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ABSTRACT The performance analysis of a graphics processing unit (GPU) is important for analyzing and
fine tuning current and future graphics processors as well as for comparing the performance of different
architectures. In this paper, we present an analytical model to calculate the total time it takes for a GPU
to retire one frame on a given benchmark. The model also estimates the total retirement time for the same
frame on a different GPU using regression estimation model. The model consists of two stages. The first
stage entails establishing the measured baseline for a specific frame on a given graphics card, and the second
stage entails adjusting the measured baseline and estimating the time it takes to process all draw calls for
the same frame on a different graphics card. The model considers the impact of pipeline bottlenecks to
process a specific frame, estimates the minimum time it takes to process that frame, and reparameterize
the baseline for a different graphics card to calculate new frame retirement times at two different memory
frequencies. We used Amdahl’s law model to estimate frame retirement time for a different graphics card at
higher memory frequencies based on the new adjusted measured baseline with error margin is <5%.

INDEX TERMS 3D benchmarks, graphics processing unit.

I. INTRODUCTION
In recent years, the high demand for gaming and other 3D
simulation applications led to development of high perfor-
mance Graphics Processor Unit (GPU) to keep up with the
computation demand behind these application. In particular,
the performance of the GPU became an important market-
ing and engineering factor. The performance analysis of a
GPU is a key research topic for many academic and industry
groups. It is important to estimate and fine tuning current and
future graphics processors as well as comparing the perfor-
mance of different technologies. This performance analysis
enables GPU designers and 3D benchmark software develop-
ers to understand the bottlenecks associated with processing a
specific frame so that they can fine tune their design and
optimize the benchmarks. There are still many challenges to
be solved in order to enable GPU engineers to facilitate effi-
cient usage of GPU features to achieve higher performance.
Many published papers related to GPU performance analysis
are based on simulated results or focus on one specific GPU
area that impacts performance. In this paper, we present an
analytical model to analyze and estimate frame retirement
time on a given GPU for a specific frame. The model is also
designed to project the frame retirement time for a differ-
ent GPU. In particular, we discuss the derivation steps for

a graphics pipeline modeling and projection method. The
module identifies pipeline bottleneck stages to process one
frame for a specific benchmark on a given GPU and also
projects frame retirement time for the same frame for a dif-
ferent GPU. The goal is to project the time it takes to process
all draw calls for a specific frame as well as project the frame
retirement time for the same frame for a different GPU.
This paper extends our previous work presented in [13]

by introducing a pipeline analysis and projection for frame
retirement time instead of just projecting Frames per Sec-
ond (FPS) for another GPU using the same benchmark. The
process for developing the module is divided into two steps.
The first step is to establish a measured baseline by taking
certain timing measurements. For this step, we used Nvidia
GeForce 9800GX2 [4]. These measurements are used in turn
to construct and parameterize baseline for these graphics
cards. Once a baseline is constructed, it can be extended to
a model for a targeted graphics card by revising its baseline
parameter values. The graphics card for which we will be
projecting is Nvidia NV280 [5]. The benchmark used for
our analysis is 3DMarkVantage [17] benchmark GT4 frame
#2353 (GT4:2353).
Our analysis and projection model entails the following

steps:
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• Input 9800GX2 (GT4: 2353) measurement tool data.
• Use this data to parameterize the 9800GX2 (GT4: 2353)
baseline model.

• Transform the baseline model to an NV280 (GT4: 2353)
model by revising the baseline parameters and evaluate
error.

• Project for NV280 performance using Amdahl’s Law.
The remainder of this paper is organized as follows.

Section II presents an overview of the GPU general architec-
ture, Section III describes our method derivation, Section IV
characterizes NV280, Section V introduces our performance
analysis for NV280, Section VI presents related work, and
conclude in Section VII.

