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ABSTRACT We consider an M/M/1 multiple vacation queueing system with two types of server vacations.
Type 1 vacation is taken after the server has exhaustively served all the customers in the system, where the
number of customers served is at least one. Type 2 vacation is taken when the server returns from a vacation
and finds no customer waiting. Each type of vacation can be interrupted when the number of customers in the
system reaches two predefined thresholds, where each vacation type has a different threshold. It is assumed
that service times and vacation durations are exponentially distributed with different means. We present a
steady-state solution of the system under two vacation interruption policies.

INDEX TERMS Complete vacation interruption, differentiated vacation system, multiple vacation queueing
system, partial vacation interruption, vacation interruption.

I. INTRODUCTION
A server in a queueing system is said to be on vacation when it
becomes unavailable for a period of time from its customers.
The vacation could occur as a result of many factors like
server breakdown, server maintenance or even when it is
taken away from its primary customers to serve elsewhere.
A lot of work has been done since the idea of vacation queue-
ing system was first introduced by Levy and Yechiali in [1].
Different types of vacation models have been discussed by
researchers likeDoshi in [2] and [3] while books by Takagi [4]
and Tian and Zhang [5] are dedicated to the topic.

In an earlier paper [6], we proposed a single-server mul-
tiple vacation queueing system with differentiated vacations,
the M/M/1/DV queue, in which two types of vacation were
defined. The first type of vacation, type 1 vacation, is taken
after a busy period in which at least one customer is served;
and the second type of vacation, type 2 vacation, is taken
when the server returns from a vacation and finds the queue
empty. The two types of vacation have different durations.

Queueing systems with differentiated vacations can be
used to model many physical systems. One example is a
hospital emergency room operation where a type 1 vacation
is used to set up the room for the next wave of patients;
getting the equipment ready and performing any cleanups and
sterilization. Similarly, a type 2 vacation can be used to give
the emergency room personnel some actual rest, given that the
necessary cleanup and setup preparation for the room have
been done.

In this paper, we extend the model to include vaca-
tion interruption by forcing the server to return from a
vacation when the number of customers in the system
reaches some predefined thresholds. Vacation queueing sys-
tems with vacation interruption can be used to model
many real life situations. For example, a doctor’s break
(or vacation) can be interrupted by certain hospital emer-
gency situations. Similarly, the vacation of an active-duty
soldier can be interrupted by some pressing public defense
needs.
When an interruption of a differentiated vacation queueing

system is desired, it makes sense to interrupt a type 2 vacation
before interrupting a type 1 vacation. Thus, we assume that
a type 2 vacation may be interrupted when the number of
customers in the system reaches the threshold value k2, and
a type 1 vacation can be interrupted when the number of
customers in the system reaches k1 ≥ k2. If we choose to
interrupt the server’s vacation only when a type 2 vacation is
being taken, we refer to this as a partial vacation interruption.
Similarly, if both types of vacation may be interrupted, we
refer to this as a complete vacation interruption. The rationale
for a partial vacation interruption is that if a type 1 vacation
is used for service setup and preparation before service in
the next busy period can begin, then it cannot be interrupted
once it starts. A type 1 vacation may be interrupted only
if it is not used to prepare the service area for the next
wave of customers, and this leads to the complete vacation
model.
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Vacation queueing systems with vacation interruption was
first introduced by Li and Tian in [7] where they stud-
ied the M/M/1 queue with working vacation and vacation
interruption. M/M/1 queue with working vacation was intro-
duced by Servi and Finn in [8]. Li and Tian also considered
the discrete-time GI/Geo/1 queue with working vacations and
vacation interruption in [9]. Li, Tian and Ma analyzed the
GI/M/1 queue with working vacations and vacation inter-
ruption in [10]. Zhang and Hou analyzed the M/G/1 queue
with working vacations and vacation interruption in [11].
Ayyappan, Sekar and Ganapathi considered an M/M/1 retrial
queueing system with vacation interruption which uses an
Erlang-k type distribution in [12]. In [13] Krishnamoorthy
and Sreenivasan considered an M/M/2 queueing system with
heterogeneous servers where one server is always available
and the other goes on a working vacation when there are no
customers in the system. In [14] Sreenivasan, Chakravarthy
and Krishnamoorthy considered a single server queueing
model in which customers arrive according to a Markovian
arrival process. They also introduced a threshold, N , where
1 ≤ N <∞, such that the server offering services (at a lower
rate) during a vacation will have the vacation interrupted the
moment the queue size reaches N .
The paper is organized as follows. The model is described

in Section II. Steady-state analysis of the model is given in
Section III. Numerical results are shown in section IV, and
concluding remarks are made in section V.

