IEEE

The journal for rapid open access publishing

SPECIAL SECTION ON TOWARD UBIQUITOUS REAL-TIME RADIO PROPAGATION MODELING: THE

EXPLOITATION OF CYBER RESOURCES, GPU AND FAST AND ACCURATE EM ALGORITHMS

Received October 1, 2014, accepted October 15, 2014, date of publication November 13, 2014, date of current version January 23, 2015.

Digital Object Identifier 10.1109/ACCESS.2014.2370758

Using 3-D Video Game Technology

in Channel Modeling

ANDRES NAVARRO CADAVID!, (Senior Member, IEEE),

DINAEL GUEVARA IBARRA?, (Senior Member, IEEE), AND

SEBASTIAN LONDONO SALCEDO’, (Student Member, IEEE)

"Universidad Icesi, Cali 760031, Colombia
2Universidad Francisco de Paula Santander, Cicuta 540001, Colombia

Corresponding author: A. N. Cadavid (anavarro@icesi.edu.co)

ABSTRACT We present here a paper on the potential use of game engines and graphic technologies for
3-D ray-based technologies used to simulate multipath channels. Our approach harnesses the power of
video game development engines to provide an urban 3-D ray-based model for exploration and analysis of
multipath channels for a wide frequency range in different complex outdoor and indoor scenarios. Game
technologies offer a variety of options for exploiting the capabilities of graphical processing units and
provide high performance in computing time with accurate results for channel modeling in current and future
wireless technologies. We show the usefulness of this approach using our 3-D ray-based system in different

applications.

INDEX TERMS Ray-tracing, game engines, graphic technologies, channel estimation.

I. INTRODUCTION

Ray-tracing (RT) and ray-launching (RL) techniques are
widely used to obtain multipath channel parameters in a
variety of frequency ranges and operational outdoor and
indoor environments. The multipath channel model is the
representation of a complex phenomenon involving several
mechanisms of interaction between the radio wave and the
environment [1]. Different RL techniques allow the charac-
terization of the radio channel in time and spatial domains
for the design and implementation of mobile radio [2] and
broadcasting systems [3], [4]. Besides, this multidimensional
characterization can be used theoretically to evaluate the
performance of the multiple input multiple output (MIMO)
technologies and orthogonal-frequency division multiplex-
ing (OFDM) transmission scheme which have been taken into
consideration in wireless systems development.

In principle, there are two ways to derive a model of the
wireless channel. One possibility is to use extensive measure-
ment campaigns, which are time-consuming and expensive.
The other is to use models capable of simulating the actual
multipath propagation process, such as ray-launching and
ray-tracing models [1].

The application of RL techniques to derive multipath chan-
nel parameters has two important features. The first is the
flexibility of simulation for a wide frequency range and large
numbers of scenarios. The other is its ability to identify

the different paths in the propagation channel with their
main individual characteristics, limited only by the compu-
tational capacity available. These properties give researchers
the opportunity to validate new techniques or technologies
under different scenarios and at specific frequencies, or to
understand more deeply the behavior of the radio channel
when searching for new techniques to their performance.
However, ray launching has some limitations or drawbacks
associated with the definition of the scenario. For higher
accuracy, a more detailed scenario is required with precise
descriptions of the objects in the scenario and a large number
of objects like trees, urban furniture, etc. The implementation
of such complex scenarios with a large number of objects
has some disadvantages: first, they entail large databases
because of the level of detail and number of objects with their
electromagnetic characteristics; second, high computational
complexity and increased computational effort because of
the considered effects of reflections, diffractions and scatter-
ing; third, increased computational effort because of a high
angular resolution and a large number of iterations. In typical
ray-based tools the number of iterations is limited to five
combinations in total, because of the computational com-
plexity. However, in complex environments, both indoor and
outdoor, it is necessary to increase the number of interactions
and therefore the computational complexity and time required
for doing calculations. Typically, the number of diffractions

2169-3536 © 2014 IEEE. Translations and content mining are permitted for academic research only.

1652 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 2, 2014

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

A. N. Cadavid et al.: Using 3-D Video Game Technology

IEEE

The journal for rapid open access publishing

is limited to two, also because of the computational effort
required, but for the most reliable information about the
power delay profile, it is necessary to increment the number
of diffractions considered in new models.

On the other hand, one of the main limitations of
ray-tracing systems is the lack of interoperability between
different scenarios, which makes the comparison of results
between different ray-based tools difficult.