II. GPU OVERVIEW
A Graphics Processing Unit (GPU) [2] is designed for highly
paralleled operations as compared to a Central Process-
ing Unit (CPU). A GPU has significantly faster and more
advanced memory operations as compared to CPU. The
Architecture of a GPU is based on a parallel array of many
programmable processors. The CPU receives geometry infor-
mation from the CPU and inputs and provides a picture frame
as an output. The GPU unifies vertex geometry, pixel shader
processing and parallel computing on the same processor.
Some functions of GPU includes texture filtering, rasteri-
zation, raster operations, anti-aliasing, compression, decom-
pression, display, video decoding, and high definition video
processing. In general, the GPU consists of six pipeline stages
described as follows:

1- Input Assembler (IA): The IA receives 3D representa-
tion of a scene as a collection of geometric parameters
such as points, lines and vertices. The input data may
also include collection of textures to be displayed. The
IA stage gathers vertex data from up to eight input
streams attached to vertex buffers and converts data
items to a canonical format (e.g., float32). Vertex data
is than fed into IA via a vertex cache used to cache and
organize indexed primitive vertex data stream.

2- Vertex Shaders (VS): In general, VS determines how
shadows and lighting interacts with surface to be ren-
dered. VS are used to transform vertices from object
to clip space by reading un-transformed vertex. They
transform the vertex andwrite the resulting transformed
vertex to output registers. VS can shade geometry in
the lightning sense by calculating the lightning equation
per vertex, but they can also manipulate all the vertex
data. VS can manipulate properties such as texture
coordinate and color. The output of the VS goes into
the next stage called Clip stage.

3- Clip (CC): After vertex shader is transformed in either
the fixed-function pipeline or a vertex shader, it is
passed along to the clipper. Clipping is performed with
the viewing frustum. Traditionally, primitives that lay
partially or completely off-screen must be clipped to
the screen or viewport boundary. In other words, in this
stage, hardware make decisions about what geometry

should be carried onto the next stage, and which piece
of geometry does not need to be processed, it can throw
away anything the viewer cannot see.

4- Rasterization State (RS): Handles clipping, culling,
triangle setup and rasterization/multisampling. In gen-
eral, RS is responsible for reading and writing depth
and stencil, doing the depth and stencil comparisons,
reading and writing color, and blending. RS transforms
vectorized input into a bitmap form such as 2D array of
pixels.

5- Pixel Shader (PS): PS computes the color and other
attributes of each pixel. Usually the PS is driven by
vertex shaders. PS allow for more flexibility with
pixels, such as allowing interesting effects in the way
that individual pixels are selected, blended or rendered.
PS is used to perform per-pixel lightning on simple
geometry.

6- Output Merger (OM): Takes a fragment from the PS
and performs traditional stencil and depth testing oper-
ations as well as rendering target blending.

In general, to process one frame, the frame computation has
to go through the GPU 6 pipelined stage as shown in Figure 1.
In our model, we analyze performance bottlenecks in all these
six pipeline stages.

FIGURE 1. GPU pipeline block diagram.

Given the amount of computations required to process
one frame at each pipeline stage, it is obvious that the GPU
pipeline is full of performance bottlenecks waiting to happen.

III. METHOD DERIVATION
The focus of this development is the DX10 [8] architec-
ture (9800GX2). The specific graphics workload used for
this development is frame GT4: 2353. This means, we used
frame # 2353 in GT4 3D benchmark. To analyze perfor-
mance for a different frame, one needs to rerun the Nvidia
NVtune [6], [7] performance measurement tool with that
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frame, then use that measured data as an input to the perfor-
mance projection method.

A. BASELINE INPUT FILES
The Nvidia NV Tune utility provides the measurements used
to drive the graphics model input data. The following is a set
of eight input data sets required as an input to the model:
• Data98_fq – contains six pipeline-stage clock speeds
(in MHz) for the six pipeline stages.

• Data98_alu – contains the number of parallel processors
(in shaders which is the number of cores) at each pipeline
stage for each draw call.

• Data98_t0 – contains the native time for a pipeline
stage processor to process an element (in stage clock
ticks/element/processor). Data98_t0 contains one value
for each pipeline stage and draw call.

• Data98_bw – contains the effective bandwidth (bw) of
a given pipeline stage running a given draw call at a
given clock speed (in stage clock ticks/element/stage).
There are three source files corresponding to three Gen-
eralMemory (GM) frequencies (500MHz, 750MHz, and
1000MHz).

• Data98_T – contains the measured values of the times
(Tmeas) for the 9800GX2 graphics pipeline to process
draw calls (in nanoseconds). There are three source files
for Data98_T corresponding to three GM frequencies.

