, [15],
an implementation of the RIPPER algorithm by Cohen [17].
This algorithm consists of two stages. In the grow phase,
a rule is extended greedily by adding antecedents until the
rule has perfect accuracy. Then in the prune phase the rule is
pruned by removing antecedent conditions based on a metric
and a pruning data set. Growing and pruning are repeated
while there are positive examples or until the error rate
exceeds 50%. Finally, rules that would add to the description
length are deleted. We used 3 folds, a minimum weight for
instances in a rule set to 2.0, 2 optimization runs and a seed
of 1 for splitting data into growing and pruning sets.

C. NAIVE BAYES
The Naive Bayes classifier, [18], is designed to be used when
features are independent of one another within each class.
However, it has been shown that it often works well even
when the features are not independent. The Naive Bayes clas-
sifier estimates the parameters of a probability distribution
given the class, assuming features are conditionally
independent. It then computes the posterior probability of a

sample belonging to each class and puts the test sample into
the class with the largest posterior probability. The assump-
tion of class-conditional independence greatly simplifies the
training step. Even though the class-conditional indepen-
dence between features does not hold for most data sets,
this optimistic assumption works well in practice. The clas-
sifier labeled Naive Bayes [19] in Weka [15] was used for
this work.

D. SUPPORT VECTOR MACHINES
Support vector machines are based on statistical learning
theory developed by Cortes and Vapnik [20] and have been
shown by Kramer et al. [21], among others, to obtain high
accuracy on a diverse range of application domains such
as the letter, page, pendigit, satimage, and waveform data
sets [22]. SVMs map the input data to a higher dimen-
sional feature space and construct a hyperplane to maximize
the margin between classes. A linear decision surface is
constructed in this feature space. The hyperplane construction
can be reduced to a quadratic optimization problem; subsets
of training patterns that lie on the margin were termed support
vectors by Cortes and Vapnik [20]. The formulation we used
allows for ‘‘errors’’ to be on the wrong side of the decision
border during training. A cost parameter C is multiplied by
the distance the errant example is from the decision boundary.
The larger the value of C the larger the penalty applied in the
learning process. Parameter tuning of the cost parameter was
conducted on training data using a grid search after feature
selection. Different kernels, such as a linear kernel, radial
basis function kernel, and sigmoid kernel, can be chosen
for SVMs. We used the linear kernel with a degree of 3.
The svm type was set to C-SVC (classification) and the
default termination criteria were used. Dehmeshki et al. [23]
used support vector machines effectively on CT-scan image
data of the lungs in a Computer-Assisted Detection (CAD)
system for automated pulmonary nodule detection in thoracic
CT-scan images.We used the support vector machine libSVM
by Chang and Lin [24].

IV. FEATURE SELECTION
Computed image features can have a high correlation with
each other. This property combined with the fact that the
number of features available to us was much greater than
the number of examples required the investigation of fea-
ture selection techniques to improve classification accuracy.
Feature selection was done per fold. Leave-one-out cross
validation (LOO) was conducted on the data. In addition to
feature selection, some of the classifiers’ models do implicit
feature selection. For instance, the decision tree and rule
based classifiers subselect features. Also, support vector
machines weight features. However, Naive Bayes uses all
provided features for classification of the test set. All of
classifiers explore all of the features to build models on the
training set.
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TABLE 1. Features chosen by Relief-f feature selection from all of the available features in a leave one out cross validation. Count is how many times the
feature was chosen with the maximum being 40, which is once in every fold. Feature name identifies the feature, [13].

1) ALL FEATURES
This group includes all 219-image features. No feature selec-
tion was performed, thus providing a baseline for the effec-
tiveness of the feature selection techniques.

2) RELIEF-F
The Relief-F algorithm [25]–[27] is a feature evaluator that
compares an instance’s feature value to the nearest neighbor
of both the same and opposite classes. We used a seed of 1, 10
nearest neighbors, and a ranker search. In this work, Relief-F
was used to assign ranks to each individual feature. We used
the top five and ten features found by the algorithm as shown
in Table 1. The top ranked features measure tumor attachment
to the wall of the lung.

3) CORRELATION BASED FEATURE SELECTION (CFS)
Correlation based Feature Selection (CFS) searches for
features that correlate to a class but do not correlate with each
other. The implementation used was found in WEKA, [15]
and utilized local prediction. We used a greedy stepwise
forward search which generated rankings. CFS discretizes
attributes for nominal classes. The features chosen are shown
in Table 2. We can see that CFS prefers texture features
with a few shape features when compared to the choices

of Relief-F. Relief-F focuses on pleural wall attachment type
features.

4) TEST-RETEST
Test-retest features were determined by comparing the stabil-
ity of features generated after two different scans of the same
patient fifteen minutes apart [13]. If a feature is repeatable
then the two subsequent scans should yield a similar value.
The tumor was segmented both manually by a radiologist and
with a single click ensemble approach. Different thresholds of
correlation were used. Attributes were kept that had a test-
retest concordance measured by a concordance correlation
coefficient (CCC) of above 0.85, 0.90, and 0.95. At each
correlation threshold different attributes were found using the
manual and ensemble segmentation methods as well as the
intersection of both.