All these requirements mean a demand for the comput-
ing power necessary to make calculations in an adequate
time lapse. GPU technology, used in recent years to develop
high performance applications in scientific fields and general
purposes [6], [7], is a very good candidate for ray- based
models and for channel modeling using different numerical
techniques, as has been demonstrated by the different applica-
tions existing in the field. Initially GPU was developed simply
to accelerate graphic processing, but now the most advanced
graphic cards have hundreds, even thousands, of processing
cores and several gigabytes in their memory, and they are used
to implement parallel processing algorithms to achieve high
performance. Some authors have used GPU for radio propa-
gation simulations and some RF simulations [7]; however, the
use of GPU necessitates programs using specific languages
and techniques, as in the case of NVIDIA CUDA [15] and
OpenCL [25].

Most of the processing capabilities and physics effects
implemented in graphics cards are quite suitable for wireless
channel simulation, because most of the illumination and
shooting effects highly optimized in most common games
are basically the same in concept as the physical phenomena
required for radio channel estimation and propagation. This
fact and the physical effects implemented in game engines
are perhaps the main motivation for this article.

In order to avoid interoperability issues between the differ-
ent gaming platforms, most game development is based on the
use of game engines. Game engines are a suitable platform
for providing the flexibility, extensibility and reusability of
the algorithms, method and techniques which facilitate the
efficient use of GPUs in managing large databases of real
models of complex environments and the parallel process-
ing of ray-based techniques [6]. Additionally, game engines
typically use standard file formats for the definition of scenar-
ios, facilitating the information interchange of 3D scenarios
between different tools.

Currently, there are more than 20 game engines [26],
used mainly for the development of games for different
OS platforms like Windows, IOS, Android or game consoles
like xBox or similar. Another use of game engines is the
simulation of real environments to allow a user to experiment
many times with the state of a mission or task, as in a game.
This kind of application is known as a serious game.

In the case of ray-based channel simulation, it is necessary
to have 3D models with all the points, objects and textures
needed to be imported or exported in different systems.

In the present article, we discuss the potential of game
technologies, especially game engines for multipath channel

VOLUME 2, 2014

estimation in complex urban and indoor scenarios. We will
show some simulation results obtained with a game-based
tool for RL simulation, in order to illustrate the application
of the game engine. For this purpose, we use the algorithms,
methods and techniques developed in a game engine and the
potential and capabilities of a GPU.

This paper is organized as follows. In section II we briefly
relate the GPU evolution; in section III we discuss game
engines and graphics technology; in section IV we describe
some applications of game technologies to radio propagation
and channel modeling; in section V we present a proposal for
a 3D file format for interoperability between 3D ray-based
tools; in section VI we describe some scenarios employed to
test a game engine ray-based tool; in section VII we describe
new graphics technologies for real-time radio propagation
and channel modeling; section VIII concludes.

Il. GPU EVOLUTION

According to [21], the development of GPU technology
started with the first graphics accelerators, which were
developed by NIVIDIA (Rival28 in 1997) and ATI in the
mid-1990s. Since that time, evolution has been fast and has
given more graphics power following Moore’s law. The first
GPU developed by NVIDIA was the GeForce 256, launched
in 1999, which contains 3 million transistors. The current
GPU from this manufacturer, the Fermi, has 3 billion tran-
sistors and the latest NVIDIA chip, the Kepler processor,
has 7.1 billion transistors.

In 2006, NVIDIA launched the first CUDA system with
the GeForce 8800, containing 681 million transistors and
128 CUDA cores. It brought high performance computing
to the desktop and increased the 3D graphics capabilities
that can be used for ray-based technologies. Current Fermi
processors have 512 CUDA cores and TESLA cards, like the
K40, and the latest Kepler processors have 2880 CUDA cores.

The evolution of graphics cards was accompanied by
that of the capabilities for different graphics processing like
shading, color blending, texture, and antialiasing, as well as
the number of polygons and physics effects incorporated in
the different games. Evolution of 3G graphics technology
is associated with the evolution of reference games like
Quake 3 and Halo. These games exploited to the maximum
the capabilities of graphics technologies.

However, graphics technologies have not only fostered
an increasing number of transistors or introduced parallel
processing capabilities. Functionalities like physics process-
ing units have been incorporated in graphics cards, and are
very useful for channel simulation. Physics processing units
will be discussed in section III.

Ill. GAME ENGINES AND GRAPHICS TECHNOLOGY

A. 3D GAME ENGINES

A game engine is a system designed for the creation and
development of video games. It includes a rendering engine,
a physics engine for collision detection, and an efficient
memory management system. One of the characteristics of

1653

IEEE

The journal for rapid open access publishing

A. N. Cadavid et al.: Using 3-D Video Game Technology

the game engine is the efficient implementation of ray-tracing
algorithms and the use of GPU power for rendering, regard-
less of the manufacturer of the GPU. The physics engine is
intended to optimally implement effects like optical physics
as reflections, refractions and diffraction. It is possible to
combine different physics engines with game engines in order
to obtain optimal results and reduce computation time.