• Data98_eta – contains η, the number of elements pro-
cessed at each pipeline stage for each draw call (in
elements/stage/draw call).

• Data98_shdr – contains indices designating shader pro-
grams running at the VS (Vertex Shader) and PS (Pixel
Shader) pipeline stages for each draw call.

• Data280_T – contains the measured values of the times
(Tmeas) for the NV280 graphics pipeline to process draw
calls (in nanoseconds).

The graphics model is configured to output the
NV280-specific parameter changes to the baseline model,
Tmeas,0 and its projected value for each draw call as well as
projection error which we will discuss in later sections.

B. BOTTLENECK-NB (BASELINE) AND TMIN
According to the pipeline hypothesis, the simplest nontrivial
estimate for Tmin is

Tmin (c, f ) ≡ max
1≤s≤6

{η (s, c)/bw (s, c, f )} (1)

where

Tmin = The maximum of the six η/bw ratios,

s = Pipeline stage index (≤ 6, for a six stage pipeline),

c = Draw call index (typically ≤ 1200 per frame) and

f = GM clock speed index (≤ 3).

Each ratio is just the time for the corresponding stage to
process η elements at its effective bandwidth (BW). We take
each ratio to be the shortest possible processing time for

the corresponding stage. Assuming that the pipeline stages
process elements independently and in parallel, the minimum
time for the graphics pipeline to process a draw call is the
largest of these ratios.We expect that Tmeas > Tmin and define
BN (c, f ) to be the index of the bottleneck stage, i.e., the stage
for which η/bw is the largest.

C. PROCESSING TIME AND NUMBER FRACTIONS
Table 1 gives an indication of the relative numbers (fr_num)
of draw calls bottlenecked at various pipeline stages and the
corresponding relative amounts of processing time (fr_tme)
spent at these bottlenecks.

TABLE 1. NV GeForce 9800 measured time for each pipeline stage using
3DMarkVantage GT4 frame # 2353.

From Table 1, 80% of the 1200 draw calls considered
in GT4: frame # 2353 is bottleneck in IA stage. The time
to process these draw calls is 37.1% of the total draw call
processing time. IA has a large number of short draw calls.
OM has a small number of large draw calls. No draw calls
are bottlenecked on VS or ROP stages.

D. ERROR ANALYSIS
To determine the error for our analysis, we take error as
a function of two timing parameters Tmin and Tmeas which
refers to minimum and measured time respectively. Based on
the data collected, Tmin is not a good estimation for Tmeas.
To analyze the discrepancy, consider the relative estimation
error Err defined by

Err (c, f ) ≡
Tmeas (c, f )− Tmin (c, f )
Tmeas (c, f )+ Tmin (c, f )

. (2)

Graphs of Err(f , c) vs. Tmin(f , c) for various GM clock
speeds (f ) and bottleneck stages are shown in Figures 2–5.
For example, Figure 2 shows points (Err,Tmin), for which
f = 1 (500 MHz GM clock speed), and b = BN (c, f ) = 1
(IA bottleneck stage). The same method can be applied to
other GM frequencies. By analyzing Figures 2–5, we notice
the graphs are high on the left for small Tmin. There is lots
of variation at lower Tmin, then they all slope off to the right
for larger Tmin. In other words, at lower Tmin Err(f , c) is
high, and fluctuates before it starts to level off at higher Tmin.
This observation is similar in all other stages as shown in
Figures 2–5. We conclude that Tmin vs. Err(f , c) presents
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FIGURE 2. Error, GM Freq = 500 MHz, IA stage.

FIGURE 3. Error, GM Freq = 500 MHz, CC stage.

FIGURE 4. Error, GM Freq = 500 MHz, PS stage.

FIGURE 5. Error, GM Freq = 500 MHz, OM stage.

an exponential-like curve characteristic which is discussed in
section 3.5 by introducing an error trend line.