II. SYSTEM MODEL
We consider a multiple vacation queueing system where cus-
tomers arrive according to a Poisson process with rate λ.
The time to serve a customer is assumed to be exponentially
distributed with mean 1/µ, where µ > λ. Two types of
vacation may be taken: a type 1 vacation that may be taken
after a busy period in which at least one customer is served,
and a type 2 vacation that is taken after the server returns from
any vacation and finds the system empty. In other words, a
type 2 vacation is taken when the server returns from either
a type 1 vacation or a type 2 vacation and finds the system
empty. Thus, we say that a type 2 vacation is taken after a
busy period of zero duration while a type 1 vacation is taken
after a busy period of non-zero duration. The duration of a
type 1 vacation is assumed to be exponentially distributed
with a mean of 1/γ1, and the duration of a type 2 vacation is
assumed to be exponentially distributed with a mean of 1/γ2.
We define the state of the system by (a, b), where a is
the number of customers in the system and b is defined as
follows:

b =

 0 if the server is actively serving customers
1 if the server is currently on a type 1 vacation
2 if the server is currently on a type 2 vacation

Thus, the state transition-rate diagram of the original model
is shown in Figure 1.

As discussed earlier, we extend themodel by permitting the
server’s vacation to be interrupted. We consider two types of

FIGURE 1. Original M/M/1/DV queue without vacation Interruption.

vacation interruption policies:
1) Partial Interruption Policy: Under this policy, the server

cannot be interrupted when he is on a type 1 vacation;
he can only be interrupted when he is on a type 2
vacation. The server is interrupted when he is on a
type 2 vacation and the number of customers in the
system reaches a predefined threshold, k2.

2) Complete Interruption Policy: In this case, the server’s
vacation may be interrupted when he is on either type
of vacation. The server’s vacation is interrupted when
the number of customers in the system reaches k1
when he is on type 1 vacation and when the number
reaches k2 when he is on type 2 vacation, where we
assume that k1 > k2 becausewewould like the server to
be interrupted earlier when he takes a vacation without
serving a customer than when he takes a vacation after
having a non-zero busy period.

III. ANALYSIS OF THE MODELS
In this section we provide a steady-state analysis of the two
vacation interruption policies. Let Pn,k denote the limiting-
state probability that the system is in state (n, k) where
n denotes the number of customers in the system and k is
the state of the server. Specifically, k = 0 when the server is
actively serving customers, k = 1 when server is on a type 1
vacation and k = 2 when the server is on a type 2 vacation.
In [6] it was shown that

Pnk =



ρ

[
α1β1

(
βn−11 −ρn−1

)
β1−ρ

+
α2β2

(
βn−12 −ρn−1

)
β2−ρ

+ ρn−2

]
P1,0

k = 0

α1β
n
1P1,0 k = 1

α2β
n
2P1,0 k = 2

where

P1,0 =
(1− ρ) (1− β1) (1− β2)

(1− β1)(1− β2)+ α1(1− β2){1− ρ(1− β1)}
+ α2(1− β1){1− ρ(1− β2)}

ρ = λ/µ is the offered load, α1 = µ/(λ+ γ1),
α2 = µγ1/λ(λ+ γ1), β1 = λ/(λ+ γ1) < 1, and
β2 = λ/(λ+ γ2) < 1.
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FIGURE 2. M/M/1/DV queue with partial vacation interruption.

A. ANALYSIS OF THE PARTIAL VACATION
INTERRUPTION POLICY
A partial state transition-rate diagram for the model is shown
in Figure 2. The diagram includes those states near where or at
which a vacation interruption takes place. Specifically, when
the server is on a type 2 vacation and there are k2−1 customers
in the system (i.e., the system is in state (k2 − 1, 2)), the next
customer arrival forces the vacation to end, and a transition to
state (k2, 0) takes place.
Theorem 1: Let T denote the total time a customer spends

in the system, which is also called the delay in the system.
Also, let N denote the number of customers in the system.
Then the mean delay in the system is given by

E[T ] =
E[N ]
λ

where

E[N ] = [H1 + H2 + H3 + H4]P1,0

H1 =

k2−1∑
k=1

kρ

α1β1
(
βk−11 − ρk−1

)
β1 − ρ

+

α2β2

(
βk−12 − ρk−1

)
β2 − ρ

+ ρk−2


=
α1β1ρ

β1 − ρ

[
1+ βk21 (k2β1 − k2 − 1)

(1− β1)2

−
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]
+
α2β2ρ

β2 − ρ

×

[
1+βk22 (k2β2 − k2 − 1)

(1− β2)2
−
1+ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]

+

[
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]

H2 =

∞∑
k=k2

k

ρk−k2A (k2,0)+ α1βk21 ρ
(
β
k−k2
1 − ρk−k2

)
β1 − ρ


= A

(
k2,0

) [ρ + k2 (1− ρ)
(1− ρ)2

]
+
α1β

k2
1 ρ

β1 − ρ

×

[
β1 + k2 (1− β1)

(1− β1)2
−
ρ + k2 (1− ρ)

(1− ρ)2

]

H3 =

∞∑
k=0

kα1βk1 =
α1β1

(1− β1)2

H4 =

k2−1∑
k=0

kα2βk2 = α2

[
β2 − k2β2 + (k2 − 1) βk2−12

(1− β1)2

]

P1,0 =
1

A1 + A2 + A3 + A4

where

A1 =
k2−1∑
k=1

ρ

α1β1
(
βk−11 − ρk−1

)
β1 − ρ

+

α2β2

(
βk−12 − ρk−1

)
β2 − ρ

+ ρk−2


=
α1β1ρ

β1 − ρ

[
1− βk21
1− β1

−
1− ρk2

1− ρ

]