New technologies like CUDA and OpenCL allow us to
exploit the GPU graphics’ computational power to improve
channel characterization computation time, in order to obtain
coverage and channel results in affordable time comparable
to semi-deterministic propagation models. Currently, CUDA
is a technology independent of game engines and has not
been implemented in game engines; however, it is possible
to implement such technology in most open source game
engines by increasing computing capacity for real-time
gaming and visualization.

We used the 3D RT techniques in combination with our
urban 3D model to identify propagation parameters and
derive multipath channel parameters [8], [9]. Both models are
based on game engines. The identified propagation parame-
ters between the transmitter and the receiver are: time delay
of arrival (TDoA), full polarimetric transmission matrix,
direction of departure (DoD), direction of arrival (DoA),
delay spread, among others. Introducing the gains of
the transmitting and receiving antenna and their complex
directional pattern, we estimated the parameters of:
attenuation, depolarization, phase shift, delay, angle of arrival
and angle of departure. Thus, this is represented as a power
delay profile (PDP). Then, we can use the PDP and its
statistics for different developed applications.

B. RAY TRACING IN GRAPHICS AND PHYSICS

In computer graphics, ray tracing is a rendering technique for
generating realistic images by tracing the path of light through
a 3D scene. A render engine consists of a “‘faceless” com-
puter program that interacts with a host 3D application to pro-
vide specific ray-tracing capabilities “‘on demand” [16]. The
technique is capable of producing a very high degree of visual
realism, usually higher than that of other common rendering
methods but at a greater computational cost. Ray tracing is
capable of simulating a wide variety of optical effects, such
as reflection and refraction, scattering and light scattering.
Optical ray tracing describes a method for producing visual
images constructed in 3D computer graphics environments,
with more photorealism than either ray casting or scanline
rendering techniques.

In physics, ray tracing is a method for calculating the
path of waves or particles through a system with regions
of varying propagation velocity, absorption characteris-
tics, and reflecting surfaces [20]. Under these circum-
stances, wave fronts may bend, change direction, or reflect off
surfaces, complicating analysis. Ray tracing solves the
problem by repeatedly advancing idealized narrow beams
called rays through the medium in discrete numbers. Recent
work shows that raw computational capability has now

1654

advanced to the point where it is reasonable to consider using
ray-tracing visibility in real-time graphics systems. Also, in
the last few years, some efficient ray-tracing algorithms have
been proposed in the literature, as well as similar techniques
like photon mapping [16].

C. PHYSICS PROCESSING UNIT

Most ray-tracing engines included in game engines are com-
plemented with a physics engine and a physics processing
unit (PPU), commonly used in state-of-the-art GPU cards.
Some state-of- the-art physics engines like NVIDIA PhysX
use the computational power of PPU to reduce the computa-
tion time in particle effects, which also can be used to reduce
computation time in channel parameter estimation.

A physics engine is computer software that provides
an approximate simulation of certain physical systems,
such as rigid body dynamics (including collision detec-
tion), soft body dynamics, and fluid dynamics, for use in
the domains of computer graphics, video games and film.
Their main uses are in video games (typically as middleware),
in which case the simulations are in real time. The term
is sometimes used more generally to describe any software
system for simulating physical phenomena, such as high-
performance scientific simulation.

A Physics Processing Unit (PPU) is a dedicated micro-
processor designed to handle and accelerate the calculations
of physics, especially in the physics engine of video games.
Examples of calculations involving a PPU might include rigid
body dynamics, soft body dynamics, collision detection, fluid
dynamics, hair and clothing simulation, finite element anal-
ysis, and fracturing of objects. The idea is that specialized
processors offload time-consuming tasks from a computer’s
CPU, much like how a GPU performs graphics operations
offloading CPU’s load. Initially, this technology was devel-
oped by a small company called Ageia, which was acquired
by NVIDIA. Currently, PPUs are incorporated in NVIDIA
series 8xxx and above graphic cards. NVIDIA uses the com-
mercial term PhysX to refer to an SDK middleware used to
accelerate some physics effects in games allowing real-time
simulation of physical effects. Some of these effects are the
same as those required in ray-tracing propagation models,
and therefore propagation models can be improved using
technologies like PPU and PhysX combined in a game engine.