E. E TREND LINE APPROXIMATION
It is hard and unnecessary to estimate the noise, instead
we estimate its trend. To account for the noise, we fit the
Err(Tmin) graphs shown in the previous section with trend
lines of the form:

Err (Tmin) = exp (A− B · Tmin), (3)

where Tmin is taken to be an independent variable, and
parameters A and B vary from graph to graph, i.e., A and B
depend on the GM clock speed and bottleneck stage. The
exponential form follows the broad data trends. To find a
best exponential fit for each Err(Tmin) graph, we want values
A(b, f ) and B(b, f ) for each bottleneck stage b and GM clock
speed f that minimize the usual Linear Least Squares (LL2)
function which derives the following equation:

LL2b,f (A,B) ≡
∑

c:BN=b

wt (Tmin (c, f ))

×

[
ln (Err (c, f ))

−A (b, f )−B (b, f ) · Tmin (c, f )

]2
(4)

The summation is over draw calls with given GM clock
speed f which also satisfy the constraint BN (c, f ) = b, the
given bottleneck stage. To derive LL2 estimation for A and B,
we need first to fit a given set of points such that

{(Tmin (c),Err (c)) |BN (c) = b} (5)

with a trend line of the form

E(T ) ≡ exp (A− B · T ) (6)

where T is an independent variable and parameters A and B
have yet to be determined.
We determine the best A and B by applying the con-

ventional Linear Least Squares (LL2) criterion with possi-
bly one small technical exception. Instead of trying to find
A and B that minimize weighted sums of squares of dif-
ferences Err(c) − exp (A− B · Tmin (c)), we try to find
A and B that minimize weighted sums of squares of differ-
ences ln (Err(c)) − (A− B · Tmin (c)). Allowing this excep-
tion permits us to solve a linear rather than a nonlinear system
of equations for A and B. The linear preference is obvious.
Let {wt (c)}BN (c)=b denote a given set of weights for the data
points.We simplify the notation by taking e (c) = ln (Err (c))
and T (c) = Tmin(c). Then we seek A and B that minimize the
functional

LL2 (A,B) ≡
∑
BN=b

wt (c) [e (c)− A+ B · T (c)]2 (7)

A necessary condition for LL2 to achieve a minimum at
A and B is that A and B satisfy the equations

∂LL2
∂A
= 0, and

∂LL2
∂B
= 0.

Therefore,

∂LL2
∂A
= 0 =2

∑
BN=b

wt (c) [e (c)− A+ B · T (c)] (−1). (8)

After rearranging,(∑
BN=b

wt (c)

)
A−

( ∑
BN=b

wt (c)T (c)

)
B

=

( ∑
BN=b

wt (c) e (c)

)
. (9)
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A similar treatment of the ∂LL2/∂B = 0 equation yields to( ∑
BN=b

wt (c)T (c)

)
A−

( ∑
BN=b

wt (c)T (c)2
)
B

=

( ∑
BN=b

wt (c) e (c)T (c)

)
. (10)

To simplify the notation, take

u ≡
∑
BN=b

wt (c) T (c)2,

v ≡ −
∑
BN=b

wt (c) T (c),

w ≡
∑
BN=b

wt (c),

x ≡
∑
BN=b

wt (c) e (c), and

y ≡ −
∑
BN=b

wt (c)T (c) e (c).

The solution for A and B yields then to

A =
ux − vy
uw− v2

, (11)

and

B =
wy− vx
wu− v2

. (12)

We take wt (Tmin) ≡ Twmin, a special class of functions of
Tmin with free parameter w. We have focused on minimizing
a weighted sum of terms of the form [ln(Err) − ln(E)]2

rather than a weighted sums of terms of the form [Err − E]2.
As a result, we obtain A and B by solving a linear system
of equations. Otherwise, the system would be nonlinear.
A(w, b, f ) and B(w, b, f ) have been computed for 9800GX2
input data, variousb and f , and w = 0.000, 0.125, 0.250,
0.500, and 1.000. The results for the IA stage are shown in
Figures 6-7. The same method can be used for the remaining
pipeline stages.

In Figure 6 and 7, LL2w,b,f (A,B) achieves its minimum
at the A(w, b, f ) and B(w, b, f ) estimates computed by the
model. Let

E(w, b, f ,Tmin) ≡ exp (A (w, b, f )−B (w, b, f ) · Tmin) (13)

FIGURE 6. IA Stage – A coefficient variation with respect to 3 GM
frequencies (500MHz, 750MHz, and 1000MHz) for 5 different W values.

FIGURE 7. IA Stage – B coefficient variation with respect to 3 GM
frequencies (500MHz, 750MHz, and 1000MHz) for 5 different W values.