+
α2β2ρ

β2 − ρ

[
1− βk22
1− β2

−
1− ρk2

1− ρ

]
+

[
1− ρk2

1− ρ

]

A2 =
∞∑
k=k2

{
ρk−k2A(k2, 0)+ α1β

k2
1 ρ

[
β
k−k2
1 − ρk−k2

β1 − ρ

]}

=
A
(
k2,0

)
1− ρ

+
α1β

k2
1 ρ

(1− β1) (1− ρ)

A3 =
∞∑
k=0

α1β
k
1 =

α1

1− β1

A4 =
k2−1∑
k=0

Pk,2 =
k2−1∑
k=0

α2β
k
2 =

α2

(
1− βk22

)
1− β2

A(k2, 0)

= ρ

ρα1β1
(
β
k2−2
1 − ρk2−2

)
β1 − ρ

+

ρα2β2

(
β
k2−2
2 − ρk2−2

)
β2 − ρ

+ ρk2−2 + α1β
k2−1
1 + α2β

k2−1
2


The proof of this theorem is given in Appendix 1.

B. ANALYSIS OF THE COMPLETE VACATION
INTERRUPTION POLICY
A partial state transition-rate diagram for the model is shown
in Figure 3. As in Figure 2, the diagram includes those states
near where or at which vacation interruptions take place.
Specifically, when the server is on a type 2 vacation and there
are k2 − 1 customers in the system (i.e., the system is in state
(k2 − 1, 2)), the next customer arrival forces the vacation to
end, and a transition to state (k2, 0) takes place. Similarly,
when the server is on a type 1 vacation and there are k1 − 1
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FIGURE 3. M/M/1/DV queue with complete vacation interruption.

customers in the system (i.e., the system is in state (k1−1, 1)),
the next customer arrival forces the vacation to end, and a
transition to state (k1, 0) takes place.
Theorem 2: The mean delay in the system is given by

E [T ] =
E[N ]
λ

where

E[N ]

= [J1 + J2 + J3 + J4 + J5]P1,0

J1=
k2−1∑
k=1

kρ

α1β1
(
βk−11 − ρk−1

)
β1 − ρ

+

α2β2

(
βk−12 − ρk−1

)
β2 − ρ

+ ρk−2


=
α1β1ρ

β1 − ρ

[
1+ βk21 (k2β1 − k2 − 1)

(1− β1)2

−
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]
+
α2β2ρ

β2 − ρ

[
1+ βk22 (k2β2 − k2 − 1)

(1− β2)2

−
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]
+

[
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]
J2=

k1−1∑
k=k2

kPk,0

=

k1−1∑
k=k2

k

ρk−k2A (k2, 0)+ α1βk21 ρ
(
β
k−k2
1 − ρk−k2

)
β1 − ρ


=A (k2, 0)

[
ρ − k1ρk1 + (k1 − 1) ρk1+1

(1− ρ)2
+
k2
(
1− ρk2

)
1− ρ

]

+
α1β

k2
1 ρ

β1 − ρ

β1 − k1βk11 + (k1 − 1) βk1+11

(1− β1)2
+

k2
(
1− βk11

)
1− β1

−
ρ − k1ρk1 + (k1 − 1) ρk1+1

(1− ρ)2
−
k2
(
1−ρk2

)
1−ρ

]

J3=
∞∑
k=k1

kρk−k1A (k1, 0) = A (k1, 0)
ρ + k1 (1− ρ)

(1− ρ)2

J4=
k1−1∑
k=0

kPk,1 =
k1−1∑
k=0

kα1βk1

= α1

[
β1 − k1β

k1
1 + (k1 − 1) βk1+11

(1− β1)2

]

J5=
k2−1∑
k=0

kPk,2 =
k2−1∑
k=0

kα2βk2

= α2

[
β2 − k2β

k2
2 + (k2 − 1) βk2+12

(1− β2)2

]
P1,0

=
1

B1 + B2 + B3 + B4 + B5

where

B1 =
k2−1∑
k=1

ρ

α1β1
(
βk−11 − ρk−1

)
β1 − ρ

+

α2β2

(
βk−12 − ρk−1

)
β2 − ρ

+ ρk−2


=
α1β1ρ

β1 − ρ

[
1− βk21
1− β1

−
1− ρk2

1− ρ

]

+
α2β2ρ

β2 − ρ

[
1− βk22
1− β2

−
1− ρk2

1− ρ

]
+

[
1− ρk2

1− ρ

]

B2 =
k1−1∑
k=k2

ρk−k2A(k2, 0)+ α1β
k2
1 ρ

[
β
k−k2
1 − ρk−k2

β1 − ρ

]

= A(k2, 0)
[
1− ρk1

1− ρ

]
+
α1β

k2
1 ρ

(β1 − ρ)

[
1− βk21
1− β1

−
1− ρk2

1− ρ

]

B3 =
∞∑
k=k1

ρk−k1A (k1, 0) =
A (k1, 0)
1− ρ

B4 =
k1−1∑
k=0

α1β
k
1 = α1

[
1− βk11
1− β1

]

B5 =
k2−1∑
k=0

α2β
k
2 = α2

[
1− βk22
1− β2

]

A (k1, 0) = ρ

{
ρk1−k2−1A(k2, 0)

+α1β
k2
1 ρ

[
β
k1−k2−1
1 − ρk1−k2−1

β1 − ρ

]
+α1β

k1−1
1

}

The proof of this theorem is given in Appendix 2.
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FIGURE 4. Mean system delay versus offered load for γ1 = 0.1 and γ2 = 1.