D. NVIDIA CUDA

CUDA is the acronym of Compute Unified Device
Architecture. CUDA was introduced by NVIDIA in 2006
with the GeForce 8800, featuring the first unified graphics
and computing GPU architecture programmable in C with
the CUDA parallel computing model, in addition to using
DX10 and OpenGL [21]. Unlike previous generations that
partitioned computing resources into vertex and pixel shaders,
the CUDA architecture included a unified shader pipeline,
allowing each and every arithmetic logic unit on the chip to be
marshaled by a program intended to perform general purpose
computations. Because NVIDIA intended to use this new

VOLUME 2, 2014

A. N. Cadavid et al.: Using 3-D Video Game Technology

IEEE

The journal for rapid open access publishing

type of graphics processors for general purpose computing,
these ALUs were built to comply with IEEE requirements for
single-precision floating-point arithmetic and were designed
to use an instruction set tailored for general computation [28].

E. OPENCL

OpenCL is an open standard maintained by the Khronos
group with the backing of major graphics hardware vendors
as well as large computer industry vendors interested in
off-loading computations to GPUs. OpenCL (open comput-
ing language) is designed for general purpose parallel pro-
gramming across CPUs, GPUs and other processors, giving
software developers portable and efficient access to the power
of these heterogeneous processing platforms [29].

The main advantage of OpenCL over CUDA is that
it supports graphics cards from AMD and NVIDIA, as
well as embedded platforms; facilitating interoperability for
GPU-based applications.

IV. APPLICATIONS OF GAME TECHNOLOGIES IN
CHANNEL MODELING

A. POWER PREDICTION

This application used the RT and PDP values to estimate
the propagation model and power prediction [10], [11].
Using a game engine, we can reduce computation time from
days to hours, as shown in [10] and [11], compared with
published results. Also, we can easily implement five
interactions, whereas most ray-tracing models use two or
three interactions. Results are better than those obtained
by using traditional semi-deterministic propagation models,
but computation time is still high, making this application
unattractive for commercial use.

B. RAY-TRACING MODEL CALIBRATION

This application allows us to adjust the ray-tracing model
parameters in the permittivity values by using field measure-
ments. This is achieved by analysis of the behavior of the sta-
tistical variation of standard deviation, correlation coefficient
and the average error between the values of estimated and
measured path loss data [12], [13].

Ray-tracing calibration is not common because of the high
computation time of most models. This application solves a
typical problem found with ray-based models, as is the lack of
information about constitutive parameter values for different
materials in complex environments like urban areas. Calibra-
tion of constitutive parameters using power measurements is
a powerful tool for the acquisition of more real information
about building materials which can be used in the simulation
of channel parameters with greater confidence.

C. DELAY SPREAD CONTROL HIDING FIRST HIT OBJECTS

This application used 3D RT and the statistics of the power
delay profile (PDP) to identify the scatterers from first hit
which contribute the most to the channel excess delay. Once

identified, these scatterers can be hidden to control the delay
spread [14].

VOLUME 2, 2014

This application has the potential to help LTE,
LTE-A operators to improve the coverage/capacity mixture in
specific areas of a city by means of simulations, before
deploying infrastructure. In this way, it is possible to obtain
not only coverage information but multidimensional informa-
tion, required in present and future wireless technologies.

D. CHANNEL DELAY SPREAD
Ray-launching algorithms are suitable for estimating channel
parameters.

The most important channel characteristics can be
estimated by obtaining the path parameters based on the
frequency response H(f,t) and the time-variant channel-
impulse response of the channel A(z, 7).

The path parameters for the propagation between the
transmitter and the receiver are defined by n = I,...,N(¢)
propagation paths [30]. The identified propagation path
parameters between the transmitter and the receiver are:

7,(¢) : time delay of arrival (TDA) of path;

T,,(¢) : full polarimetric transmission matrix of path;

Q7 .,(¢) : direction of departure (DoD) of path;

Qr n(?) : direction of arrival (DoA) of path.

At each interaction of the ray with an obstacle, the
field strength is multiplied by a dyadic propagation trans-
fer factor, which accounts for the actual propagation effect
and for a change in divergence caused by the interaction.
Cascading all transfer factors (and therefore all occurring
propagation phenomena) leads to the full polarimetric trans-
mission matrix T,(¢), which together with the path length
(time delay t,(7)) characterizes the field strength of the ray.
Qr.»(t) and Qg ,(¢) are represented in colatitude and lon-
gitude (spherical coordinates). Introducing the gains of the
transmitting and receiving antenna Gg and G7 and their com-
plex directional pattern 6R and EfT the frequency response of
the channel is:

N(t)

Co \? ,
H(f, 1) = (por) GRGr - Y Cr(QRa(1)

T(O)Cr(Qr p(1))e 72 ™®
N(1)
=D An(n)e 20 M

n=1

n=1

where C, is the vacuum speed of light and f; is the center
frequency of the system A, (¢) represents the complex ampli-
tude of the n” multipath component and incorporates the
properties of the transmitter and receiver antenna.