FIGURE 8. Err and E vs. Tmin for IA stage, were E represents the
exponential like curve.

FIGURE 9. Err and E vs. Tmin for CC stage, were E represents the
exponential like curve.

FIGURE 10. Err and E vs. Tmin for PS stage, were E represents the
exponential like curve.

denote the trend line through the set of points. Sample
graphs of Err and E vs. Tmin are shown in figures 8–11, for
w = 0.250. We notice that the derived exponential-like
curve E can be used as an estimate Err.
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FIGURE 11. Err and E vs. Tmin for OM stage, were E represents the
exponential like curve.

F. TEST FOR BASELINE
Recall that

Err (c, f ) ≡
Tmeas (c, f )− Tmin (c, f )
Tmeas (c, f )+ Tmin (c, f )

. (14)

The approximation

E (w, b, f ,Tmin (c, f )) ∼ Err (c, f ) (15)

induces the approximation

E (w, b, f ,Tmin) ∼
Test (c, f )− Tmin (c, f )
Test (c, f )+ Tmin (c, f )

(16)

The discrepancy between Tmeas and Test is the fluctuation
of Err about the trend line E . If these trend lines have been
well chosen, then the fluctuations above the trend line largely
cancel the fluctuations below the trend line. If we allow this
cancellation in our draw call projection error estimates, then
Test should be a close estimate of Tmeas. Solving for Test , we
obtain

Test (w, c, f ) = F (w,BN (c, f ) , f ,Tmin (c, f )) · Tmin (c, f )
(17)

where

F(w, b, f ,T ) ≡
1+ E (w, b, f ,T )
1− E (w, b, f ,T )

, (18)

and

E(w, b, f ,T ) ≡ exp (A (w, b, f )− B (w, b, f ) · T ). (19)

We have seen that Tmin is a poor estimate for Tmeas. The
obstacle is Err (the noise). Test is a revised estimate for
Tmeas that accounts for the trend line in Err but not for the
fluctuations about this trend line.

G. ERROR ESTIMATE
To assess the Test estimate, we consider the following defini-
tion of the draw call performance projection error:

Err(w, f )

≡

∣∣∣∣∣∣∣
∑
c

 Tmeas (c, f )∑
k
Tmeas (k, f )

 Tmeas (c, f )− Test (w, c, f )
Tmeas (c, f )

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣1−
∑
c
Test (w, c, f )∑

c
Tmeas (c, f )

∣∣∣∣∣∣ (20)

The error estimate for a draw call is proportional to the
actual error. Given a preference for Err, we should also take
w ≡ 0.00. The goal for this model is to analyze frame
retirement time on a different graphics processor unit. The
frame retirement time is proportional to

∑
c
Tmeas (c, f ), as an

approximation. Therefore we would want to develop a model
that produces Test estimates of Tmeas such that

∑
c
Test (c, f ) is

close to
∑
c
Tmeas (c, f ), i.e., such that Err is small.

IV. CHARACTERISTICS OF NV280
We now consider a more demanding test in which we re-
parameterize this baseline model with values characteristic of
the NV280 platform as shown in Table 2. The remainder of
this section describes this process and the derivation method
to estimate the measured NV280 draw call processing times.

TABLE 2. Parameter changes for NV280.

A. BANDWIDTH (BW) INTERPOLATION FOR NV280
Re-parameterizing the baseline model for NV280 takes three
simple steps. The first is to estimate a value for bw for NV280
by interpolating measured baseline values. In particular, for
each given draw call and pipeline stage, let bw1, bw2, and bw3
denote the baseline effective bandwidths at the baseline GM
clock speeds fq1 < fq2 < fq3. Let bw0 denote the effective
bandwidth interpolated at fq0, the NV280 GM clock speed.
If fq0 ≤ fq2, then

bw0 ≡ bw2 +

(
fq0 − fq2
fq1 − fq2

)
(bw1 − bw2) . (21)

Otherwise, take

bw0 ≡ bw2 +

(
fq0 − fq2
fq3 − fq2

)
(bw3 − bw2). (22)