FIGURE 5. Mean system delay versus offered load for γ1 = 1 and γ2 = 1.

IV. NUMERICAL RESULTS
As in the original model in [6], we make the following
assumptions: µ = 1, which implies that ρ = λ/µ = λ.

Also,

α1 =
µ

λ+ γ1
=

1

ρ
(
1+ γ1

/
ρ

) = 1
ρ + γ1

α2 =
(γ1
λ

)
α1 =

γ1

ρ2
(
1+ γ1

/
ρ

) = γ1

ρ (ρ + γ1)

β1 =
λ

λ
(
1+ γ1

/
λ

) = 1

1+ γ1
/
λ
=

ρ

ρ + γ1

β2 =
λ

λ
(
1+ γ2

/
λ

) = 1

1+ γ2
/
λ
=

ρ

ρ + γ2
.

Wefirst consider the effect of different thresholds on themean
time spent in the system.

A. PARTIAL VACATION INTERRUPTION POLICY
In this case only a type 2 vacation can be interrupted and
this occurs when the number of customers in the system
reaches k2.We consider the following values: k2 = 5, 10, 20
and 50 in three different cases: when type 1 vacation duration

FIGURE 6. Mean system delay versus offered load for γ1 = 1 and γ2 = 0.1.

FIGURE 7. Mean system delay versus offered load for γ1 = 0.1, γ2 = 1
and k2 = 5.

is longer than type 2 vacation, that is, γ1 < γ2; when type 1
vacation is shorter than type 2 vacation, that is, γ1 > γ2;
and when both vacation types are of the same duration, that
is γ1 = γ2. For comparison, we have included the results
from original model with the label ‘‘none’’ in the legend,
which means that the server had no interruption while on
vacation.
Figures 4 and 5 show that there is no significant impact

to the mean delay as k2 is varied. However, the value of
the expected delay is higher in Figure 4 when type 1 vaca-
tion is much longer than type 2 vacation compared to the
case when both vacation durations are the same in Figure 5.
Thus, when γ1 ≤ γ2, interrupting a vacation of longer or
equal duration does not have a significant impact on the
mean delay. However, in Figure 6 where the type 2 vacation
duration is much longer than the type 1 vacation duration
we notice that the mean delay decreases as k2 decreases.
This makes sense since interrupting a longer vacation has
more impact on the mean delay than interrupting a shorter
vacation.
Observe that the behavior of the system at very high value

of ρ tends to be identical because at that load level the server
is more likely to be busy serving customers than to be on any
type of vacation.
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FIGURE 8. Mean system delay versus offered load for γ1 = 1, γ2 = 1 and
k2 = 5.

FIGURE 9. Mean system delay versus offered load for γ1 = 1, γ2 = 0.1
and k2 = 5.

B. COMPLETE VACATION INTERRUPTION POLICY
In this case both types of vacation can be interrupted once
the number of customers in the system reaches k1 and k2
for type 1 vacation and type 2 vacation, respectively, where
k1 > k2. We consider the following values: k2 = 5 and
k1 = 10, 20, 50 and 100 in three different cases: when type 1
vacation duration is longer than type 2 vacation, that is,
γ1<γ2;when both types of vacation are of the same duration,
that is, γ1 = γ2; and when type 1 vacation duration is shorter
than type 2 vacation, that is, γ1 > γ2. We also include the
results from the originalmodel where no vacation interruption
occurs with the label ‘‘none’’ in the legend.

When a type 1 vacation duration is longer than that of
a type 2 vacation, Figure 7 shows that E[T ] decreases as
k1 decreases. Thus, the mean delay increases as k1 increases
with the limiting case being when there is no vacation inter-
ruption. In Figure 8, where both types of vacation duration
are the same, there is no significant improvement in the mean
delay with varying k1. Finally, Figure 9 shows the result when
type 2 vacations are longer than type 1 vacations. In this case
there is a significant reduction in the mean delay at medium to
high values of ρ.This is due to the fact that we are interrupting
a vacation whose duration is longer than the other vacation
type.

FIGURE 10. Mean system delay versus offered load for γ1 = 0.1, γ2 = 1
and k1 = 10.

FIGURE 11. Mean system delay versus offered load for γ1 = 1, γ2 = 1 and
k1 = 10.

FIGURE 12. Mean system delay versus offered load for γ1 = 1, γ2 = 0.1
and k1 = 10.

Figures 10, 11 and 12 show the performance of the sys-
tem for different values of k2 when k1 = 10. Similarly,
Figures 13, 14 and 15 show the performance of the system
for different values of k2 when k1 = 50. As can be seen from
the figures, early interruption of both types of vacation has a
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FIGURE 13. Mean system delay versus offered load for γ1 = 0.1, γ2 = 1
and k1 = 50.

FIGURE 14. Mean system delay versus offered load for γ1 = 1, γ2 = 1 and
k1 = 50.