The low-pass impulse response of the channel A(t,) is
obtained by the inverse Fourier transform of (1).

N(t)
h(r, 1) =) Ap()e P O5(r — 1,(1)))

n=1

Thus, the channel model could be represented as a power
delay profile (PDP) expressed by (2). This is easily esti-
mated by a ray-launching technique implemented with a

1655

IEEE Access

i The journal for rapid open access publishing

A. N. Cadavid et al.: Using 3-D Video Game Technology

game engine, using the native ray-launching algorithms
implemented in most game engines and optimized in GPUs.

FIGURE 1. Reflected and diffracted rays (fuchsia) for a reception point
(yellow).

Fig. 1 shows the results of a ray-tracing procedure
using the game engine, with reflections and diffractions,
for an estimated reception point. We used parameter
values TDA, full polarimetric transmission matrix,
DoD and DoA for simulated delay spread and estimated wide-
band characteristics of the propagation channel. Our previous
work fighas shown that these techniques are appropriate for
obtaining multipath parameters with high accuracy and fast
processing [8], [9], [11].

Characterization of wideband radio channels in time
domain is obtained from the PDP and first and second
order moments, the mean excess delay and RMS delay
spread.

V. 3D FILE FORMAT FOR SCENARIO INTEROPERABILITY
IN RAY-BASED SYSTEMS
The use of game engines and GPU for ray-based systems
has an additional and not so sophisticated advantage; the
possibility of using existing 3D file formats used in the
game community for the definition of game scenarios.
In the next paragraphs, we will discuss the requirements and
modifications for a standard scenario which can be used in
3D ray-based systems, using game technologies.

This proposal is based on the well-known XML format and
the format used by most game engines and 3D tools.

A. XML FORMAT: BRIEF RECAPITULATION

XML is the acronym of eXtensible Markup Language and
was developed by the World Wide Web Consortium (W3C)
and used to store and manipulate data in an interoperable way.
Derived originally from SGML, XML allows grammar from
specific languages to be defined to structure big documents.
XML also supports data bases and is useful for connecting
different applications or integrating information.

1656

1) ADVANTAGES OF XML
It is extensible: after its design and operation, it is possible to
extend XML to add new labels and functionalities.

It is not necessary to create a specific analyzer for each
version of XML. It allows the use of any of the available
analyzers. In this way, it is possible to develop applications
faster and bug free.

It is easy to understand and process, improving compat-
ibility and interoperability between different applications.
It is possible to connect applications from different platforms
regardless of data sources.

XML transforms data on information, because it gives
significance to the data and associates the data with a context.

Fig. 2 shows an example of XML format.

<?xml version="1.0" encoding="UTF-8" 2>

<Edit_Mensaje>
<Mensaje>
<Remitente>
<Nombre>Nombre del remitente</Nombre>
<Mail> Correo del remitente </Mail>
</Remitente>
<Destinatario>
<Nombre>Nombre del destinatario</Nombre>

ooooo del destinatario</Mail>
</Destinatario>
<Texto>
<Asunto>
Este es mi documento con una estructura muy sencilla
ntiene atributos ni entidades...

te es mi documento con una estructura muy sencilla
no contiene atributos ni entidades...
</Parrafo>
</Texto>
</Mensaje>
</Edit_Mensaje>

FIGURE 2. XML example.

2) XML DOCUMENT PARTS
Prologue: it is not mandatory and indicates XML version,
document type, comments.

Body: shows that the body of the document only contains
root element.

Elements: can contain more elements, characters or both.

Attributes: indicates special characteristics and allows
definition.

Predefined entities: entities are designed to represent
special characters which do not need to be decoded by the
XML parser.

CDATA sections: it is an XML construction designed to
specify data using any character not to be interpreted as a
marker.

Comments: information to the programmers about the
document.

B. XML SUPPORT IN GAME ENGINES FOR 3D SCENARIOS
In the gaming world XML is commonly used for the
definition of 3D scenarios in order to allow interop-
erability between different game engines. In Table I,
a summary of game engines and their support for
XML is shown.

As shown in the table, commercial game engines do not
natively support XML. However, open source engines do
natively support XML and all engines support OBJ. It is quite

VOLUME 2, 2014

A. N. Cadavid et al.: Using 3-D Video Game Technology

IEEE

The journal for rapid open access publishing

TABLE 1. Engines with XML support.