B. TMIN AND BOTTLENECK (BN) FOR NV280
We use Equation (1) to estimate Tmin and BN for both
9800GT2 and NV280. However, to use it for NV280, we first
modify each η/bw ratio to account for parameter differences
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between 9800GT2 and NV280. In fact, the second step in
re-parameterizing the baseline model is to account for these
differences by the substitution
η (s, c)
bw0 (s, c)

← rproc (s, c)

×

rmxu
(
η (s, c)
bw0 (s, c)

−
t0 (s, c)
nproc (s, c)

)
+ rstg (s)

(
t0 (s, c)
nproc (s, c)

)
 (23)

where

rproc (s, c)

≡
number of 9800GX2 stage s parallel processors
number of NV280 stage s parallel processors

,

rmxu ≡
9800GX2 GM bus width
NV280 GM bus width

,

and

rstg (s) ≡
9800GX2 stage s clock speed
NV280 stage s clock speed

for stage s and draw call c.
This substitution can be easily understood by first writing

the processing time η(s, c)/bw0(s, c) in the baseline context
as the sum of two terms:
η (s, c)
bw0 (s, c)

=

(
η (s, c)
bw0 (s, c)

−
t0 (s, c)
nproc (s, c)

)
+

(
t0 (s, c)
nproc (s, c)

)
(24)

The first term is an estimate of the portion of this time
that is somehow dependent on GM. To scale this estimate
from 9800GX2 to NV280, we simply multiply by rmxu. The
second term is an estimate of the portion of this time that is
independent of GM. To scale this estimate from 9800GX2 to
NV280, we simplymultiply by rstg(s).Wemultiply the sum of
these two scaled terms by rproc(s, c) to account for the relative
change in the number of parallel processors in going from
9800GX2 to NV280. (Increasing the number of processors
decreases the processing time.)

Given these estimates for the η/bw ratios in the NV280
context, we estimate Tmin and BN for NV280 just as we
estimated Tmin and BN for 9800GT2.

C. INTERPOLATING A AND B FOR NV280
The third step in re-parameterizing the baseline model for
NV280 is to interpolate A(w, b, f ) and B(w, b, f ) at the
NV280 GM clock speed. We proceed just as we did in
section 4.1. The result is below.

If fq0 ≤ fq2, then take

A0 ≡ A2 +
(
fq0 − fq2
fq1 − fq2

)
(A1 − A2), and

B0 ≡ B2 +
(
fq0 − fq2
fq1 − fq2

)
(B1 − B2). (25)

Otherwise,

A0 ≡ A2 +
(
fq0 − fq2
fq3 − fq2

)
(A3 − A2), and

B0 ≡ B2 +
(
fq0 − fq2
fq3 − fq2

)
(B3 − B2). (26)

D. TEST FOR NV280
After re-parameterizing the baseline model for NV280,
we apply this re-parameterized model to compute Test for
NV280. The result is

Test,0(w, c) = F0
(
w,BN0 (c),Tmin,0 (c)

)
· Tmin,0 (c), (27)

for c satisfying the constraint BN (c) = b, where

F0(w, b,T ) ≡
1+ E0 (w, b,T )
1− E0 (w, b,T )

, (28)

and

E0(w, b,T ) ≡ exp (A0 (w, b)− B0 (w, b) · T ). (29)

V. PERFORMANCE ANALYSIS FOR NV280
The basics for Amdahl’s law [1], [10] states that the per-
formance improvement gained from using some faster mode
of execution is limited by the fraction of the time the faster
mode can be used. In other words, Amdahl’s Law states
that a system’s overall performance increase is limited by
the fraction of the system that cannot take advantage of the
enhanced performance. Based on the Amdahl’s Law regres-
sion method published in [13], we use the same method to
analyze total frame retirement time for NV280 using the
baseline established for NV280 as described in the previ-
ous sections. The pipeline model would generate two Test
data points for NV280 for two different GM frequencies
relative to 9800GX2 baseline. The performance analytical
model requires at least two measured data points to analyze
performance for higher GM frequencies.