FIGURE 15. Mean system delay versus offered load for γ1 = 1, γ2 = 0.1
and k1 = 50.

significant impact on the system delay. Also, k2 has the most
significant impact on the system delay when type 2 vacation
duration is much greater than of type 1 vacation.

V. CONCLUSION
We have considered an M/M/1 multiple vacation queueing
system with two types of vacations, which we defined as
type 1 vacation and type 2 vacation. A type 1 vacation is taken
when the server has served at least one customer and there is
no other customer in the system; that is, it is taken after a
busy period that involves the service of at least one customer.
A type 2 vacation is takenwhen the server returns from a vaca-
tion and there is no customer waiting to be served. In addition
to these differentiated vacations the server’s vacation can be
interrupted when the number of waiting customers reaches
some predefined thresholds k1, when the server is on a type 1
vacation, and k2, when the server is on a type 2 vacation,
where it is assumed that k1 > k2.
We also defined two types of vacation interruptions:

partial vacation interruption in which the server can be inter-
rupted only during a type 2 vacation, and complete vacation
interruption in which the server can be interrupted during
any vacation. We carried out the steady-state analysis of the
system to investigate the impact vacation interruptions have
on the system for different values of vacation durations and
different values of k1 and k2 compared to the case of no
vacation interruption.
The results indicate that for partial interruption, the mean

time a customer spends in the system, which we define as
the mean system delay, is sensitive to early vacation termi-
nation when type 2 vacation duration is much larger than
that of type 1. Also as the threshold increases, the vacation
termination has no significant advantage over when there was
no termination. For complete interruption, the results also
show that the mean system delay is greatly impacted by vaca-
tion termination when type 2 vacation duration is larger than
that type 1, modestly impacted by vacation termination when
type 1 vacation duration is larger than that of type 2. However,
when type 1 vacation duration is equal to that of type 2,
the system is not very sensitive to vacation interruptions.
Thus, the greatest improvement in mean system delay tends
to be obtained when the vacation that has a longer duration is
interrupted very early.

APPENDIX 1
From global balance in Figure 1 we have that

µP1,0 = (λ+ γ1)P0,1
γ1‘P0,1 = λP0,2
λPk−1,2 = (λ+ γ2)Pk,2 k = 1, 2, . . . , k2 − 1

Thus,

P0,1 =
µ

λ+ γ1
P1,0 = α1P1,0

P0,2 =
γ1

λ
P0,1 =

γ1

λ
α1P1,0 = α2P1,0

Pk,2 =
λ

λ+ γ2
Pk−1,2 k = 1, 2, . . . , k2 − 1
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where

α1 =
µ

λ+ γ1

α2 =
γ1

λ
α1 =

γ1µ

λ (λ+ γ1)

From this we obtain,

P1,2 =
λ

λ+ γ2
P0,2

P2,2 =
λ

λ+ γ2
P1,2 =

(
λ

λ+ γ2

)2

P0,2

...

Pk,2 =
(

λ

λ+ γ2

)k
P0,2 = α2βk2P1,0 k = 1, 2, . . . , k2 − 1

where

β2 =
λ

λ+ γ2

Similarly, from global balance we have that

λPk,1 = (λ+ γ1)Pk+1,1 k = 0, 1, . . .

From this we obtain

P1,1 =
λ

λ+ γ1
P0,1 = β1P0,1 = α1β1P1,0

P2,1 =
λ

λ+ γ1
P1,1 =

(
λ

λ+ γ1

)2

P1,1 = α1β21P1,0

...

Pk,1 =
λ

λ+ γ1
Pk−1,1 =

(
λ

λ+ γ1

)k
P0,1 = βk1

P0,1 = α1βk1P1,0 k = 0, 1, . . .

where

β1 =
λ

λ+ γ1

Also, from local balance, we obtain

λPk,1 + λPk,2 + λPk,0 = µPk+1,0 k = 1, 2, . . . , k2 − 1

That is,

Pk+1,0 =
λ

µ
(Pk,0 + Pk,1 + Pk,2) = ρ(Pk,0 + Pk,1 + Pk,2)

k = 1, 2, . . . , k2 − 1

where ρ = λ/µ < 1. From this we obtain the following:

P2,0 = ρ(P1,0 + P1,1 + P1,2) = ρ {1+ α1β1 + α2β2}P1,0

Similarly,

P3,0 = ρ(P2,0 + P2,1 + P2,2)

= ρ
{
ρ (1+ α1β1 + α2β2)+ α1β21 + α2β

2
2

}
P1,0

P4,0 = ρ(P3,0 + P3,1 + P3,2)