V. RESULTS
This section presents the experimental results of predicting
survival.
Table 3 represents the results with the best accuracy

and area under the receiver operating curve from a leave-
one-out analysis using each classifier. With 40 examples,
leave-one-out cross validation is performed by using each
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TABLE 2. Features chosen by CFS feature selection from all of the available features in a leave one out cross validation. Count is how many times the
feature was chosen with the maximum being 40, which is once in every fold. Feature name identifies the feature, [13].

TABLE 3. Summary of the highest survival leave-one-out accuracy and AUC results containing the feature selection method, number of features,
average accuracy, lower quartile accuracy, upper quartile accuracy, and the area under the receiver operating curve. LQ is lower quartile and UQ is
upper quartile.

TABLE 4. Confusion martrix of the top result, 77.5%, using a decision tree classifier with the top five features chosen using Relief-f.

subset of 39 examples to do feature selection and build a
model using the specified classifier, which is tested on the
single held out example. Finally, the accuracy on each held
out example is averaged to find the final leave-one-out
accuracy.

The highest classification accuracy was 77.5% and was
obtained with the decision tree classifier using the top
5 features found by Relief-f. The confusion matrix for this

result can be found in Table 4. The highest AUC was with
10 features, chosen by Relief-f at 0.732 for decision
trees. For both rule learners and the decision trees there
were often few points on the curve. All feature selec-
tion was done per fold. CFS had an occasional failure
selecting test-retest features and those results are omitted.
Also, results that are below 60% accuracy are not listed in
the Tables 5-8.
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TABLE 5. Survival leave-one-out accuracy results doing further feature selection on test-retest features for decision trees containing the feature selection
method, number of features, average accuracy, lower quartile accuracy, upper quartile accuracy, and the area under the receiver operating curve. The top
accuracy and AUC are in bold.

TABLE 6. Survival leave-one-out accuracy results doing further feature selection on test-retest features for jrip containing the feature selection method,
number of features, average accuracy, lower quartile accuracy, upper quartile accuracy, and the area under the receiver operating curve. The top accuracy
and AUC are in bold.

TABLE 7. Survival leave-one-out accuracy results doing further feature selection on test-retest features for naive bayes containing the feature selection
method, number of features, average accuracy, lower quartile accuracy, upper quartile accuracy, and the area under the receiver operating curve. The top
accuracy and AUC are in bold.

TABLE 8. Survival leave-one-out accuracy results doing further feature selection on test-retest features for svm containing the feature selection method,
number of features, average accuracy, lower quartile accuracy, upper quartile accuracy, and the area under the receiver operating curve. The top accuracy
and AUC are in bold.

Tables 5-8 show the results of doing feature selection
on the ‘‘stable and informative’’ features from test-retest
for the classifiers used here. In these tables we see that
while the features selected in the test-retest data sets can

be subselected to provide good classifiers, they did not
result in the most accurate ones. The data set they come
from was more homogenous in scanner type and parame-
ters. Our data set has a different field of view for every
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TABLE 9. Survival leave-one-out accuracy results using only volume containing the feature selection method, number of features,
average accuracy, lower quartile accuracy, upper quartile accuracy, and the area under the receiver operating curve. The top accuracy
and AUC are in bold.

patient and different slice thicknesses, as well as different
scanners.

FIGURE 3. Kaplan-Meier curve of the predicted survival classes using our
best classifier, a decision tree with five features selected using Relief-f,
p = 0.0219.

Figure 3 shows the Kaplan-Meier curve of the sur-
vival of the two predicted classes using our best classifier,
a decision tree with five features selected using Relief-f. With
a p of 0.0219 we reject the null hypothesis that the groups are
the same. Thus, the predicted classes are distinct from one
another when predicting survival groups.

Table 9 shows the results when training with only volume
as a feature. This feature can be useful for differentiating
benign from malignant nodules. Here, its accuracy is too low
to be useful.

VI. CONCLUSIONS
This is the first study we know of to examine the use of image
features from CT scans at the time of diagnosis to predict
survival time on a heterogeneous data set. The accuracy of
77.5% is promising and is the highest known accuracy for this
problem. This result, using five features chosen with Relief-f,
was well above what we were able to achieve using volume
alone. The image features from the CT scans may represent
phenotypes capable of allowing more accurate predictions
than can be made by human analysis alone. The variability of
the imaging parameters is a major concern when developing
predictivemodels using, predominantly, image features. If the
same field of view and slice thickness were used for all
cases, then precision could increase. Clearly, future work
requires new stable image features and perhaps an approach
using an ensemble of classifiers in which different subsets

of features may further improve the accuracy of survival
prediction.
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