A. DERIVATION METHOD FOR
PERFORMANCE ESTIMATION
The performance of a system can be divided into two distinct
categories. The part which improves with the performance
enhancement and is said to scale (variable a), and the part
which does not improve due to the performance enhancement
and is said to not scale or to be non-scaling (variable b). Note
that a and b variables derived in this section are not related to
A and B variables derived in previous sections. Based on the
above definition, Amdahl’s law can be written in the form of

T = T0 + (T1 − T0)
f1
f
, (30)

where T1 is the measured execution time at frequency
f1 and T0 is the non-scale time. We can write T0 in terms of a
second measurement T2 at f2:

T0 =
T2f2 − T1f1
f2 − f1

, (31)

Whenwe substitute Equation (30) for T0, we obtain Amdahl’s
law in terms of two specific measurements without reference
to T0:

T = a+ b
1
f
, (32)
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Where

a =
f2T2 − f1T1
f2 − f1

, (33)

and

b = f1f2

(
T1 − T2
f2 − f1

)
. (34)

Variables a and b can be transformed to the score domain
using S ≡ 1/T . For two data points, we will have
(f1, S1) and (f2, S2), and for n data points, we will have
(f1, S1), . . . , (fn, Sn). We expect these points to satisfy an
equation of the form (except for noise):

Si ≈
fi

a · fi + b
, (35)

Due to noise, we cannot expect to find values for a and b
that produce equality for each point i. In this case, we resort
to the theory of linear least-squares estimation to obtain best
estimates for a and b. In particular, given a and b, we take the
error in our estimate for Si in terms of fi to be the difference
between the measured and estimated value for Si:

ei ≡
1
Si
−

(
a+ b ·

1
fi

)
. (36)

The best estimates for a and b are those that minimize the sum
of the squares of these errors:

E =
n∑
i=1

e2i . (37)

The estimates for a and b are those at which the values of
the partial derivatives ∂E/∂a and ∂E/∂b are simultaneously
zero. By computing these derivatives explicitly, we obtain
equations satisfied by the best choices for a and b, which is
the best functional fit to the measured data. If the data points
are in the Time Domain (f1,T1), . . . , (fn,Tn), then, we can
use the relationship of score to time, and determine the best
estimate for T in terms of f . Evaluating the equations we can
derive a and b in terms of T and f for n points. We can also
calculate a and b values to construct the linear score line in
terms of S1, S2, f 1 and f 2 by substituting S ≡ 1/T in the
a and b equations. We use a and b values to define a score
line as y = ax + b, were a is the scaling part, and b is the
non-scaling part.

B. EXPERIMENTAL RESULTS FOR NV280
PERFORMANCE ANALYSIS
The process to estimate frame retirement time performance
for a given benchmark entails three steps. The first step is
to determine what to project, for example higher memory
frequency. The second step involves establishing a measured
baseline from which to project while keeping all other vari-
able but one fixed. The model established two data points for
NV280 based on GeForce 9800GX2 baseline. The third step
is to analyze performance for the desired memory frequency
using Amdahl’s Law method. In Figure 12, we have two

FIGURE 12. Performance analytical curve generated by amdahl’s law
method.

different data points calculated by the pipeline model for
NV280.
At data point#1, memory frequency is set at 500 MHz,

the frame retirement time measured is 28.8msec. At data
point#2, memory frequency is set at 750 MHz, the frame
retirement time measured is 23.66msec. We will now use
the projection line generated by Amdahl’s law method to
estimate the performance for NV280 at memory frequency
set to 900 MHz which is 22.38msec as shown in Figure 12.
For this experiment, the a and b values are the projection line
intercept and slope values which are calculated as −111.73
and 0.5709 respectively. The linear score line is plotted in
Figure 13 below. At x = 0 and y = 0.5709, it is the non-
scaling part of the equation.

FIGURE 13. Linear performance line showing scaling and non-scaling
factors in time domain generated by Amdahl’s Law method.

The next step is to determine what is the maximum frame
retirement time a GPU can achieve as GMmemory frequency
increases. The NVtune utility may not allow to set GM fre-
quencies for higher values than the GPU can handle. In our
method, we can analyze performance for these higher GM
frequencies. Recall on the derivation steps for a and b values
in section 5.1. We derived the equation y = −111.73x +
0.5709 at x = 0, and y = 0.5709. Now if we take the inverse
of y, 1/y = 1/0.5709 = 1.751. This result for 1/y concludes
that the total frame retirement time for NV280 will never go
below 17.51msec as memory frequency increases as shown
in Figure 14. The 1/y derived from scaling and non-scaling
variables is set to be the lower bound for the time vs. memory
frequency.
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FIGURE 14. Lower bound @17.5msec as GM frequency increases.