Game engine Unity CryEngine (Unreal Jmonkey Ogre3D
Commercia Commercia

Version | Commercial |l OpenSource |OpenSource
XML native support N N N S S
OBJ support S S S S S
Requires third-party software
to convert from XML (Maya,
3DS Max, Softimage, Blender) |S S S N N

unity

OBJ
CRY=ENGINS
gy

FIGURE 3. Information flow for different engines and 3D tools.

easy to convert from XML to OBJ using 3D design software
like Blender.

C. PROPOSED FORMAT FOR 3D SCENARIOS

IN RAY TRACING

As shown in the table , all game engines support the
OBJ format natively, because it is the common format in the
gaming world which supports mesh objects, as well as
surfaces and bounding for physics engines.

For ray-tracing engines for channel simulation, we propose
the use of OBJ type objects, in order to allow interoperability
between different ray-tracing platforms. The initial structure
of the proposed scenario is as follows:
main entity - mesh
sub-entities — submeshes

<mesh>
<submeshes>
<submesh material="table"
usesharedvertices="false" use32bitindexes="false"
operationtype="triangle_list">

<materialPropagation = “0.21”>
<faces count="904">

<face v1="0" v2="1" v3="2" />
<face v1="0" v2="3" v3="1" />
<face v1="3" v2="4" v3="1" />

</submesh material>

</submeshes>

</mesh>

VOLUME 2, 2014

The XML fragment above shows how the proposed
XML format includes material as a descriptive element of
the 3D, with the possibility of including constitutive param-
eters in any standard 3D scenario. In terms of the existing
systems for developing 3D scenarios, the constitutive param-
eter is optional and does not affect the standard model used
in 3D tools.

In Fig 3, the process of converting from XML to 3D tools or
vice versa and exporting to OBJ format is shown. This process
allows generating 3D scenarios from 3D tools, exporting to
XML and using the scenario in different ray-tracing tools,
using OBJ or proprietary formats used by existing ray-tracing
tools.

For example, in Fig 4 we show a 3D indoor scenario
developed in Blender and exported to OBJ.

In Fig 5, we show another indoor scenario, modeled in
Blender and exported to OBJ but with more details than the
scenario from Fig 4. In this scenario, we have included win-
dows, door, a projection screen and a lot of details of chairs.

VI. SCENARIOS

‘We have used the urban Cost 2100 Cali Realistic Reference
Scenario and a sub-urban scenario obtained from the main
campus of the Polytechnic University of Valencia, Spain [12].
In the Cost 2100 Cali Reference Scenario we simulate
mobile telephone cellular services at a frequency of 900 MHz
and DVB-T2 services at a frequency of 479 and 473MHz.
In Valencia Scenario we simulate DVB services for mobile
terminals at a frequency of 496 MHz.

1657

IEEE Access

i The journal for rapid open access publishing

A. N. Cadavid et al.: Using 3-D Video Game Technology

'ﬁ Estimador de parametros de canal - =1 &

FIGURE 4. 3D scenario built in Blender and exported to OBJ.

FIGURE 5. Detailed model of an indoor environment in OBJ format.

Also, we have performed simulations using the Cost 2100
Ilmenau Realistic Scenario (Fig. 1) and an Indoor Scenario in
Valencia (Fig. 4) [31], using channel measurement informa-
tion to compare simulation data and measured data.

VII. NEW GRAPHICS TECHNOLOGY AND ITS USE IN
CHANNEL MODELING

New developments in game technologies and GPU process-
ing power can be used to improve the capacity for channel
simulation and simulation.

Technologies like Nvidia Optix or similar open sources like
OpenRT or PovRay, or PhysiX engine, would increase the
computational capacity for ray-tracing techniques not only
for the game industry but also for real-time radio propagation
and channel modeling.

The NVIDIA OptiX Ray-tracing Engine [19] is a
programmable ray-tracing framework that helps software
developers to build ray-tracing applications in a fraction
of the time of conventional methods, running exceed-
ingly fast on NVIDIA GPUs. OptiX can be extended
beyond image creation by enabling rays to gather and carry

1658

custom payloads. The data fed to OptiX are also
programmable, enabling custom shading techniques,
programmable intersection for procedural definitions, and
programmable cameras for customized ray dispatching. This
flexibility enables OptiX to accelerate ray-traced render-
ing algorithms ranging from the highly interactive to the
ultra-realistic, while also accommodating disciplines such as
acoustics, ballistics, collision analysis, radiation reflectance,
and volume calculations - wherever intensive ray-tracing cal-
culations are employed. It can be incorporated in many game
engines and exploit the parallelization capabilities of CUDA
technology for real-time ray-based channel estimation.