= ρ
{
ρ2 (1+ α1β1 + α2β2)+ ρ

(
α1β

2
1 + α2β

2
2

)
+α1β

3
1 + α2β

3
2

}
P1,0

From this we obtain

Pk,0 = ρ

α1β1
(
βk−11 − ρk−1

)
β1 − ρ

+

α2β2

(
βk−12 − ρk−1

)
β2 − ρ

+ ρk−2

P1,0
k = 1, 2, . . . , k2 − 1

This implies that β1 > ρ, and β2 > ρ. That is,

λ

λ+ γ1
>
λ

µ
⇒ µ > λ+ γ1

and

λ

λ+ γ2
>
λ

µ
⇒ µ > λ+ γ2

Now, from local balance we have that

µPk2,0 = λ
(
Pk2−1,0 + Pk2−1,1 + Pk2−1,2

)
⇒ Pk2,0 = ρ

(
Pk2−1,0 + Pk2−1,1 + Pk2−1,2

)
That is,

Pk2,0 = ρ


ρα1β1

(
β
k2−2
1 − ρk2−2

)
β1 − ρ

+

ρα2β2

(
β
k2−2
2 − ρk2−2

)
β2 − ρ

+ ρk2−2


+α1β

k2−1
1 + α2β

k2−1
2

P1,0

= A(k2, 0)P1,0

where

A(k2, 0) = ρ

ρα1β1
(
β
k2−2
1 − ρk2−2

)
β1 − ρ

+

ρα2β2

(
β
k2−2
2 − ρk2−2

)
β2 − ρ

+ ρk2−2 + α1β
k2−1
1 + α2β

k2−1
2


Finally, from local balance in Figure 2 we obtain

λPk,0 + λPk,1 = µPk+1,0k = k2, k2 + 1, . . .

Thus,

Pk+1,0 = ρ
(
Pk,0 + Pk,1

)
k = k2, k2 + 1, . . .
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From this we have that

Pk2+1,0 = ρ
(
Pk2,0 + Pk2,1

)
=

(
ρA(k2, 0)+ ρα1β

k2
1

)
P1,0

Pk2+2,0 = ρ
(
Pk2+1,0 + Pk2+1,1

)
= ρ

{
ρ
(
A(k2, 0)+ α1β

k2
1

)
+ α1β

k2+1
1

}
P1,0

= ρ
{
ρA(k2, 0)+ ρα1β

k2
1 + α1β

k2+1
1

}
P1,0

= ρ
{
ρA(k2, 0)+ α1β

k2
1 (ρ + β1)

}
P1,0

=

{
ρ2A(k2, 0)+ ρα1β

k2
1

[
β21 − ρ

2

β1 − ρ

]}
P1,0

Pk2+3,0 = ρ
(
Pk2+2,0 + Pk2+2,1

)
= ρ

[
ρ
{
ρ
(
A(k2, 0)+ α1β

k2
1

)
+ α1β

k2+1
1

}
+α1β

k2+2
1

]
P1,0

= ρ
[
ρ2A(k2, 0)+ ρ2α1β

k2
1 + ρα1β

k2+1
1

+α1β
k2+2
1

]
P1,0

= ρ
[
ρ2A(k2, 0)+ α1β

k2
1

{
ρ2 + ρβ1 + β

2
1

}]
P1,0

=

{
ρ3A(k2, 0)+ ρα1β

k2
1

[
β31 − ρ

3

β1 − ρ

]}
P1,0

In general,

Pk,0 =

{
ρk−k2A(k2, 0)+ α1β

k2
1

[
β
k−k2
1 − ρk−k2

β1 − ρ

]}
P1,0

k = k2, k2 + 1, k2 + 2, . . .

Finally, from the law of total probability we have that

∞∑
k=1

Pk,0 +
∞∑
k=0

Pk,1 +
k2−1∑
k=0

Pk,2

=

k2−1∑
k=1

Pk,0 +
∞∑
k=k2

Pk,0 +
∞∑
k=0

Pk,1 +
k2−1∑
k=0

Pk,2 = 1

This gives

k2−1∑
k=1

ρ

[
α1β1

(
βk−11 −ρk−1

)
β1−ρ

+
α2β2

(
βk−12 −ρk−1

)
β2−ρ

+ ρk−2

]
+

∞∑
k=k2

ρk−k2A(k2, 0)

+α1β
k2
1 ρ

[
β
k−k2
1 −ρk−k2

β1−ρ

]
+

∞∑
k=0

α1β
k
1 +

k2−1∑
k=0

α2β
k
2


P1,0 = 1

Let

A1 =
k2−1∑
k=1

ρ

α1β1
(
βk−11 − ρk−1

)
β1 − ρ

+

α2β2

(
βk−12 − ρk−1

)
β2 − ρ

+ ρk−2



=
α1β1ρ

β1 − ρ

[
1− βk21
1− β1

−
1− ρk2

1− ρ

]

+
α2β2ρ

β2 − ρ

[
1− βk22
1− β2

−
1− ρk2

1− ρ

]
+

[
1− ρk2

1− ρ

]

A2 =
∞∑
k=k2

{
ρk−k2A(k2, 0)+ α1β

k2
1 ρ

[
β
k−k2
1 − ρk−k2

β1 − ρ

]}

=
A
(
k2,0

)
1− ρ

+
α1β

k2
1 ρ

(1− β1) (1− ρ)

A3 =
∞∑
k=0

α1β
k
1 =

α1

1− β1

A4 =
k2−1∑
k=0

Pk,2 =
k2−1∑
k=0

α2β
k
2 =

α2

(
1− βk22

)
1− β2

Thus,

P1,0 =
1

A1 + A2 + A3 + A4
Also, the expected number of customers in the system is
given by

E[N ]

=

k2−1∑
k=1

kPk,0+
∞∑
k=k2

kPk,0+
∞∑
k=0

kPk,1+
k2−1∑
k=0

kPk,2

=



k2−1∑
k=1

kρ

[
α1β1

(
βk−11 −ρk−1

)
β1−ρ

+
α2β2

(
βk−12 −ρk−1

)
β2−ρ

+ρk−2

]