The performance curve generated in Figure 14 using
Amdahl’s lawmethod is the lower bound for frame retirement
time onNV280 as GMmemory frequency increases. NVTune
utility may not allow setting GM frequencies to very high
values due to hardware limitation, but Amdahl’s law method
enables the calculation of the maximum frame retirement
time at these high GM frequencies. The analysis done on
NV280 can be used to estimate frame retirement time for a
different GPU of the same architecture as NV280, assuming
that this GPU can achieve higher GM memory frequencies
compared to NV280.

Scaling Efficiency (SE) is calculated using the following
equation:

SE =
y2/y1
x2/x1

(38)

were (x, y) is the projected frame retirement time curve data
points.

FIGURE 15. Scaling efficiency for NV280 frame retirement time projection
curve.

By analyzing in Figure 15, the scaling efficiency curve
for NV280 frame retirement time, we notice at lower GM
memory frequencies, frame retirement time scales well with
GM memory frequency. However at higher GM frequencies,
the scaling factor seems to level off as we increase GMmem-
ory frequency. Using the Amdahl’s law regression method

FIGURE 16. Measured vs. estimated frame retirement time for different
Nvidia cards.

described in this section and establishing the baseline for
different Nvidia card discussed in previous sections, we test
the model for 3 different Nvidia Cards as shown in Figure 16.
The model which consists of two parts, the first part estab-

lishing a baseline for a given graphics card to generate two
data points, and the second part consists of using Amdahl’s
law to predict performance at different memory frequency.
We then measure the actual card at that frequency to show the
error variation between the model output and the measured
data. For all three graphics cards shown in Figure 16, the error
margin is <5% for all tested graphics cards.

VI. RELATED WORK
Several researchers have worked on analyzing GPU perfor-
mance on given benchmarks using different analytical and
simulated methods. In this paper, we presented an analytical
method based on a mathematical derivation to calculate and
analyze frame retirement time for a given GPU architecture
on a specific frame. This method is an analytical method
rather than simulation based method.
Moya, V. [14], implemented a performance analysis of

shader processing for a given GPU using simulated and com-
parison methods.
Sibai, F. [15], presented performance characterization for

3Dmark benchmark focusing on multi-CPU, multi-GPU plat-
forms. The paper focus on 3DMark characterization, and the
dependence of 3D graphics on memory. The characterization
method does not provide insight on the pipeline activities for
GPU while rendering a specific frame from 3Dmark work-
load.
Liu, W. [16], identifies factors that determine performance

of GPU-based applications and then classify them into dif-
ferent categories. The data characteristics are used to propose
a performance model for each factor. The models were then
used to estimate the performance of bio-sequence database
scanning application on GPU.

VII. CONCLUDING REMARKS
In this paper, we presented an analytical method to analyze
and project frame retirement time using Amdahl’s law after
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establishing a measured baseline. Using the same method,
we also determined the maximum frame retirement time a
graphics card can achieve on a given benchmark for a specific
frame. More importantly, the method is flexible as it can
be applied to project performance for a different graphics
card of same architecture at higher memory frequencies.
The method does not require binary or simulations; it does
however require a code to implement the performance anal-
ysis method. This method is limited because it can only
project performance for graphics processors of same archi-
tecture specific to a certain frame. The same method can be
implemented to analyze performance for GPU of different
architectures; however, this will result in a projection curve
shift as well as change in slope characteristics. Future work
can be done by extending this model to analyze performance
for graphics workloads or entire 3D benchmarks rather than
individual frames. In our previous work [13] Amdahl’s law
method was used to analyze the sensitivity and performance
curve for different memory frequency, core GPU frequency
and different number of cores on a given GPU using dif-
ferent 3D benchmarks. The performance projection method
we have is limited as we can only sweep one variable at a
time, for example, in this paper, we changed GM frequency,
in [13] we changed memory frequency, core GPU frequency,
and number of cores. Future work on performance analysis
method can implement multi-dimensional plots to analyze the
performance (Frame Retirement Time, Frame per Second or
Score) sensitivity curve using different frequency axis such
as memory and core frequencies as well as different number
of cores on a given benchmark.
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