For most people from the world of propagation and channel
modeling, these new technologies mean a change of paradigm
and new programming skills. Perhaps it will be necessary
to involve people from the IT community with experience
in game engines and parallel programming in order to fully
exploit such game technologies in radio channel issues for
channel modeling.

VIIl. CONCLUSIONS

Game technologies have an important role in the development
of new tools for real-time channel estimation. The combina-
tion of game engines and GPU technologies and architectures
like CUDA and OpenCL provides powerful tools and script-
ing for GPU exploitation.

Using Open Source 3D Game Engines, it is possible
to exploit available technologies like NVIDIA Optix for
real-time ray-tracing/launching, NVIDIA PhysX for physics
simulation and CUDA or OpenCL, in order to improve
computation time and obtain real-time radio propagation and
channel modeling for the 4G and 5G wireless technologies.

The combination of such techniques with better ray-tracing
algorithms implemented in game engines and parallelization
techniques would permit real-time channel simulations for
future wireless systems, as well as multidimensional cover-
age/capacity/channel maps in 3D for both indoor and outdoor
and HetNet environments.

REFERENCES

[11 T. S. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[2] L. M. Correia, Mobile Broadband Multimedia Networks: Techniques,
Models and Tools for 4G. Oxford, U.K.: Elsevier, 2006.

[3] Y. Corre and Y. Lostanlen, “Characterization of the wideband wire-
less channel in the context of DVB systems,” in Proc. IEEE 19th Int.
Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Cannes, France,
Sep. 2008, pp. 1-5.

[4] Digital Video Broadcasting (DVB); Implementation Guidelines for
a Second Generation Digital Terrestrial Television Broadcasting
System (DVB-T2), document ETSI TS 102 831 V1.2.1, 2012.

[5] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A survey of commer-
cial & open source unmanned vehicle simulators,” in Proc. IEEE Int. Conf.
Robot. Autom., Apr. 2007, pp. 852-857.

[6] A.Leist, D. P. Playne, and K. A. Hawick, “Exploiting graphical process-
ing units for data-parallel scientific applications,” ACM J. Concurrency
Comput., Pract. Exper., vol. 21, no. 18, pp. 2400-2437, Dec. 2009.

[71 G. de la Roche, A. Valcarce, D. Lopez-Pérez, E. Liu, and J. Zhang,
“Coverage prediction and system level simulation of WIMAX femtocells,”
in Proc. Minutes 6th Cost 2100 Manage. Committee Meeting, Lille, France,
Oct. 2008.

VOLUME 2, 2014

. Cadavid et al.: Using 3-D Video Game Technology

IEEE Access

i The journal for rapid open access publishing

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

A. N. Cadavid and D. G. Ibarra, “Using game engines in ray trac-
ing physics,” in Proc. IEEE Latin-Amer. Conf. Commun. (LATINCOM),
Bogotd, Colombia, Sep. 2010, pp. 1-5.

A. Navarro and D. Guevara, “Using game engines for wideband channel
estimation parameters in Andean cities,” in Proc. 4th Eur. Conf. Antennas
Propag. (EuCAP), Barcelona, Spain, Apr. 2010, pp. 1-5.

A. Navarro and D. Guevara, “Applicability of game engine for ray tracing
techniques in a complex urban environment,” in Proc. IEEE 72nd Veh.
Technol. Conf. Fall (VT C-Fall), Ottawa, ON, Canada, Sep. 2010, pp. 1-5.
A. Navarro, D. Guevara, N. Cardona, and J. J. Gimenez, “DVB coverage
prediction using game engine based ray-tracing techniques,” in Proc. IEEE
74th Veh. Technol. Conf. (VIC Fall), San Francisco, CA, USA, Sep. 2011,
pp. 1-5.

A. Navarro, D. Guevara, N. Cardona, and J. Lopez, ‘““Measurement-based
ray-tracing models calibration in urban environments,” in Proc. IEEE
Antennas Propag. Soc. Int. Symp. (APSURSI), Chicago, IL, USA, Jul. 2012,
pp. 1-2.

A. Navarro, D. Guevara, and M. V. Africano, “Calibracién basada en
medidas para modelos de trazado de rayos en 3D para ambientes exteriores
urbanos andinos,” Rev. Sistemas Telemdtica, vol. 10, no. 21, pp. 43-62,
2012.

A. Navarro, D. Guevara, D. Tami, and N. Cardona, “Delay spread control
hiding first hit objects,” in Proc. 7th Eur. Conf. Antennas Propag. (EuCap),
Gothenburg, Sweden, Apr. 2013, pp. 1870-1873.