+

∞∑
k=k2

k

[
ρk−k2A

(
k2,0

)
+
α1β

k2
1 ρ

(
β
k−k2
1 −ρk−k2

)
β1−ρ

]
+

∞∑
k=0

kα1βk1+
k2−1∑
k=0

kα2βk2


P1,0

Let

H1 =

k2−1∑
k=1

kρ

α1β1
(
βk−11 − ρk−1

)
β1 − ρ

+

α2β2

(
βk−12 − ρk−1

)
β2 − ρ

+ ρk−2


=
α1β1ρ

β1 − ρ

[
1+ βk21 (k2β1 − k2 − 1)

(1− β1)2

−
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]

+
α2β2ρ

β2 − ρ

[
1+ βk22 (k2β2 − k2 − 1)

(1− β2)2

−
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]

+

[
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]
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H2 =

∞∑
k=k2

k

ρk−k2A (k2,0)+ α1βk21 ρ
(
β
k−k2
1 − ρk−k2

)
β1 − ρ


= A

(
k2,0

) [ρ + k2 (1− ρ)
(1− ρ)2

]
+
α1β

k2
1 ρ

β1 − ρ

[
β1 + k2 (1− β1)

(1− β1)2
−
ρ + k2 (1− ρ)

(1− ρ)2

]
H3 =

∞∑
k=0

kα1βk1 =
α1β1

(1− β1)2

H4 =

k2−1∑
k=0

kα2βk2 = α2

[
β2 − k2β2 + (k2 − 1) βk2−12

(1− β1)2

]
Then we obtain

E[N ] = [H1 + H2 + H3 + H4]P1,0

From Little’s formula [15] we obtain the expected delay in
the system as

E[T ] =
E[N ]
λ

This completes the proof of Theorem 1.

APPENDIX II
From Figure 3, modifications to equations for the partial
vacation interruption policy yield the following results:

λPk,0 + λPk,1 = µPk+1,0 k = k2, k2 + 1, . . . , k1 − 1 (1)

λPk,0 = µPk+1,0 k = k1, k1 + 1, . . . (2)

(λ+ γ1)P0,1 = µP1,0 (3)

(λ+ γ1)Pk,1 = λPk−1,1 k = 1, 2, . . . , k1 − 1 (4)

From equations (3) and (4) we obtain

P0,1 =
µ

λ+ γ1
P1,0 = α1P1,0

P1,1 =
λ

λ+ γ1
P0,1 = β1P0,1 = α1β1P1,0

P2,1 =
λ

λ+ γ1
P1,1 =

(
λ

λ+ γ1

)2

P1,1 = α1β21P1,0

...

Pk,1 =
λ

λ+ γ1
Pk−1,1 =

(
λ

λ+ γ1

)k
P0,1 = βk1P0,1

= α1β
k
1P1,0 k = 0, 1, . . . , k1 − 1

From (2) we obtain

Pk,0 =
(
λ

µ

)k−k1
Pk1,0 = ρ

k−k1Pk1,0k = k1, k1 + 1, . . .

Thus,

∞∑
k=k1

Pk,0 = Pk1,0
∞∑
k=k1

ρk−k1 =
Pk1,0
1− ρ

From (1) we have that

Pk2+1,0 =
λ

µ

(
Pk2,0 + Pk2,1

)
= ρ

(
Pk2,0 + Pk2,1

)
Pk2+2,0 = ρ(Pk2+1,0 + Pk2+1,1)

= ρ
{
ρ(Pk2,0 + Pk2,1)+ Pk2+1,1

}
As in the partial vacation interruption case, it can be shown
that

Pk,0 =

{
ρk−k2A(k2, 0)+ α1β

k2
1

[
β
k−k2
1 − ρk−k2

β1 − ρ

]}
P1,0

k = k2, k2 + 1, k2 + 2, . . . , k1 − 1

From (2) we obtain

Pk,0 =
(
λ

µ

)k−k1
Pk1,0 = ρ

k−k1Pk1,0k = k1, k1 + 1, . . .

and

µPk1,0 = λPk1−1,0 + λPk1−1,1
⇒ Pk1,0 = ρPk1−1,0 + ρPk1−1,1

which means that

Pk1,0 = ρ

{
ρk1−k2−1A(k2, 0)+ α1β

k2
1 ρ

×

[
β
k1−k2−1
1 − ρk1−k2−1

β1 − ρ

]
+ α1β

k1−1
1

}
P1,0

= A (k1, 0)P1,0

where

A(k1, 0) = ρ

{
ρk1−k2−1A(k2, 0)+ α1β

k2
1 ρ

×

[
β
k1−k2−1
1 − ρk1−k2−1

β1 − ρ

]
+ α1β

k1−1
1

}
Thus

Pk,0 = ρk−k1A(k1, 0)Pk1,0 k = k1, k1 + 1, . . .

Finally, from the law of total probability we have that

∞∑
k=1

Pk,0 +
k1−1∑
k=0

Pk,1 +
k2−1∑
k=0

Pk,2 =
k2−1∑
k=1

Pk,0 +
k1−1∑
k=k2

Pk,0

+

∞∑
k=k1

Pk,0 +
k1−1∑
k=0

Pk,1 +
k2−1∑
k=0

Pk,2 = 1

That is,

k2−1∑
k=1

ρ

[
α1β1

(
βk−11 −ρk−1

)
β1−ρ

+
α2β2

(
βk−12 −ρk−1

)
β2−ρ

+ ρk−2

]
+

k1−1∑
k=k2

ρk−k2A (k2, 0)+ α1β
k2
1 ρ

[
β
k−k2
1 −ρk−k2

β1−ρ

]
+

∞∑
k=k1

ρk−k1A(k1, 0)+
k1−1∑
k=0

α1β
k
1 +

k2−1∑
k=0

α2β
k
2


P1,0 = 1
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Let

B1 =
k2−1∑
k=1

ρ

α1β1
(
βk−11 − ρk−1

)
β1 − ρ

+

α2β2

(
βk−12 − ρk−1

)
β2 − ρ

+ ρk−2


=
α1β1ρ

β1 − ρ

[
1− βk21
1− β1

−
1− ρk2

1− ρ

]

+
α2β2ρ

β2 − ρ

[
1− βk22
1− β2

−
1− ρk2

1− ρ

]
+

[
1− ρk2

1− ρ

]

B2 =
k1−1∑
k=k2

ρk−k2A(k2, 0)+ α1β
k2
1 ρ

[
β
k−k2
1 − ρk−k2

β1 − ρ

]

= A (k2, 0)
[
1− ρk1

1− ρ

]
+

α1β
k2
1 ρ

(β1 − ρ)

[
1− βk21
1− β1

−
1− ρk2

1− ρ

]

B3 =
∞∑
k=k1

ρk−k1A (k1, 0) =
A (k1, 0)
1− ρ

B4 =
k1−1∑
k=0

α1β
k
1 = α1

[
1− βk11
1− β1

]

B5 =
k2−1∑
k=0

α2β
k
2 = α2

[
1− βk22
1− β2

]
Thus, we obtain

P1,0 =
1

B1 + B2 + B3 + B4 + B5
Also, themean number of customers in the system is given by:

E[N ]

=

k2−1∑
k=1

kPk,0 +
k1−1∑
k=k2

kPk,0 +
∞∑
k=k1

kPk,0

+

k1−1∑
k=0

kPk,1 +
k2−1∑
k=0

kPk,2

=



k2−1∑
k=1

kρ

[
α1β1

(
βk−11 −ρk−1

)
β1−ρ

+
α2β2

(
βk−12 −ρk−1

)
β2−ρ

+ ρk−2

]

+

k1−1∑
k=k2

k

[
ρk−k2A (k2, 0)+

α1β
k2
1 ρ

(
β
k−k2
1 −ρk−k2

)
β1−ρ

]
+

∞∑
k=k1

kρk−k1A (k1, 0)+
k1−1∑
k=0

kα1βk1 +
k2−1∑
k=0

kα2βk2


P1,0

Let

J1 =
k2−1∑
k=1

kρ

α1β1
(
βk−11 − ρk−1

)
β1 − ρ

+

α2β2

(
βk−12 − ρk−1

)
β2 − ρ

+ ρk−2



=
α1β1ρ

β1 − ρ

[
1+ βk21 (k2β1 − k2 − 1)

(1− β1)2

−
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]

+
α2β2ρ

β2 − ρ

[
1+ βk22 (k2β2 − k2 − 1)

(1− β2)2

−
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]
+

[
1+ ρk2 (k2ρ − k2 − 1)

(1− ρ)2

]
J2 =

k1−1∑
k=k2

kPk,0

=

k1−1∑
k=k2

k

ρk−k2A (k2, 0)+ α1βk21 ρ
(
β
k−k2
1 − ρk−k2

)
β1 − ρ


= A (k2, 0)

[
ρ − k1ρk1 + (k1 − 1) ρk1+1

(1− ρ)2
+
k2
(
1− ρk2

)
1− ρ

]

+
α1β

k2
1 ρ

β1 − ρ

[
β1 − k1β

k1
1 +(k1 − 1)βk1+11

(1− β1)2
+
k2(1− β

k1
1 )

1− β1

−
ρ − k1ρk1 + (k1 − 1)ρk1+1

(1− ρ)2

−
k2
(
1− ρk2

)
1− ρ

]

J3 =
∞∑
k=k1

kρk−k1A(k1, 0) = A(k1, 0)
ρ + k1(1− ρ)

(1− ρ)2

J4 =
k1−1∑
k=0

kPk,1 =
k1−1∑
k=0

kα1βk1

= α1

[
β1 − k1β

k1
1 + (k1 − 1)βk1+11

(1− β1)2

]

J5 =
k2−1∑
k=0

kPk,2 =
k2−1∑
k=0

kα2βk2

= α2

[
β2 − k2β

k2
2 + (k2 − 1)βk2+12

(1− β2)2

]
Then we obtain

E[N ] = [J1 + J2 + J3 + J4 + J5]P1,0

From Little’s formula [15] we obtain the expected delay in
the system as

E[T ] =
E[N ]
λ

This completes the proof of Theorem 2.
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