What is CUDA? [Online]. Available: http://www.nvidia.com/object/
cuda_home_new.html, accessed Sep. 15, 2014.

D. Buck. (Aug. 2001). What is Ray-Tracing? [Online]. Available:
http://wiki.povray.org/content/Documentation: Tutorial_Section_1#What_
is_Ray-Tracing.3F

Yafaray—Home. [Online]. Available: http://www.yafaray.org/, accessed
May 2, 2014.

Gforce/Physx/Technology. [Online]. Available: http://www.geforce.
com/hardware/technology/physx/technology, accessed May 2, 2014.
(2014). NVIDIA OptiX Ray Tracing Engine. [Online]. Available:
http://developer.nvidia.com/optix

(Sep. 15, 2014), Ray Tracing (Physics). [Online]. Available: http://en.
wikipedia.org/wiki/Ray_tracing_(physics)

J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro,
vol. 30, no. 2, pp. 56-69, Mar./Apr. 2010.

K. Karimi, N. Dickson, and F. Hamze. (May 16, 2010). “A per-
formance comparison of CUDA and OpenCL.” [Online]. Available:
http://arxiv.org/abs/1005.2581v3

A. Gonzélez et al., ““The impact of the multi-core revolution on signal
processing,” Waves, pp. 74-84, 2010.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU computing,” Proc. IEEE, vol. 96, no. 5, pp. 879-899,
May 2008.

P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra,
“From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming,” Parallel Comput., vol. 38, no. 8,
pp. 391407, 2012.

(2012). 100 Highest Rated Game Engines—Mod DB. http://www.
moddb.com/engines/rated, accessed May 18, 2014.

(2007). XML—Wikipedia. http://es.wikipedia.org/wiki/Extensible_
Markup_Language, accessed May 18, 2014.

J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming. Reading, MA, USA: Addison-Wesley, 2010.
A. Munshi, Ed., The OpenCL specification. Version: 1.1. Document Revi-
sion: 44. Beaverton, OR, USA: Khronos Group, Jun. 2010.

VOLUME 2, 2014

[30]

[31]

M. Narandzic et al., “On a characterisation of large-scale channel param-
eters for distributed (multi-link) MIMO—The impact of power level dif-
ferences,” in Proc. 4th Eur. Conf. Antennas Propag. (EuCAP), Apr. 2010,
pp. 3-7.

A. Navarro, D. Guevara, N. Cardon, and J. Gimenez, “Using 3D game
engines and GPU for ray launching based channel modeling in indoor,” in
Proc. 31st URSI General Assembly Sci. Symp., Beijing, China, Aug. 2014,
pp. 1-4.

ANDRES NAVARRO CADAVID (M’95-SM’11)
received the Electronic Engineering degree and the
master’s degree in technology management from
Universidad Pontificia Bolivariana, Medellin,
Colombia, in 1993 and 1999, respectively, and
the Ph.D. degree in telecommunications from the
Universitat Politécnica de Valencia, Valencia,
Spain, in 2003. He is an Advisor of the National
Innovation Program on Electronics, Telecommuni-
cations and Informatics with Colombian R&D + 1

System and the Spectrum Management Committee for Colombian Spectrum
Agency. He has been the Director of the i2t Research Group with Universidad
Icesi, Cali, Colombia, since 1999. His research interests are spectrum
management, radio propagation, and m-health.

-
—

DINAEL GUEVARA IBARRA (M’04-SM’14)
received the B.S. degree in electrical engineer-
ing from the Universidad Industrial de Santander,
Bucaramanga, Colombia, in 1989, the M..S. degree
in engineering telecommunications from the
Universidad Nacional Experimental Politécnica
Antonio José de Sucre, Barquisimeto, Venezuela,
in 2006, and the Ph.D. degree from Universidad
Pontificia Bolivariana, Medellin, Colombia, in
= 2012.

He is currently a Professor of Electronics Engineering with the Department
of Electrical and Electronics, Universidad Francisco de Paula Santander,
Cicuta, Colombia.

SEBASTIAN LONDONO SALCEDO (M’08)
received the System Engineering degree from
the Universidad Icesi, Cali, Colombia, in 2010,
where he is currently pursuing the master’s
degree in research. He was the World Cham-
pion for Microsoft Competition EmbeddedSpark
(2011), a Mentor at Colombian program Apps.co
for entrepreneurs (2013), and is also a Junior
Researcher of the i2t Research Group with the
project SafeCandy. His research interests are

UAVs, serious games, security in android, and neurodegenerative diseases.

1659

